DEPARTAMENTO DE ENGENHARIA CIVIL E ARQUITECTURA SECÇÁO DE HIDRÁULICA E RECURSOS HÍDRICOS E AMBIENTAIS Elementos de Engenharia Civil 2009/2010 2° SEMESTRE Enunciados dos problemas* (módulo de Hidráulica) * Problemas seleccionados do Enunciado de problemas de Hidráulica I, da Licenciatura em Engenharia Civil. Fundamentos de Engenharia Civil – 1 1 – ANÁLISE DIMENSIONAL E TEORIA DA SEMELHANÇA PROBLEMA 1.1 Determinar as dimensões das seguintes grandezas nos sistemas MLT e FLT: massa volúmica; peso volúmico; viscosidade; viscosidade cinemática. Indicar os valores-padrão das grandezas anteriores para a água no sistema métrico gravitatório, MKpS, e no Sistema Internacional de Unidades, SI. Indicar ainda o valor da viscosidade em poise (dine s cm-2). Qual a diferença entre dimensão e unidade? NOTA: Viscosidade cinemática da água, = 1,31 x 10-6 m 2 s-1. PROBLEMA 1.2 Verificar a homogeneidade dimensional da equação que exprime o teorema de Bernoulli aplicável a fluidos reais ao longo de uma trajectória: 1 p 2 z J s 2g g t em que p é a pressão a que se processa o escoamento, é a sua velocidade, z é a cota geométrica, g é a aceleração da gravidade, é o peso volúmico do fluido, t é o tempo e J é o trabalho das forças resistentes por unidade de peso de fluido e por unidade de percurso. PROBLEMA 1.3 Na figura junta representa-se esquematicamente uma ponte sobre um curso de água. A capacidade de vazão na secção da ponte é função da velocidade do escoamento, V0 da altura de água a montante, h, da contracção da secção, C, e do comprimento dos pilares da ponte, lp. Considerando que as forças da gravidade são predominantes e que as forças relacionadas com os efeitos da viscosidade podem ser desprezadas, determine uma expressão geral da lei de vazão, aplicando os conceitos da análise dimensional. Fundamentos de Engenharia Civil – 2 PROBLEMA 1.4 Para o ensaio em modelo reduzido de um fenómeno que dependa exclusivamente da gravidade, utilizando-se o mesmo líquido no modelo e no protótipo, determine as escalas das seguintes grandezas, em função da escala dos comprimentos: a) velocidade; b) tempo; c) aceleração; d) caudal; e) massa; f) força; g) energia; h) potência. PROBLEMA 1.5 A lei de resistência ao escoamento de água sob pressão em regime turbulento, no interior de uma tubagem circular, pode ser expressa pela fórmula de Manning: U 1,486 2 / 3 1 / 2 R J n em que, U – velocidade média do escoamento; Fundamentos de Engenharia Civil – 3 n – coeficiente que depende do material da tubagem; R – raio hidráulico (quociente da secção líquida pelo perímetro molhado); J – perda de carga unitária. Os valores de n, dependentes da rugosidade da tubagem, encontram-se numa tabela, devendo, para a sua aplicação, as grandezas da fórmula de Manning ser expressas em unidades inglesas. Apresentar esta fórmula de forma a manter-se válida para um sistema genérico, em que as unidades de comprimento e de tempo sejam respectivamente l e t, continuando a utilizar os valores de n da tabela referida. Particularizar para o caso de aquelas unidades serem o metro e o segundo. PROBLEMA 1.6 Efectuaram-se experiências em laboratório para obter as características de resistência de um navio em relação à onda (depende somente da gravidade) que se vai opôr ao seu deslocamento. Calcule: a) A que velocidade se deverá fazer o ensaio na escala 1/25 para que a velocidade real correspondente seja de 40 kmh-1. b) A resistência para o protótipo se, no modelo reduzido, for medido o valor de 5 N. c) O período da vaga no protótipo sendo o seu valor de 3 s no modelo. PROBLEMA 1.7 Para estudar um escoamento variável construiu-se um modelo à escala linear de 1/10. Usa-se água no protótipo e sabe-se que as forças de viscosidade são dominantes. Determinar a escala dos tempos e forças em condições de semelhança hidráulica se: a) usar água no modelo; b) usar um óleo cinco vezes mais viscoso que a água e cuja massa volúmica é 80% da da água. Fundamentos de Engenharia Civil – 4 2 – HIDROSTÁTICA PROBLEMA 2.1 O tubo representado na figura está cheio de óleo de densidade 0,85. Determine as pressões nos pontos A e B e exprima-as em altura equivalente de água. PROBLEMA 2.2 Se for injectado gás sob pressão no reservatório representado na figura, a pressão do gás e os níveis dos líquidos variam. Determinar a variação de pressão do gás necessária para que o desnível x aumente 5 cm sabendo que o tubo tem diâmetro constante. PROBLEMA 2.3 Considere o esquema representado na figura, em que existe ar sob pressão acima da superfície BD. A comporta ABCDE pode rodar sem atrito em tomo de E. Fundamentos de Engenharia Civil – 5 G=50kN a) Trace os diagramas de pressão na face esquerda da comporta e calcule os valores da pressão nos pontos A, B, C, D e E. b) Qual deverá ser a altura de água a jusante, hj., de forma a que se estabeleça o equilíbrio, nas condições da figura, admitindo que o ponto de aplicação do peso da com porta é o ponto C. PROBLEMA 2.4 A comporta representada na figura é sustentada pelas barras AB espaçadas de 6 m em 6 m. Determinar a força de compressão a que fica sujeita cada barra desprezando o peso da comporta. Fundamentos de Engenharia Civil – 6 PROBLEMA 2.5 Na parede BC de um reservatório existe uma tampa metálica quadrada de 1 m de lado, conforme se indica na figura. A aresta superior da tampa, de nível, dista 2 m da superfície livre do líquido Determinar: a) A impulsão total sobre a tampa metálica e as suas componentes horizontal e vertical. b) A posição do centro de impulsão. PROBLEMA 2.6 Um recipiente de forma cúbica, fechado, de 1 m de aresta, contém, até meia altura, um óleo de densidade 0,85, sendo de 7 kPa a pressão do ar na sua parte superior. Determinar: a) A impulsão total sobre uma das faces laterais do recipiente. b) A posição do centro de impulsão na mesma face. PROBLEMA 2.7 Qual o peso volúmico mínimo que deverá ter um corpo sólido homogéneo sobre o qual assenta uma membrana de impermeabilização com a forma indicada na figura, para resistir, sem escorregamento, à impulsão da água que represa? O coeficiente de atrito estático entre os materiais que constituem o corpo e a base onde este assenta é 0,7. Fundamentos de Engenharia Civil – 7 PROBLEMA 2.8 Na parede de um reservatório existe um visor semi-esférico com o peso de 5 kN, ligado à mesma conforme se indica na figura. Calcule as componentes horizontal e vertical da impulsão sobre o visor. PROBLEMA 2.9 Uma comporta cilíndrica com 2 m de raio e 10 m de comprimento, prolongada por uma placa plana AB, cria num canal um represamento nas condições indicadas na figura. A comporta encontra-se simplesmente apoiada nas extremos do seu eixo em dois pilares. Fundamentos de Engenharia Civil – 8 Determinar: a) A componente horizontal da força transmitida a cada pilar quando a comporta está na posição de fechada, admitindo que é nula a reacção em B. b) O peso mínimo que deverá ter a comporta para não ser levantada, supondo possível tal deslocamento e desprezando o atrito. PROBLEMA 2.10 Considere-se uma comporta de segmento, com 5 m de largura, instalada na descarga de fundo de uma albufeira, nas condições da figura junta. A comporta pode ser manobrada, para abertura, por dois cabos verticais fixados às suas extremidades laterais. Admite-se que os dispositivos de vedação impedem a passagem da água para a zona que se situa superiormente à comporta. a) Determinar a.1) As reacções de apoio em A e B, supondo esta última vertical. a.2) A força, F, necessária para iniciar o levantamento da comporta. b) Considere o caso de a comporta ser plana em vez de cilíndrica. b.1) Indicar se a força necessária ao levantamento da comporta aumenta ou diminui em relação à da alínea a.2. b.2) Calcular o valor dessa força em cada cabo. b.3) Indicar se essa força aumenta ou diminui depois de iniciado o movimento de abertura, sabendo que o escoamento a jusante da comporta se fazem superfície livre. Fundamentos de Engenharia Civil – 9 PROBLEMA 2.11 Num canto de um reservatório paralelepipédico encontra-se colocada uma peça com a forma de 1/8 de esfera de raio R. Calcular a impulsão total do líquido sobre esta peça e a inclinação daquela impulsão, sabendo que a altura do líquido no reservatório é h. PROBLEMA 2.12 Uma esfera homogénea de peso volúmico flutua entre dois líquidos de densidades diferentes, de tal maneira que o plano de separação dos líquidos passa pelo centro da esfera, conforme se ilustra na figura. Determinar a relação entre os três pesos volúmicos. Fundamentos de Engenharia Civil – 10 3 – ESTUDO ANALÍTICO DOS ESCOAMENTOS PROBLEMA 3.1 Soldados marcham em quatro colunas com uma velocidade de 1,0 ms-1 distanciados entre si de 1,0 m. No instante t = 4 s, viram todos à esquerda e continuam a marchar. Fazendo uma analogia com a hidrocinemática, desenhe: a) Algumas trajectórias. b) Algumas linhas de corrente (antes e depois do “esquerda volver”). PROBLEMA 3.2 Seja o escoamento bidimensional definido pelo seguinte campo de velocidades: u = x (1 + 2t) =y w=0 Ache as equações: a) Da linha de corrente que passa pelo ponto (1;1) para t = 0 s. b) Da trajectória que passa pelo ponto (1;1) no instante t = 0 s. PROBLEMA 3.3 O escoamento plano de um fluido incompressível entre um diedro recto e uma superfície cilíndrica de directriz xy = A, apresenta o seguinte campo de velocidades: V = 2axi – 2ayj a) Calcule o caudal escoado na secção 1. b) Calcule o caudal escoado na secção 2. c) Defina as equações das linhas de corrente e das trajectórias. d) Verifique a continuidade do escoamento. Fundamentos de Engenharia Civil – 11 PROBLEMA 3.4 Numa conduta de eixo horizontal em que se escoa um caudal de 0,1 m 3s-1 de água, existe um estreitamento brusco, como se indica na figura. A montante do estreitamento estão montados piezómetros em que se lêem alturas de 5,65 m e 5,00 m, respectivamente, medidas em relação ao eixo da conduta. Calcular a perda de carga provocada pelo estreitamento. Considere uniforme a distribuição de velocidades nas secções. PROBLEMA 3.5 2 3 -1 Numa tubagem com 2 m de secção que transporta um caudal de 2 m s de água, insere-se um estreitamento localizado, a montante do qual a pressão absoluta é de 0,15 MPa. Indicar qual a secção mínima teórica do estreitamento para o qual não se verifique perturbação do escoamento. Considere nulas as perdas de carga no estreitamento, uniforme a distribuição de velocidades em qualquer secção e admita que a temperatura do líquido é 20°C. PROBLEMA 3.6 Numa secção a montante do descarregador representado na figura junta, a velocidade do escoamento é 1 ms-1 e a altura de água sobre o fundo é 2,0 m. Considerando irrotacional o escoamento na vizinhança do descarregador e que a pressão no ponto P é a atmosférica, determine a velocidade nesse ponto. Fundamentos de Engenharia Civil – 12 PROBLEMA 3.7 Através do difusor de uma turbina, com a forma e dimensões indicadas na figura, escoa-se um 3 -1 caudal de 20 m s . Calcular a pressão existente na secção 1, em atmosferas, sabendo que na secção 3, em que o difusor descarrega para um lago de grandes dimensões, se dá uma perda de energia igual à energia cinética nesse ponto. Admitindo que o escoamento no difusor é irrotacional, calcular a pressão na soleira na secção 2. Considerar a distribuição de velocidades uniforme nas diferentes secções do difusor. PROBLEMA 3.8 Considere as duas seguintes hipóteses de campos de velocidade de escoamentos permanentes planos de um fluido incompressível: 2 a) u = 2x + y 2 b) u = 9xy + y = –4xy = 8xy + 2x Verifique, para ambos os casos, se há conservação da massa. Represente graficamente os vectores velocidade plausíveis nos pontos (0,0); (2,2) e (– 3,3). Fundamentos de Engenharia Civil – 13 PROBLEMA 3.9 Para a instalação representada na figura, obtenha a expressão que relaciona o caudal escoado com as variáveis assinaladas na mesma figura, desprezando as perdas de carga ente as secções 1 e 2. Fundamentos de Engenharia Civil – 14 4 – ESTUDO GLOBAL DOS ESCOAMENTOS PROBLEMA 4.1 Numa tubagem convergente de eixo horizontal existem duas secções, com áreas de 1,0 m 2 e 0,5 m 2 onde para o escoamento de um dado líquido se têm alturas piezométricas no eixo de 15,0 m e 5,0 m, respectivamente. Calcular: a) O caudal escoado, supondo nula a perda de carga ente as secções e admitindo que o coeficiente de Coriolis, , tem o valor de 1,1. b) O coeficiente de quantidade de movimento. PROBLEMA 4.2 Determine a diferença entre as potências do escoamento nas secções A e C da tubagem 3 -1 indicada na figura, quando se escoa o caudal de 2,0 m s . Despreze as perdas de carga localizadas e considere uniforme a distribuição de velocidades nas secções A e C. PROBLEMA 4.3 Considere o esquema indicado na figura seguinte. A conduta entre os reservatórios A e B tem 3 km de comprimento e apresenta uma perda de carga unitária J = 0,0005 para o caudal turbinado de 2,0 m 3s-1. Determine: a) A potência da turbina para um rendimento de = 0,80. b) A potência que deveria ter uma bomba instalada em vez da turbina para, com um rendimento = 0,60, elevar de B para A o mesmo caudal. Fundamentos de Engenharia Civil – 15 Desprezar todas as perdas de carga localizadas e a velocidade no interior dos reservatórios PROBLEMA 4.4 Calcular as forças a que estaria sujeito o maciço de amarração da bifurcação representada em planta na figura, DA = 1,20 m DB = DC = DD = DE = 0,50 m pA =pB =p C = pD = pE = 500 kPa nas seguintes condições: a) Quando as válvulas instaladas em B, C, D e E se encontram fechadas. b) Quando as válvulas em B e E se encontram fechadas e por cada uma das secções C e D se escoa um caudal de 3 m 3s-1. c) Quando as válvulas em B e C se encontram fechadas e por cada uma das secções D e E se escoa um caudal de 3 m 3s-1. d) Quando por cada uma das secções B, C, De E se escoa um caudal de 1,5 m 3s-1. Considere o coeficiente de Coriolis = 1. Os eixos da conduta e da bifurcação são horizontais. PROBLEMA 4.5 Numa galeria circular em pressão, com 3,0 m de diâmetro, escoa-se um caudal de 25 m 3s-1. Aquela galeria tem inserida uma curva com eixo horizontal, de raio igual a 10 m e ângulo ao centro de 60°, em que a altura piezométrica se pode considerar constantemente igual a 100 m. Fundamentos de Engenharia Civil – 16 Determinar a força sobre o troço curvo da galeria nos seguintes casos: a) Quando se dá o escoamento atrás referido. b) Quando não há escoamento em virtude de a galeria ter sido obturada por uma comporta muito afastada da curva. c) Quando a obturação se faz imediatamente a jusante da curva por uma comporta. PROBLEMA 4.6 Determine a pressão que deverá ter o escoamento na secção A para que a tubagem representada na figura fique em equilíbrio no apoio B. SA = 0,50m 2 SC = SD = 0,10 m 2 G = 10 kN Despreze as perdas de carga, as diferenças de cota das secções, o peso da tubagem e a contracção nas secções C e D. Fundamentos de Engenharia Civil – 17 5 – TRANSPORTE DE LÍQUIDOS: Noções gerais PROBLEMA 5.1 Um torniquete hidráulico roda à velocidade de 10 rpm sobre um “pivot” de 20 mm de diâmetro e de 50 mm de altura, com uma folga de 0,10 mm, preenchida por um lubrificante de viscosidade cinemática v = 6 x 10-3 m 2 s-1. Os eixos dos jactos do torniquete, normais ao respectivo braço, distam 150 mm do eixo de rotação vertical, sendo os orifícios de saída circulares, com 10 mm de diâmetro. Supondo nula a contracção do jacto e conhecendo a densidade relativa do lubrificante que é igual à unidade, calcular o caudal de água que deverá escoar-se para manter o movimento em regime permanente. PROBLEMA 5.2 -1 Pretende-se elevar o caudal de 4 1s de um reservatório A para um reservatório B, por uma conduta elevatória com 250 m de comprimento e 150 mm de diâmetro. O líquido a elevar é um -4 2 -1 óleo com uma densidade de 0,9 e com a viscosidade cinemática = 3 x 10 m s . A potência da bomba é de 2,2 kW e o rendimento é de 0,70. O reservatório B, de grandes dimensões, é fechado e contém ar sob pressão, situando-se a superfície do óleo à cota 8 m. Calcular a pressão do ar no reservatório B. PROBLEMA 5.3 Numa conduta circular com 1,0 m de diâmetro e com a rugosidade absoluta k = 0,5 mm escoase o caudal de 3 m 3s-1. Sendo a viscosidade cinemática do líquido = 10-5 m 2s-1, determine a perda de carga unitária. PROBLEMA 5.4 Numa conduta circular com a rugosidade absoluta k = 1,5 mm, escoa-se o caudal de 2 m 3s-1. Sendo a viscosidade cinemática do líquido = 10-6 m2s-1 e a perda de carga unitária J = 0,008, determine o diâmetro da conduta. Fundamentos de Engenharia Civil – 18 6 – ESCOAMENTOS SOB PRESSÃO PROBLEMA 6.1 Dois reservatórios estão ligados por uma tubagem com os acidentes e a disposição indicados na figura. Proceda ao traçado qualitativo das linhas de energia e piezométrica atendendo a todas as irregularidades. PROBLEMA 6.2 Numa conduta de fibrocimento com o diâmetro de 0,45 m escoa-se água, em regime uniforme, com a perda de carga unitária de 0,003. Calcular o caudal transportado, supondo a conduta nova e utilizando a fórmula de Chézy (com C calculado pela fórmula de Bazin) e o ábaco de Scimemi. PROBLEMA 6.3 Dois reservatórios A e C com as respectivas superfícies livres apresentando uma diferença de cotas de 20 m estão ligados ente si por uma tubagem de fibrocimento constituída por dois trechos: trecho AB, com um comprimento l1 = 1000 m e diâmetro D1, e trecho BC, com um comprimento l2 = 1000 m e diâmetro D2 tal que D2 = 1,1D1. Determinar os diâmetros D 1 e D2 de modo que o caudal escoado seja 200 ls1. Para o efeito use o ábaco de Scirnemi e a fórmula de Manning-Strickler (K = 95 m 1/3s-1). PROBLEMA 6.4 Dois reservatórios, A e C, estão ligados por uma tubagem de ferro fundido ABCD que apresenta um ponto alto B cuja cota é 105 m. Fundamentos de Engenharia Civil – 19 3 -1 Em D está instalada uma turbina que absorve o caudal de 0,1 m s (rendimento, = 0,85). Determine o diâmetro mínimo da conduta para a altura piezométrica não ser, em B, inferior a 1 m. Qual é a potência da turbina? PROBLEMA 6.5 Uma bomba B eleva água do reservatório A para um sistema com os reservatórios D e E. Ao reservatório D chega um caudal de 250 Is-1. Sabendo que as cotas dos reservatórios e as dimensões das condutas são as indicadas no esquema junto, que o rendimento da bomba é = 0,75 e que as condutas são em ferro fundido, calcule o caudal elevado e a potência da bomba. PROBLEMA 6.6 Os reservatórios A e B estão ligados à conduta CD, a qual tem um orifício em contacto com a 2 atmosfera na extremidade D. A secção S0 em D tem o valor de 0,02 m . Fundamentos de Engenharia Civil – 20 Determine o caudal proveniente dos reservatórios A e B, considerando que o material das condutas é fibrocimento e desprezando as perdas de carga em singularidades e a contracção no orifício de saída PROBLEMA 6.7 Uma conduta eleva água de um reservatório A para um reservatório B, através de uma conduta de betão liso e novo, com 1000 m de comprimento e com 0,60 m de diâmetro. A relação entre a altura de elevação (H t) e o caudal (Q) da bomba, acoplada a um motor de velocidade de rotação constante (relação denominada curva característica da bomba), exprimese por: Ht = 28 – 20Q 2 com Ht expresso em m e Q em m 3s-1. Desprezando as perdas de carga localizadas, determinar o caudal na conduta e a potência da bomba (rendimento = 0,70): a) nas condições indicadas; b) quando uma bomba igual é instalada em paralelo com a primeira; c) quando uma bomba igual é instalada em série com a primeira. Fundamentos de Engenharia Civil – 21 PROBLEMA 6.8 A um reservatório A, de grandes dimensões, está ligada uma conduta ABC com um ponto B onde se colocou um tubo piezométrico. A conduta, de aço soldado, tem o diâmetro de 0,50 m e a sua extremidade C está equipa da com um órgão obturador cujo eixo está à cota 20 m. Supondo nulas a contracção no obturador e as perdas de carga em singularidades. 2 a) Determine o caudal escoado quando a abertura do obturador for de 0,01 m . b) O caudal crescerá com a abertura do obturador até um certo limite desta. Qual é a abertura e o caudal escoado nestas condições, desprezando a altura cinética no interior das condutas? c) Represente as linhas de energia e piezométrica nos dois casos de funcionamento indicados. PROBLEMA 6.9 O reservatório A alimenta os reservatórios B e C através do sistema de tubagens em aço soldado representado na figura; a água é bombada pela bomba D e os comprimentos e diâmetros das tubagens são os indicados. Fundamentos de Engenharia Civil – 22 a) Supondo a tubagem CE obturada, determine o caudal fornecido ao reservatório B tendo a bomba a potência de 1700 kW e o rendimento de 0,70. b) Determine a cota X para que o caudal admitido no reservatório C seja nulo, sendo o 3 -1 caudal admitido em B igual a 2,0 m s . Calcule também a potência da bomba admitindo que tem o rendimento de 0,70. c) Para X = 100 m e funcionando a bomba com a potência de 5 000 kW e o rendimento de 0,70, determine os caudais admitidos nos reservatórios B e C. d) Trace qualitativa, mas cuidadosamente, as linhas de energia e piezométricas correspondentes às alíneas b) e c). NOTAS: As alíneas a), b) e c), em relação às quais se podem desprezar as perdas de carga em singularidades, são independentes. Na alínea d), considere as transições dos reservatórios em aresta viva. PROBLEMA 6.10 Um reservatório abastece uma conduta de 2000 m de comprimento e 0,20 m de diâmetro, de fibrocimento, a qual, tendo exclusivamente serviço uniforme de percurso, consome o caudal de 8640 m 3 por dia. A conduta é horizontal e o respectivo eixo está localizado a uma cota inferior em 30 m ao nível da água no reservatório. Numa dada altura, e no intuito de melhorar as condições de pressão, fez-se funcionar, na extremidade B da conduta uma bomba com 30 kW de potência e o rendimento de 0,75. A bomba absorve água do reservatório C, em que o nível se apresenta 30 m abaixo do de A. Fundamentos de Engenharia Civil – 23 Supondo invariável o consumo, pede-se para indicar a melhoria de pressão, no ponto de cota piezométrica mínima, para o caso de a bomba se encontrar em funcionamento, relativamente à pressão que no mesmo ponto existia sem bomba. NOTAS: – Estabeleça primeiro o sistema resolvente; – Despreze as perdas de carga em singularidades e a altura cinética. Fundamentos de Engenharia Civil – 24