Topografia e Geomática Fundamentos Teóricos e Práticos AULA 02 Forma e Dimensões da Terra Prof. Rodolfo Moreira de Castro Junior Características Gerais da Terra A Terra gira em torno de seu eixo vertical em 23h:56min:4,09seg; Raio médio de 6.371 km; A superfície topográfica da Terra apresenta uma forma muito irregular, com elevações e depressões Características Gerais da Terra Everest: 8.848,00 m Fossas Abissais: ~11.000,00 m R= 6. 37 1. 00 0 m Características Gerais da Terra 2 – Representação da Terra • Mapas são simplesmente representações aproximadas da superfície curva terrestre sobre o plano; o mapa plano é mais fácil de ser produzido e manuseado Problema: Forma da Terra (Superfície Topográfica Irregular) X Representação Cartográfica (Plana) 2 – Representação da Terra Mas Qual é a Forma Correta da Terra? 2 – Representação da Terra Perspectiva Histórica Concepções de Formas da Terra: Plano-retangular (fase mitológica e medieval) Esférica (Pitágoras, Aristóteles e Erastóstenes) Esferóide, com certo achatamento nos pólos (~ 1700) Elipsóide de Revolução (Newton; século XVII) Geóide (Gauss; século XVIII) 2 – Representação da Terra Terra Esférica: Esfera sem rotação (estática), de densidade uniforme e livre de qualquer espécie de perturbação gravitacional. Esfera Líquida 2 – Representação da Terra Terra Normal: Elipsóide de Revolução Figura resultante da rotação de uma elipse em torno de seu semi-eixo menor, de densidade uniforme e com forma equilibrada a partir de forças gravitacionais em cada ponto (achatado nos pólos). Parâmetros do Elipsóide Semi-eixo maior (a) Semi-eixo menor (b) Achatamento (f) = 1/α sendo α = (a-b)/a 2 – Representação da Terra Geometria do esferóide 2 – Representação da Terra Geometria do esferóide excentricidade e= a2 − b2 a2 achatamento α = a−b a 2 – Representação da Terra Geometria do esferóide Raio de curvatura do meridiano a (1 − e 2 ) R= (1 − e 2 sen 2 ϕ ) 3 / 2 2 – Representação da Terra Geometria do esferóide Raio do paralelo Arco de meridiano sϕ = ∫ R d ϕ r = N 0 cos ϕ Arco de paralelo s λ = rΔ λ Normal N0 = a 1 − e 2 sen 2 ϕ 2 – Representação da Terra Terra Real: Geóide Modelo idealizado com base em estudos gravimétricos; eecorrente das forças de atração (gravidade) e centrífuga (rotação da Terra); Definição: superfície equipotencial ondulada e coincidente com o nível médio dos mares (altitude = 0 m), supostamente prolongado por sob continentes, sem variação de pressão atmosférica e sem o efeito da atração de outros corpos celestes (sem marés, sem ondas); Não possui uma forma matemática ou geométrica, portanto não pode ser usado como uma superfície de referência para o posicionamento de pontos da superfície terrestre. 2 – Representação da Terra Vista do geóide em perspectiva Ondulações do geóide máxima: +70 m (oceano Atlântico) mínima: -100 m (oceano Índico) Ondulações do geóide (sobrelevação de 15000:1) 2 – Representação da Terra 2 – Representação da Terra Determinação do Geóide Métodos gravimétricos Método astro-geodésico Método astro-gravimétrico 2 – Representação da Terra Superfícies de Relacionamento Geodésico Altitude Topografia Geóide Nível do Mar Elipsóide Esfera Altitude (H): Distância existente entre o ponto na superfície da Terra (P) e sua projeção ortogonal (P’). No Elipsóide esta altitude é conhecida como Altitude Geodésica ou Geométrica. No Geóide é chamada de Altitude Ortométrica. 2 – Representação da Terra 2 – Representação da Terra O POSICIONAMENTO DO ELIPSÓIDE Datum local Datum global Ajustamentos locais de elipsóides ao geóide em duas regiões diferentes 2 – Representação da Terra DATUM GEODÉSICO Superfície Topográfica Elipsóide Geóide Superfícies da Terra e Datum Geodésico Datum: Pode ser horizontal, vertical ou ambos e serve como referência para todos os trabalhos geodésicos. É definido por 3 variáveis e 2 constantes, respectivamente, a latitude e longitude de um ponto inicial, o azimute de uma linha que parte deste ponto e as constantes necessárias para definir o elipsóide de referência. 2 – Representação da Terra DN>0 o geóde está acima do elipsóide DN<0 o geóde está abaixo do elipsóide DN=0 intersecção do geóde com o elipsóide 2 – Representação da Terra H = altitude ortométrica h = altitude elipsoidal N = ondulação do geóide 2 – Representação da Terra Datum Geodésico Sistema de referência que define a forma e o tamanho do elipsóide, bem como a sua posição relativa à superfície física da Terra e ao Geóide; – É definido a partir a partir de um conjunto de pontos geodésicos implantados na superfície terrestre, delimitada pelas fronteiras do país. Características: – Datum Planimétrico (Horizontal) – Datum Altimétrico (Vertical) – Constitui um ponto de partida de alta precisão geodésica para a determinação e transporte de coordenadas e altitudes; – Para cada país ou grupo de países foi calculado (adotado) um elipsóide na região considerada, pois na definição de datum locais é mais desejável um encaixe regional que um global; 2 – Representação da Terra Diversos Elipsóides 2 – Representação da Terra Datum Geodésico Global Datum de referência internacional utilizado na cobertura geral do globo, escolhido de forma a fazer coincidir o centro de massa da Terra com o centro do elipsóide de referência, e o eixo da Terra com o eixo menor do elipsóide, procurando assim minimizar, globalmente, as diferenças entre este e o geóide. Elipsóide Semi-eixo maior a (m) Semi-eixo menor b (m) Achatamento 1/α UGGI-67 6.378.160,00 6.356.774,72 298,25 WGS-84 6.378.137,00 6.356.752,31 298,25 UGGI-67 – União Geodésica e Geofísica Internacional – 1967. WGS-84 – World Geodetic System – 1984, adotado pelo Navstar-GPS 2 – Representação da Terra Sistema Geodésico Brasileiro - SGB: constituído por cerca de 70.000 estações implantadas pelo IBGE em todo o território brasileiro, dividida em três redes: Rede Planimétrica: pontos de referência geodésico para latitude e longitude de alta precisão; – Rede Altimétrica: pontos de altitudes conhecidas de alta precisão (RN - Referências de Nível); – Rede Gravimétrica: ponto de referência para valores precisos de gravidade. ² De qualquer estação da rede, as equipes de campo iniciam seus trabalhos utilizando aparelhos de medição (teodolitos e estações totais, distanciômetros eletrônicos, níveis e rastreadores de satélite (GPS). 2 – Representação da Terra Datum Geodésico para o Brasil (ao qual está referida a rede nacional de triangulação geodésica) Elipsóide Semi-eixo maior a (m) Semi-eixo menor b (m) Achatamento 1/α Datum Córrego Alegre 6.378.388,00 6.366.991,95 297,000745015 Datum Chuá 6.378.388,00 6.378.160,00 297,000000000 SAD 69 e SAD 69 / 96 6.378.160,00 6.356.774,72 298,250000000 IMPORTANTE ² Verificar nas notas das cartas, os datum planimétrico e altimétrico, utilizados na sua confecção. 2 – Representação da Terra Datum Horizontal Chuá (Minas Gerais) • Utilizado atualmente no Brasil; está localizado no local denominada Riacho Chuá, entre Uberaba e Campo Florido, em Minas Gerais. Legenda: Vértice de Chuá - Marco físico que materializa o SAD-69 Fonte: USP Latitude (ϕ): 19º 45’ 41,6527” S Longitude (λ): 48º 06’ 04,6639” W Gr Achatamento: 1/298.25 metros Altitude Ortométrica: 763,28 metros Azimute geodésico para o Vértice Uberaba:271º30’04,05” 2 – Representação da Terra Origem do Datum Altimétrico • Estação maregráfica do porto de Imbituba (SC): utilizada como origem para toda rede altimétrica nacional, à exceção do Estado do Amapá. Estação maregráfica do porto de Santana (AP): para referenciar a rede altimétrica do Estado do Amapá. Legenda: Datum vertical do SGB – Referencial maregráfico – Imbituba – SC Latitude: -28º14’10,000520”S Longitude: -48º39’20,146203”W Altitude (Hm): 0,125254 2 – Representação da Terra SIRGAS 2000 – Sistema de Referência Geocêntrico para a América do Sul A FORMA E A DIMENSÃO DA TERRA 32 A2 Laboratório de Topografia e Cartografia - CTUFES ___________________________________________________________ Limites da Topografia LIMITES DA TOPOGRAFIA| 33 A2 Laboratório de Topografia e Cartografia - CTUFES ___________________________________________________________ A B t a e A’ Rm α O Rm e=t−a Considerando: Rm = 6.366.193 m e Fazendo α = 1 grau Calcular o Erro e LIMITES DA TOPOGRAFIA| 34 A2 Laboratório de Topografia e Cartografia - CTUFES ___________________________________________________________ A B t a e A’ Rm α O Rm 2 .π a a = R ↔ 360 o ↔ α α 360 o ⋅ 2π R t tan α = ⇒ t = R m ⋅ tan α Rm LIMITES DA TOPOGRAFIA| 35 Laboratório de Topografia e Cartografia - CTUFES ___________________________________________________________ A2 e =t −a a = 111,11 Km E para: t = 111,12 Km α= 30´ ? Logo: e e = 0,01 Km α = 30” ? LIMITES DA TOPOGRAFIA| 36 A2 Laboratório de Topografia e Cartografia - CTUFES ___________________________________________________________ Considerando o Raio Médio da Terra: 6.370 Km Valor de α Distância a Arco t Erro (a - t) 01º 111.188,763m 111.177,473m 11,29 m 01' 1.852,9578673m 1852,95789126m 0,0217809mm 30'' 926,4789511m 926,4789445m 0,0065332mm 01'' 30,8826304m 30,8826314m 0,0010175mm LIMITES DA TOPOGRAFIA| 37 A2 Laboratório de Topografia e Cartografia - CTUFES ___________________________________________________________ Qual da Área de Abrangência a partir de um ponto? t α = 1´ t = 1.852 m A = 10,77 Km2