CURSO DE AVALIAÇÃO SÓCIO-ECONÔMICA DE PROJETOS
LABORATÓRIO: EXERCICIOS DE MATEMÁTICA FINANCEIRA
Taxas de juros
1. Se a taxa efetiva anual é de 15%, calcule a taxa efetiva mensal, bimestral, quadrimestral e
semestral equivalente.
Respostas: mensal = 1,17%; bimestral = 2,3567%; quadrimestral = 4,769% e semestral= 7,2381%.
2. Calcule a taxa efetiva anual, se a taxa nominal anual é de 16 %, com capitalização mensal,
trimestral, semestral e anual.
Respostas: Mensal, TEA = 17,23%; Trimestral, TEA = 16,99%; Cap. Semestral, TEA = 16,64%e Anual, TEA =
16,00%
3. Calcule, a partir de uma taxa efetiva trimestral de 6%:
a) A taxa efetiva bimestral.
b) A taxa periódica mensal, se a capitalização de juros é trimestral.
c) A taxa nominal anual, se a capitalização de juros é semestral.
d) A taxa periódica trimestral, se a capitalização de juros é anual.
Respostas: a) 3,96%; b) 2%; c) 24,72%; d) 6,56%.
4. Se a taxa periódica mensal é igual a 5%:
a) A taxa efetiva bimestral é superior a 10%, se a capitalização de juros é mensal.
b) A taxa efetiva quadrimestral é igual a 20%, se a capitalização é mensal.
c) A taxa efetiva anual é igual a 60%, se a capitalização de juros é anual.
d) A taxa periódica trimestral é o triplo da periódica mensal.
e) A taxa efetiva mensal é igual a 5%, se a capitalização de juros é mensal.
Respostas: a) V; b) F; c) V; d) V; e) V.
Valores presentes e valores futuros
1. Qual é o valor presente da seguinte série de pagamentos ao começo de cada ano, quando a
taxa de desconto é de 8% anual: anos 1 a 3 inclusive R$ 1.200/ano, anos 4 a 8 inclusive R$
2.000/ano e anos 9 a 20 R$ 2.500/ano?
Resposta: R$21.179,20.
2. Suponha que você deve realizar uma série de pagamentos ao final de cada mês: meses 1 a
40 inclusive R$ 100 por mês, meses 41 a 90 inclusive R$ 110 por mês e meses 91 a 120
inclusive R$160 por mês. Se sua taxa de desconto é do 1% mensal:
a) Qual é o valor presente desse conjunto de pagamentos?
b) Qual é o valor desse conjunto de pagamentos expressado no momento 10?
c) Qual é o valor do primeiro pagamento expressado no momento 15?
Resposta: a) R$7.865,69; b) R$8.688,62; c) R$114,95.
3. Você quer comprar uma mansão cujo preço é de R$ 500.000, devendo pagar em dinheiro
20% e o resto pode ser financiado.
Maio de 2009
Página N°1
Claudia Nerina Botteon
CURSO DE AVALIAÇÃO SÓCIO-ECONÔMICA DE PROJETOS
LABORATÓRIO: EXERCICIOS DE MATEMÁTICA FINANCEIRA
a) Qual será o valor da prestação anual se o financiamento é a 15 anos e a uma taxa de juros
de 7% anual?
b) Se lhe oferecem pagar prestações anuais de R$ 40.000 durante 20 anos: qual é a taxa de
juros anual cobrada no financiamento?
c) Devem ser pagos R$ 41.185 ao ano e a taxa de juros é de 6% anual: quantos anos
demorarão para pagar a dívida?
Resposta: a) R$43.917,85; b) 7,75% anual; c) 15 anos.
4. Para criar um fundo para a velhice é necessário depositar a fim de cada ano uma soma
durante os próximos 25 anos numa conta que dá uns juros de 10% efetivo anual. O valor que
se acumule permitirá retirar a fim de cada ano uma anualidade fixa durante os seguintes
próximos 25 anos, onde a taxa também é de 10% efetivo anual. Se o depósito anual que se
realizará durante os próximos primeiros 25 anos é de R$ 600: qual será o monto de cada um
de 25 retiros anuais vencidos?
Resposta: R$6.500,82.
5. Para criar um fundo para a velhice é necessário depositar a fim de cada ano uma soma
durante os próximos 25 anos numa conta que rende juros de 8% efetivo anual. O valor que se
acumule permitirá retirar a fim de cada ano uma anualidade fixa durante os seguintes próximos
25 anos, onde a taxa também é de 8% efetivo anual. Qual deveria ser o depósito anual se
pretende acumular uma soma que permita efetuar retiros anuais vencidos de R$ 8.000 durante
os últimos 25 anos?
Resposta: R$1.168,14.
6. Calcule o valor presente dos seguintes fluxos:
a) 15 pagamentos de R$ 500 cada 3 anos, se o primeiro ocorre dentro de um ano e a taxa é do
13% anual.
b) 7 pagamentos de R$ 900 cada 5 anos, se o primeiro ocorre dentro de 6 anos e a taxa é do
12% anual.
Resposta: a) R$1.435,64; b) R$1.034,12.
7. Você compra uma casa cujo preço é de R$150.000, utilizando um empréstimo bancário. A
devolução deve fazê-la em 120 prestações mensais iguais e consecutivas, calculadas ao 1%
efetivo mensal. A primeira das prestações deve ser paga ao final do sexto mês depois de
efetuada a compra. Calcule o valor da prestação a pagar.
Resposta: a) 2.261,84.
8. Você comprou um departamento em R$25.000 (preço de lista) uns meses atrás. Está
pagando com um crédito hipotecário em prestações mensais de R$637,82 iguais, vencidas e
consecutivas calculadas com uma taxa efetiva do 1% mensal.
a) De quantas prestações mensais se compõe o plano que você pactuou?
b) Hoje acaba de pagar uma prestação o banco que lhe concedeu o crédito lhe informou que o
valor de sua dívida (quanto fica por amortizar-se) é de R$16.460,63. Quantas prestações
pagaram até o momento?
Resposta: a) 50 cotas; b) 20 cotas.
Maio de 2009
Página N°2
Claudia Nerina Botteon
CURSO DE AVALIAÇÃO SÓCIO-ECONÔMICA DE PROJETOS
LABORATÓRIO: EXERCICIOS DE MATEMÁTICA FINANCEIRA
9. Suponha que decidiu instalar uma piscina plástica e lhe indicaram que o preço à vista é de
R$1.100 e o preço de lista é de R$1.200. Oferecem-lhe pagá-la em 12 prestações bimestrais
iguais, vencidas e consecutivas de 2% efetivo bimestral:
a) Qual é o valor de cada uma das prestações?
b) Qual seria o valor de cada uma das prestações, se a primeira delas deve ser paga ao final
do quarto mês após a operação?
Resposta: a) 113,47; b) 115,74.
Maio de 2009
Página N°3
Claudia Nerina Botteon
Download

Laboratório: exercicios de matemática financeira