Biofuels in Brazil
Prof. Donato Aranda
Federal Univ. Rio de Janeiro
“van’t Hoff Institute for
Molecular Sciences”
Amsterdam, 2007
Energy Mix
Ethanol Program in Brazil




1925: First experiments with ethanol/gasoline blends
1975: Ethanol program started after the 1st oil crisis
1989: Leaded Gasoline forbiden.
1993: E-20 to E-25 mandatory in all the country (33,000
gas stations)
 2003: Flex Fuel engines
 2006: 80% of new vehicles are Flex (2.5 million/year)
 615 million ton of CO2 avoided emissions, so far
Sugar Cane Output/Input Energy ~
8.2*
Ethanol production in 2006: 16 billion liters
*Goldenberg, J.L.C Renewable Energies, Island Press, 1993
Ethanol Plants
313 Ethanol Plants
1 million employees
60,000 agric. producers
5 million ha (0.6 % of Br. area)
89 New plants are being
contructed
Physical Productivity
Quantity of
Product / liter
of Ethanol
Raw Material
Production / ha
(kg)
SUGAR CANE
85,000
12 kg
7,080 liter
CORN
10,000
2.8 kg
3,570 liter
Quantity of
Ethanol / ha
Source: Brazilian Agricultural Ministry
Ethanol Energetic Balance
Trigo
Wheat
Corn
Milho (EUA)
SugarBeterraba
Beet
Sugar Cane
(Brazil)
Cana-de-Açúcar (Brasil)
0
1
2
3
4
5
Output/Input Energy
Source: F.O.Licht (in “New trends to the ethanol supply chain in Brazil”, Simoes, R.B., Master Thesis, Universiteit Van Tilburg, Holanda, Jul-2006)
6
7
8
Sugar Cane Energy
1 mton of Sugar Cane:
1.7 103 kcal ~ 1.2 barrel of petroleum
Sugar cane bagasse is producing ~ 2,500 MW
Breakthrough: ethanol from bagasse and other
residual biomass
Sugar Cane Energy
Sugar Cane Biomass (year)
~350 x 106 mton (40% water)

“Per capita” biomass
~2 ton/person/year

147 x 106 tons of sugars

World sugar production:
 140 x 106 tons/year

Ethanol (potential) 92 x 109 L/year
With low fermentation efficiency 60 x 109 Liters
Fonte: Pereira & Pereira Jr. (2006)
Basic Biomass Composition
Cellulose (40-60%)
Hemicellulose (20-40%)
Lignin (10-25%)
Hemicellulose convertion to ethanol: Brazilian Patent: Petrobras/UFRJ
no PI0505299-8 (11/2005)
Lignin
H 2COH
H 2COH CH
CH
CH
CO
Cumaric
Alcohol
CH 2OH
OCH 3
O
H 2CO
O
HC
HC
H 3CO
CH 2OH
OCH 3
CH 3O
CH
CH
O
HC
O
HC
H 3CO
HC
OCH 3
CH
OH
CH 3O
OCH 3
HC
HC
O
CH 2OH
CH 3O
HC
CH
O
OCH 3
O
HC
HC
O
HOCH CH COOH
HC
CH
CH
CO
O
CH 2OH
H 2C
CH 2
HC
CH
HC
CH 3O
O
O
OCH 3
CH
O
CH 2
OCH 3
O
CH 2OH
HC
O
OH
a5
CH
HC
OCH 3
CH 3O
HC
OCH 3
O-
OH
OCH 3
CH 2OH
HOCH 2 CH CHO
CH 2
OCH 3
O-
OCH 3
OH
CH
O
CH 3O
HC
OCH 3 CH 3O
CH
CH 3O
CH 3O
CH 3O
CH
CH 2OH
CH 2OH
O
CH 2
H 2C
HOCH 2 HC CO
OCH 3
CH
CH
CH 2O
O CH 2
H 3CO
OCH 3
O
OCH 3
O
CO
O
O
HC
OCH 3
CH 2OH
OCH 3
CH
OCH 3
CHO
CH
O
O
HOHC
O
CH 2OH
CH 2OH
CH 2OH
HOH 2C
CH 2OH
HC
O
O
CH
CH 3O
OCH 3
OH
OCH 3
O
OCH 3
OH
HOH 2C
HOH 2C
CO
CH 3O
CH
CH
HC
CH 2OH
HC
CH
CH 2
CH
CH
CH 2OH
CHO
HC
O
H 2COH
Coniferilic Alcohol
O
OCH 3
OH
a1
Sinapilic Alcohol
Flash Pyrolysis
PYROLYSIS OIL
~ 30% Oxygen
pH ~ 2
Collaboration with Brem, C. and Brammer, J.G,
Twente University
Ethanol/Biodiesel Integration
Barralcool (Mato Grosso State)
Produces:
100,000 mt/year of Ethanol
50,000 mt/year of Biodiesel
Biodiesel Program
 B2 mandatory at Jan/2008 (850,000 ton/year)
 B5 mandatory at Jan/2010 (2013, originaly)
Now:
 10 biodiesel plants working (500,000 ton/year)
 4,000 gas stations providing B2
 Some transportation companies using B30 (More than 2,000
buses)
 Projects: More than 100 new biodiesel plants
LOW FEDERAL TAXES FOR SOCIAL PROJECTS AND POOR
REGIONS
Palm
Babassu
Castor
Sunflower
Soybean,
Tallow,
Cotton
Jatropha
Peanut
Canola
Soybean Biodiesel (Output/input energy ~ 3)*
* NREL (USA) http://www.nrel.gov/docs/legosti/fy98/24089.pdf
Jatropha curcas Biodiesel
Output/Input Energy ~ 5- 6*
*Ref: Ouedraogo, 1991
Palm Oil Biodiesel
Output/Input Energy ~ 8*
*Ref: Lor, E.E.S. et al, World Bioenergy
http://www.svebio.se/attachments/33/295.pdf
Palm
-
Production Costs US$ 240/ton of oil
5,000 – 8,000 Liters/ha
1st Biodiesel Plant – Heterogeneous
Catalyst/Residual Feedstock
(Crude Palm Fatty Acids)
Patent:
D. A. G. Aranda et al; PI0301103-8, 2003.
D. A. G. Aranda et al, WO2004096962, 2004.
AGROPALMA: BIODIESEL FROM RESIDUES
Esterification Catalysts
 Heterogeneous
Catalyst
 Reusable
 Zero Soap
 Easy to remove
 No neutralization
step
Nobic Acid
(CBMM)
HOMOmethanol
E= -0,264 eV
LUMOprotonated acid
E= -0,230 eV
HOMO and LUMO from Alcohols and Glycerides
12
10,88
10
9,52
HOMO (eV)
LUMO (eV)
8
-2,12
-4
0,79
MG Linol
-2,04
0,05
MG Oléic
-2
Etanol
0
1,06
MG Palm
2
3,56
Etóxido
3,75
Metanol
Energia, eV
4
Metóxido
6
-6
-8
-10
-8,71
-9,58
-11,12
-10,86
12
-10,83
Hydrolysis
H2O + Lypases
O
H3C-CH2- CH2- CH2- CH2- CH2- CH2- CH2- CH2- CH2- CH2- CH2- CH2- CH2- CH2-COCH2
O
H3C-CH2- CH2- CH2- CH2- CH2- CH2- CH2- CH2- CH2- CH2- CH2- CH2- CH2- CH2-COCH
O
H3C-CH2- CH2- CH2- CH2- CH2- CH2- CH2- CH2- CH2- CH2- CH2- CH2- CH2- CH2-COCH2
Hydrolysis Industrial Process: 99% conversion: 3 plants in Brazil
(Non-catalytic process)
Hydroesterification
Esterification
of
Fatty Acids
(AGROPALMA
)
+
Industrial
Hydrolysis
Why don’t integrate these process ???
Hydroesterification
(No acidity restriction in feedstock)
FA
FA G
+ 3 H 2O
3 FA +
G
FA
Triglyceride
FA
Fatty Acid
Water
Fatty Acid
A
FA
Alcohol
Glycerol
A
Biodiesel
+
H 2O
Water
Much better with Catalytic Distillation !!
Custos Operacionais: Hidroesterificação vs
Transesterificação (50,000 mton/year)
Chemicals (¢/L)
Energy (¢/L)
Oper.Costs (¢/L)
Transesterification
Hydrolysis +
Esterification
4
1
5
1
2
3
If biodiesel plant is integrated with an ethanol plant, operating
costs will be less than 2 ¢/L.
No acidity limits in the feedstocks
My team:
 Postdocs: Luciana Camacho and Ricardo Valdez
 Ph D students: Neyda Om, Yordanka Reyes, Gisel
Chenard, Immacolata Manco, Rosana Amorim, Marcia
Castoldi, Marcelo Tondello, Rafael Monteiro, Elisa Cruz,
Anderson Kurunczi
 M Sc students: Ana Encarnação, Rafael João, Jussara
Gonçalves, Layla Rocha, Luana Rocha, Leonardi
Almeida, Carla Pereira, Margarida Castello, Marlon
Almeida
Thank you !
www.greentec-ufrj.com
“ God causes all things to work together for good to those who love Him” ( Rm 8,28)
Biodiesel plant 100,000 t/year, oil costs: US$ 250/t and
Biodiesel sold at US$ 0.60/L (No incentive scenario)
EBITDA e EBIT
b) Hydroesterification
48,0
43,0
39,4
39,4
39,4
39,4
37,4
37,4
37,4
37,4
2010
2011
38,0
R$ mi
37,4
39,4
39,4
38,9
38,9
38,9
Gross Margin: 30.8%
37,4
37,4
37,4
37,4
2012
2013
2014
2015
33,0
28,0
23,0
23,4
23,8
18,0
13,0
8,0
2006
2007
2008
2009
EBITIDA
EBIT
c) Hydroesterification integrated with
Ethanol plant
a) Regular Transesterification
EBITDA e EBIT
EBITDA e EBIT
48,0
48,0
43,0
43,0
31,6
33,0
28,0
23,0
18,0
40,6
38,0
29,6
31,6
31,6
31,6
29,6
29,6
29,6
31,6
29,6
31,6
31,1
31,1
31,1
29,6
29,6
29,6
29,6
18,5
R$ mi
R$ mi
38,0
42,6
42,6
42,6
40,6
40,6
40,6
40,6
2010
2011
42,6
42,6
42,1
42,1
42,1
40,6
40,6
40,6
40,6
2012
2013
2014
2015
33,0
28,0
23,0
19,0
42,6
25,4
25,9
18,0
13,0
13,0
8,0
2006
2007
EBITIDA
2008
2009
2010
2011
2012
2013
2014
EBIT
Gross Margin: 24.1 %
2015
8,0
2006
2007
EBITIDA
2008
2009
EBIT
Gross Margin: 33.3 %
Download

Biodiesel