Curso Sólon Concursos
MATEMÁTICA
Professor(a):
PACÍFICO
Referência:
09/02/2012
Exercícios de Probabilidade
1. No lançamento de um dado,
probabilidade de se obter:
a) o número 1.
b) um número primo.
c) um número divisível por 2.
d) um número menor que 5.
e) um número maior que 6.
determine
a
9. Uma sacola contém 5 bolas brancas e 10 bolas
pretas. Se 3 bolas são tiradas ao acaso, qual a
probabilidade de saírem todas da mesma cor?
2. No lançamento simultâneo de dois dados, um
branco e um vermelho, determine a probabilidade
dos seguintes eventos:
a) os números são iguais.
b) a soma dos números é igual a 9.
3. Você faz parte de um grupo de 10 pessoas, para
três das quais serão distribuídos prêmios iguais.
Calcule a probabilidade de que você seja um dos
premiados.
4. Jogando-se dois dados, qual a probabilidade de
que a soma dos pontos obtidos seja menor que 4?
5. (Vunesp) Um baralho de 12 cartas tem 4 ases.
Retira-se 2 cartas uma após outra. Qual a
probabilidade de que a segunda seja um ás,
sabendo-se que a primeira é um ás?
6. De um baralho de 52 cartas tira-se ao acaso uma
das cartas. Determine a probabilidade de que a
carta seja:
a) uma dama.
b) uma dama de paus.
c) uma carta de ouros.
7. Com os dígitos 1,4, 7, 8 e 9 são formados números
de três algarismos distintos. Um deles é escolhido
ao acaso. Qual a probabilidade de ele ser ímpar?
10. Um grupo de 6 amigos (A, B, C, D e F) pretende
realizar um passeio em um barco onde só há 3
lugares. É feito um sorteio para serem
escolhidos os três amigos que ocuparão o
barco. Calcule:
a) a probabilidade de que A seja escolhido e B
não o seja.
b) a probabilidade de A e B serem escolhidos.
11. Considere as 24 permutações, sem repetição,
que podemos formar com os algarismos 1, 2, 3 e
5. Uma delas é escolhida ao acaso. Determine:
a) a probabilidade de esse número ser par.
b) a probabilidade de esse número ser ímpar.
c) a probabilidade de esse número ser maior
que
3 000.
12. No lançamento de dois dados iguais, qual a
probabilidade de a soma dos pontos ser 8 e um
dos dados apresentar 6 pontos?
13. Oito casais participam de uma reunião.
Escolhendo duas pessoas aleatoriamente,
determine a probabilidade de que:
a) sejam marido e mulher.
b) uma seja do sexo masculino e a outra do
feminino.
14. (Fuvest-SP) Uma urna contém 3 bolas: uma
verde, uma azul e uma branca. Tira-se uma bola
ao acaso, registra-se a cor e coloca-se a bola de
volta na urna. Repete-se essa experiência mais
duas vezes. Qual a probabilidade de serem
registradas três cores distintas?
8. Uma caixa contém 9 bilhetes numerados de 1 a 9.
Se 3 destes bilhetes são tirados juntos, qual a
probabilidade de ser par a soma dos números?
GABARITO
1. a) 1/6
b) 1/2
c) 1/2
d) 2/3
e) 0
2. a) 16,66%
b) 11,11%
3. 3/10
4. 1/12
5. 3/11
6. a) 1/13
b) 1/52
c) 1/4
7. 3/5
8. 11/21
9. 2/7
10. a) 3/10
b) 1/5
11. a) 1/4
b) 3/4
c) 1/2
12. 1/18
13. a) 1/15
b) 8/15
14. 2/9
Download

CONCURSO DA CAIXA/ 2010