Fluids in Curved Space Feliz cumpleaños Hans J. Herrmann Constantino ! Computational Physics IfB, ETH Zürich, Switzerland and Departamento de Física Univ. Fed. do Ceará, Fortaleza Complex Systems Foundations and Applications Rio de Janeiro Oct. 29 - Nov. 1, 2013 Constantino’s birthday party, Rio de Janeiro, Oct. 29 - Nov. 1, 2013 Comparado con la amistad, un Nature no vale nada Montreal, Rio de Janeiro, Paris, Boston, Cali, Erice, Mexico, Sao Paulo, Tel Aviv, Habana, Natal, Cancun, Jülich, Maceió, Budapest, Bariloche, Brasilia, Bangalore, Stuttgart, Fortaleza, Mar del Plata, Iguaçu, Catania, Zürich, Manaus, Larnaca,.... y como se llamaba este lugar ? Constantino’s birthday party, Rio de Janeiro, Oct. 29 - Nov. 1, 2013 Collaborators Miller Mendoza Farhang Mohseni Sauro Succi Bruce Boghosian Nuno Araújo Ilya Karlin Constantino’s birthday party, Rio de Janeiro, Oct. 29 - Nov. 1, 2013 Examples for Fluid Dynamics in Curved Spaces vessels curved boundary conditions generalized curved spaces graphene semiconductor Möbius band Constantino’s birthday party, Rio de Janeiro, Oct. 29 - Nov. 1, 2013 Measuring Distance in Curved Space infinitesimal surface element : ds 2 = gij dx i dx j Ds = ò W dx i dx j gij dl dl dl l gives the parametrization, and is the trajectory joining them. W Constantino’s birthday party, Rio de Janeiro, Oct. 29 - Nov. 1, 2013 Working with Contravariant Components of Vectors v = v ei = vi e i contravariant covariant v = v v ei × e j = v v gij 2 i j i j i metric tensor Constantino’s birthday party, Rio de Janeiro, Oct. 29 - Nov. 1, 2013 Geodesics: Shortest Path Christoffel symbols : 1 im gik gml gkl i kl g l k m 2 x x x geodesic equation: d (Ds) = d ò W 2 i For a particle: dx i dx j gij dl = 0 dl dl k d x dx i dx = -G kl 2 dl dl dl l geodesic equation contains inertial forces: dpi = -G ikl p k pl + Fexti dt Constantino’s birthday party, Rio de Janeiro, Oct. 29 - Nov. 1, 2013 Curved Spaces and Curvilinear Coordinates R g Rik ij l m m l Rik ik lm il km x x l ik l l il k Curved spaces, e.g. 2d surface of a sphere: Ricci scalar or curvature scalar Ricci curvature tensor R¹0 Spherical and cylindrical coordinates represent flat spaces. One can demonstrate: R=0 Constantino’s birthday party, Rio de Janeiro, Oct. 29 - Nov. 1, 2013 Navier-Stokes Equations on Manifolds ¶r + ( ru i );i = 0 ¶t mass conservation shear viscosity fluid velocity mass density k æ ö ¶( ru k ) 1 ¶ ¶ r u kj k j ij + ( P g + ru u ); j = m gg i ç ¶t ¶x j ÷ø g ¶x è momentum conservation determinant of metric tensor pressure metric tensor ( ru ) i ;i covariant derivatives ¶ ru i k = + G r u ik ¶x i i T ik ;k ¶T ik = k + G imkT mk + G kmkT im ¶x Constantino’s birthday party, Rio de Janeiro, Oct. 29 - Nov. 1, 2013 Using Boltzmann’s Equation on Manifolds Taking into account that particles move along geodesics: add a forcing term BGK : This is also the case for the Boltzmann equation in curvilinear coordinates (polar, cylindrical and spherical coordinates). in thermodynamic equilibrium P. J. Love and D. Cianci, Phil. Trans., of the Royal Soc. A 369, 2362 (2011). : microscopic velocity anisotropic Gaussian shape: Hermite polynomials expansion possible !! : macroscopic velocity : normalized temperature Constantino’s birthday party, Rio de Janeiro, Oct. 29 - Nov. 1, 2013 Boundary Conditions contravariant coordinates transformation (removing poles). real geometry brute force approximation of a sphere Constantino’s birthday party, Rio de Janeiro, Oct. 29 - Nov. 1, 2013 Advantages of Lattice Boltzmann - Lattice Boltzmann computations in curved spaces and/or curvilinear (cylindrical, polar, etc.) coordinates. - Curved spaces components. - The instabilities due to non-inertial forces are automatically included. - Low relativistic flow through intrinsically curved spaces, e.g. interstellar media. - Metric tensor and Christoffel symbols can vary with time. Modeling of elastic pipes, vessels, and flow within deformable membranes. - “Exact” representation of the geometry of complex boundaries by using contravariant coordinates. in Cartesian grids due to the contravariant Constantino’s birthday party, Rio de Janeiro, Oct. 29 - Nov. 1, 2013 Some Applications discretizing in 19 velocities on cubic lattice Constantino’s birthday party, Rio de Janeiro, Oct. 29 - Nov. 1, 2013 Stretching: Poiseuille Flow æ 1 0 0 ö gik = ç 0 1 0 ÷ ç ÷ 0 0 1 è ø x æ 2 0 0 gik = ç 0 1 0 ç è 0 0 1 ö ÷ ÷ ø Constantino’s birthday party, Rio de Janeiro, Oct. 29 - Nov. 1, 2013 Solution in Curvilinear Coordinates Taylor-Couette Instability M. Mendoza, S. Succi, H.J.H., Sci. Rep., in print, arXiv:1201.6581 square of velocity z r æ 1 0 gik = ç 0 r 2 ç è 0 0 0 0 1 ö ÷ ÷ ø t1 t2 Constantino’s birthday party, Rio de Janeiro, Oct. 29 - Nov. 1, 2013 Validation and New Results æ 1 0 gik = ç 0 r 2 ç è 0 0 0 0 1 cylinders ö ÷ ÷ ø æ 1 0 gik = ç 0 r 2 sin 2 q ç çè 0 0 0 0 r2 ö ÷ ÷ ÷ø æ 1 0 ç gik = ç 0 (R + r cosf )2 çè 0 0 spheres 0 ö ÷ 0 ÷ r 2 ÷ø tori Vr R f r q Vq Constantino’s birthday party, Rio de Janeiro, Oct. 29 - Nov. 1, 2013 The Campylotic Medium (Randomly Curved Space) ‘ καμπυλος N local curvatures (impurities) at random positions gij ij 1 a0 n 1 e N r rn r0 M. Mendoza, S. Succi, H.J.H., Sci. Rep., in print, arXiv:1201.6581 Constantino’s birthday party, Rio de Janeiro, Oct. 29 - Nov. 1, 2013 Curvature Disordered Media 0 A N N0 1 N N0 2 F 0 :flux in absence of impurities F : flux N : number of impurities r0 : range of curvature perturbation l :V 1/3 / N Rik : Ricci or curvature tensor R : Ricci or curvature scalar R g ij Rik lik ill m Rik l k ikl lm ilmlkm x x Constantino’s birthday party, Rio de Janeiro, Oct. 29 - Nov. 1, 2013 Curvature Disordered Media F 0 :flux in absence of impurities F : flux N : number of impurities r0 : range of curvature perturbation l :V 1/3 / N Rik : Ricci or curvature tensor R : Ricci or curvature scalar R g ij Rik lik ill m Rik l k ikl lm ilmlkm x x Constantino’s birthday party, Rio de Janeiro, Oct. 29 - Nov. 1, 2013 Hydrodynamics in Manifolds (Summary) 1. We have developed a Lattice Boltzmann Model (LBM) for general manifolds: a) It allows to make computations in virtually any curvilinear coordinate system (polar, cylindrical, spherical, etc.) with LBM. b) The LBM for manifolds can represent very complex geometries “exactly” in a cubic lattice due to the fact that it works in the contravariant coordinate system, and avoids a stair case approximation for curved boundary conditions. c) Non-inertial forces are automatically included via the Christoffel symbols. 2. Flow through randomly curved spaces can present very unusual behavior. Constantino’s birthday party, Rio de Janeiro, Oct. 29 - Nov. 1, 2013 Relativistic Fluid Dynamics Constantino’s birthday party, Rio de Janeiro, Oct. 29 - Nov. 1, 2013 Fluid Dynamics Examples electronic flow in graphene quark-gluon plasma Au Au supernovae Constantino’s birthday party, Rio de Janeiro, Oct. 29 - Nov. 1, 2013 Relativistic Navier-Stokes Equations number of particles ¶ng + Ñ ×(ng u) = 0 ¶t ¶ éë(e + P)g 2 ùû ¶t + Ñ × éë(e + P)g 2u ùû = ¶P ¶t energy conservation viscous tensor number density fluid velocity (still controversial) energy-momentum conservation i i ij ¶u ¶u ¶P ¶P ¶Õ (e + P)g 2 + (e + P)g 2u j j = -u i - i+ ¶t ¶x ¶t ¶x ¶x j pressure Lorentz’s factor: energy density v 1 1 v c 2 correction term Constantino’s birthday party, Rio de Janeiro, Oct. 29 - Nov. 1, 2013 Comparison Non- and Relativistic Hydrodynamics non-relativistic fluids: 5 equations conservation of mass momentum conservation equation of state relativistic fluids: 6 equations conservation of particle number energy and momentum conservation equation of state Constantino’s birthday party, Rio de Janeiro, Oct. 29 - Nov. 1, 2013 Why Lattice Boltzmann? •The non-linear effects are intrinsically included in the Boltzmann equation. •All the information about the system is contained in the particle distribution functions. •It is a hyperbolic equation, in contrast to the relativistic Navier-Stokes equations, which are parabolic, and therefore could violate causality. •It has already a natural speed limit (lattice speed), a property that it shares with relativity. clattice » c Constantino’s birthday party, Rio de Janeiro, Oct. 29 - Nov. 1, 2013 Relativistic Lattice Boltzmann Method Marle model ( p f ) C. Marle, C. R. Acad. Sc. Paris 260, 6539 (1965) m M ( f eq f ) 4-dimensional system v c 0.6 , 1 1 fi ( x x, t t ) f i ( x, t ) ( f i eq ( x, t ) f i ( x, t )) 1 gi ( x x, t t ) gi ( x, t ) ( gieq ( x, t ) g i ( x, t )) 2 1 2 1.4 N 0 T 0 Constantino’s birthday party, Rio de Janeiro, Oct. 29 - Nov. 1, 2013 Relativistic Lattice Boltzmann Method P HYSICAL REVIEW L ETTERS Member Subscription Copy Library or Other Institutional Use Pr ohibited Until 2015 macroscopic variables: Articles published week ending 2 JULY 2010 Published by the American Physical Society Volume 105, Number 1 equilibrium distribution function: M. Mendoza. B. Boghosian, S. Succi, H.J.H., Phys. Rev. Lett. 105, 014502 (2010); Phys.Rev.D 82, 105008 (2010) Constantino’s birthday party, Rio de Janeiro, Oct. 29 - Nov. 1, 2013 Relativistic Equilibrium Distribution in Velocity Space Maxwell - Jüttner distribution: λ = 0 mc 2 x= kB T d=1 f eq ( x , v , t ) A d 2 (v) 1 v U exp (v) (U ) T expansion in orthogonal polynomials: f eq ( x , v , t ) A exp (v) 1 (v) (U ) 3 (U ) (v) v U (U ) (v) 2 4 vxU x v yU y vxU x vzU z v yU y vzU z (U ) (v ) 2 2 4 2 (v) 2 (U ) 2 2 2 2 4 v U v U v U x x y y z z 6 2 15 1 2 4 2 2 2 (U ) (v ) ( v ) U U 2 M. Mendoza, N. Araújo, S. Succi, H.J.H. Scientific Reports 2, 611 (2012) F. Mohseni, M. Mendoza, S. Succi, H.J.H., Phys. Rev. D 87, 083003 (2013) Constantino’s birthday party, Rio de Janeiro, Oct. 29 - Nov. 1, 2013 Some Applications discretizing in 19 velocities on cubic lattice Constantino’s birthday party, Rio de Janeiro, Oct. 29 - Nov. 1, 2013 Validation with Quark-Gluon Plasma ratio between time consumptions: 1 : 20 : 80000 (single CPU) for RLB : vSHASTA : BAMPS BAMPS: Boltzmann Approach of MultiParton Scattering. M. Mendoza. B. Boghosian, S. Succi, H.J.H., Phys. Rev. Lett. 105, 014502 (2010) D. Hupp. M. Mendoza, S. Succi, H.J.H., Phys. Rev. D 84, 125015 (2011) Constantino’s birthday party, Rio de Janeiro, Oct. 29 - Nov. 1, 2013 Application to Supernova Explosions pressure particle density temperature Constantino’s birthday party, Rio de Janeiro, Oct. 29 - Nov.31 1, 2013 Application to Graphene M. Müller, J. Schmalian, and L. Fritz, Phys. Rev. Lett. 103, 025301 (2009) Constantino’s birthday party, Rio de Janeiro, Oct. 29 - Nov. 1, 2013 Results with RLB for Graphene Re = 100 L = 5 mm utyp = 105 m/s M. Mendoza, H.J.H. S. Succi, Phys. Rev. Lett. 106, 156601 (2011) M. Mendoza, H.J.H., Succi, Sci. Rep. 3, 1052 (2013) Constantino’s birthday party, Rio de Janeiro, Oct. 29 - Nov. 1, 2013 Changing the Geometry Allows Preturbulence at Re = 25 M. Mendoza, H.J.H. S. Succi, Phys. Rev. Lett. 106, 156601 (2011) M. Mendoza, H.J.H., Succi, Sci. Rep. 3, 1052 (2013) Constantino’s birthday party, Rio de Janeiro, Oct. 29 - Nov. 1, 2013 Preturbulence in Graphene: Relativistic Effects shift in the vortex shedding frequencies Re = 3000 M. Mendoza, H.J.H. S. Succi, Phys. Rev. Lett. 106, 156601 (2011) M. Mendoza, H.J.H., Succi, Sci. Rep. 3, 1052 (2013) St: Strouhal number (adimensional vortex shedding frequency) Constantino’s birthday party, Rio de Janeiro, Oct. 29 - Nov. 1, 2013 Richtmyer-Meshkov Instability relativistic case non-relativistic case F. Mohseni, M. Mendoza, H.J.H, preprint Constantino’s birthday party, Rio de Janeiro, Oct. 29 - Nov. 1, 2013 q-Statistics and Relativistic Fluid Dynamics C. Tsallis, Eur. Phys. J. A 40, 257 (2009) T. Osada, G. Wilk, Phys. Rev. C 77, 044903 (2008) T.S. Biró and E. Molnár, Eur. Phys. J. A (2012) 48: 172 quark-gluon plasma Au Au long range entanglement of quarks and gluons Constantino’s birthday party, Rio de Janeiro, Oct. 29 - Nov. 1, 2013 q-Relativistic Hydrodynamics similarities with standard differences with standard relativistic hydrodynamics relativistic hydrodynamics conservation of particle number energy and momentum conservation equation of state h ® h (q) shear viscosity x ® x (q) bulk viscosity k ® k (q) thermal conductivity Constantino’s birthday party, Rio de Janeiro, Oct. 29 - Nov. 1, 2013 Future work: Relativistic Lattice q-Boltzmann m p U q m é ¶ m ê p ( f ) ùú = m é f eq ë û t M êë ( ) q -( f ) ù úû q weight function ( ) f eq q ¥ = w( p,q)å an Lqn n=0 ¥ 3 d p q q ò-¥ w( p,q)Ln Lm p0 = d mn orthonormal polynomial expansion 1. q-Lattice Boltzmann Methods 2. expanding the non-equilibrium distribution around the equilibrium Constantino’s birthday party, Rio de Janeiro, Oct. 29 - Nov. 1, 2013 Relativistic Hydrodynamics (Summary) 1. The relativistic lattice Boltzmann model has applications in quark-gluon plasma, supernova explosions, and electronic gas in graphene. a) The RLB is four orders of magnitude faster than other relativistic kinetic models. b) Complex geometries in relativistic systems can be treated easy. 2. Turbulent phenomena can produce noticeable electrical current fluctuations due to contact points and/or other kind of impurities in graphene samples. Constantino’s birthday party, Rio de Janeiro, Oct. 29 - Nov. 1, 2013 Future Challenges 1. Entropic formulations of the LB methods. 2. General relativity and coupling with Einstein equations. 3. Fluid structures interactions. 4. Flow through deformable pipes, e.g. vessels. 5. Deriving the orthogonal basis of q-polynomials with the weight being the relativistic equilibrium distribution at rest. Constantino’s birthday party, Rio de Janeiro, Oct. 29 - Nov. 1, 2013 References • • • • • • • • M. MENDOZA, B. BOGHOSIAN, H.J. HERRMANN, S. SUCCI, Fast Lattice Boltzmann solver for relativistic hydrodynamics, Phys. Rev. Lett. 105, 014502 (2010), arXiv:0912.2913 M. MENDOZA, B. BOGHOSIAN, H.J. HERRMANN, S. SUCCI, Derivation of the Lattice Boltzmann model for relativistic hydrodynamics, Phys. Rev.D 82, 105008 (2010), arXiv:1009.0129v1 M. MENDOZA, H.J. HERRMANN, S. SUCCI, Preturbulent Regimes in Graphene Flows, Phys.Rev.Lett 106, 156601 (2011) M. MENDOZA, H.J. HERRMANN, S. SUCCI, Hydrodynamic approach to the conductivity in graphene, Sci. Rep. 3, 1052 (2013), arXiv:1301.3428 D. HUPP, M. MENDOZA, S. SUCCI, H.J. HERRMANN, Relativistic Lattice Boltzmann method for quark-gluon plasma simulations, Phys. Rev. D 84, 125015 (2011), arXiv:1109.0640 M. MENDOZA, S. SUCCI, H.J. HERRMANN, Flow through randomly curved manifolds, accepted for Sci. Rep. arXiv:1201.6581 S. PALPACELLI, M. MENDOZA, H.J. HERRMANN, S. SUCCI, Klein tunneling in the presence of random impurities, IJMPC 23, 1250080 (2012) arXiv:1202.6217 M. MENDOZA, N.A.M. ARAÚJO, S. SUCCI, H.J. HERRMANN, Transition in the equilibrium distribution function of relativistic particles, Sci. Rep. 2, 00611 (2012), arXiv:1204.1889 Constantino’s birthday party, Rio de Janeiro, Oct. 29 - Nov. 1, 2013 References • • • • • • • M. MENDOZA, I. KARLIN, S. SUCCI, H.J. HERRMANN, Ultrarelativistic transport coefficients in two dimensions, JSTAT P02036 (2013), arXiv:1301.3420 M. MENDOZA, I. KARLIN, S. SUCCI, H.J. HERRMANN, Relativistic Lattice Boltzmann Model with Improved Dissipation, Phys. Rev. D 87, 065027 (2013), arXiv:1301.3423 F. MOHSENI, M. MENDOZA, S. SUCCI, H.J. HERRMANN, Lattice Boltzmann model for ultra-relativistic flows, Phys. Rev. D 87, 083003 (2013), arXiv:1302.1125 D. ÖTTINGER, M. MENDOZA, H.J. HERRMANN, Gaussian quadrature and lattice discretization of the Fermi-Dirac distribution for graphene, Phys. Rev. E 88, 013302 (2013), arXiv:1305.0373 M. MENDOZA, S. SUCCI, H.J. HERRMANN, Kinetic formulation of the KohnSham equations for ab initio electronic structure calculations, preprint F. FILLION-GOURDEAU, H.J. HERRMANN, M. MENDOZA, S. PALPACELLI, S. SUCCI, Formal analogy between the Dirac equation in its Majorana form and the discrete-velocity version of the Boltzmann kinetic equation, Phys. Rev. Lett. 111, 160602 (2013), arXiv:1310.0686 F. MOHSENI, M. MENDOZA, S. SUCCI, H.J. HERRMANN, Cooling of the quark-gluon plasma due to the Richtmyer-Meshkov instability, preprint Constantino’s birthday party, Rio de Janeiro, Oct. 29 - Nov. 1, 2013 Bom aniversario Constantino ! Constantino’s birthday party, Rio de Janeiro, Oct. 29 - Nov. 1, 2013