RESISTÊNCIA DOS MATERIAIS UM CURSO LEGAL !!! FACULDADE DE ENGENHARIA MECÂNICA DEPARTAMENTO DO PROJETO MECÂNICO – DPM 2.º SEMESTRE DE 2005 CURSO PARA ALUNOS DE ENGENHARIA DE COMPUTAÇÃO, QUÍMICA, ALIMENTOS, ELÉTRICA 1 QUEM É O PROFESSOR ? PROF. EDUARDO COELHO 2 VAMOS NOS CONHECER MELHOR ? PEGUE UMA FOLHA DE PAPEL ESCREVA SEU NOME NA VERTICAL PERGUNTE OS NOMES DOS COLEGAS AO SEU LADO DÊ UM ABRAÇO OU APERTO DE MÃO EM CADA COLEGA QUE CONHECEU COLOQUE OS NOMES NA HORIZONTAL, APROVEITANDO AS LETRAS DO SEU NOME, ATÉ QUE TODAS AS LETRAS SEJAM USADAS SERÁ QUE VOCÊ CONSEGUE ? 3 MATERIAIS MADEIRA CERÂMICA TITÂNIO ESTRUTURAS CONCRETO INOXIDÁVEL AÇO ALUMÍNIO RESISTÊNCIA 4 MINHAS EXPECTATIVAS COM O CURSO E COM MINHA PROFISSÃO NO VERSO DO PAPEL, ESCREVA : 3 IDÉIAS REPRESENTATIVAS SOBRE O QUE ESPERA DO CURSO 3 IDÉIAS REPRESENTATIVAS SOBRE O QUE ESPERA FAZER EM SUAS ATIVIDADES PROFISSIONAIS 5 OBJETIVOS DO CURSO CONHECER AS PROPRIEDADES DOS MATERIAIS CAPAZES DE RESISTIR ESFORÇOS EM DIFERENTES TIPOS DE ESTRUTURAS VER NO AMBIENTE TELEDUC, MATERIAL DE APOIO, O ITEM PROPRIEDADES DOS MATERIAS, TABELAS DAS TENSÕES DE RESISTÊNCIA CONTRA ESCOAMENTO E RUPTURA CONHECER OS DIFERENTES TIPOS DE ESTRUTURAS E ANALISAR SEU COMPORTAMENTO E POTENCIALIDADES PARA USO EM EDIFICAÇÕES E EQUIPAMENTOS ESTUDAR OS ESFORÇOS SOBRE AS PARTES E A TOTALIDADE DA ESTRUTURA, ANALISANDO SEUS EFEITOS DIMENSIONAR (DEFINIR AS DIMENSÕES) AS BARRAS E A ESTRUTURA COMO UM TODO, PARA QUE RESISTAM ÀS SOLICITAÇÕES COM SEGURANÇA E ECONOMIA 6 METODOLGIA DE CÁLCULO DEFINIÇÃO DA GEOMETRIA DA ESTRUTURA E DAS CARGAS EXTERNAS ESCOLHA DO MATERIAL (PROJETO ARQUITETÔNICO OU DECISÃO DO CALCULISTA); CÁLCULO DOS ESFORÇOS INTERNOS, NAS SEÇÕES MAIS SOLICITADAS (PARA COMPOSIÇÃO MAIS DESFAVORÁVEL DAS CARGASDAS CARGAS); CÁLCULO DAS TENSÕES, DESLOCAMENTOS E DEFORMAÇÕES (SOFTWARES APLICATIVOS); COMPARAÇÃO COM OS LIMITES ACEITÁVEIS; DEFINIÇÃO FINAL DA GEOMETRIA DA ESTRUTURA COMO UM TODO; ORÇAMENTAÇÃO, DESENHOS DE EXECUÇÃO. 7 PLANEJAMENTO DA DISCIPLINA CONTEÚDO PROGRAMÁTICO OS MATERIAIS E AS ESTRUTURAS - PROPRIEDADES, ANÁLISE E COMPORTAMENTO ESFORÇOS SOLICITANTES PEÇAS AXIALMENTE COMPRIMIDAS PEÇAS SOB TORÇÃO PEÇAS SOB FLEXÃO TENSÕES, DESLOCAMENTOS E DEFORMAÇÕES DIMENSIONAMENTO E VERIFICAÇÃO DE ELEMENTOS ESTRUTURAIS VEJA NO TELEDUC – MATERIAL DE APOIO, ITEM PLANEJAMENTO DA DISCIPLINA, COM MAIORES DETALHES 8 PLANEJAMENTO DA DISCIPLINA BIBLIOGRAFIA BIBLIOGRAFIA BÁSICA E COMPLEMENTAR TODOS OS LIVROS CONSTAM DAS BIBLIOTECAS DA UNICAMP VEJA MAIS NO TELEDUC – MATERIAL DE APOIO, ITEM BIBLIOGRAFIA MAIOR USO: Nash, William. Resistência dos Materiais. Editora Mc Graw Hill e Gere, James. Resistência dos Materiais. Thomson Editora. 9 PLANEJAMENTO DA DISCIPLINA AVALIAÇÃO PROVAS ESCRITAS : 2 TRABALHOS PRÁTICOS EM SALA DE AULA INTERAÇÕES NO TELEDUC (ALUNOS – ALUNOS E ALUNOS – DOCENTE) PESQUISAS 10 METODOLOGIA DE ENSINO METAS DE APRENDIZAGEM MÓDULOS PRESENCIAIS: 3 HORAS AULAS SEMANAIS, 2.ª FEIRA, 14:00 ÀS 17:00 HS; EXPOSIÇÃO DOS CONTEÚDOS; TIRA-DÚVIDAS; EXERCÍCIOS E TRABALHOS PRÁTICOS; PESQUISAS DE TEMAS; APRESENTAÇÕES PELOS ALUNOS; META: DESENVOLVER OS CONTEÚDOS, FAVORECER A APRENDIZAGEM 11 METODOLOGIA DE ENSINO METAS DE APRENDIZAGEM MÓDULOS A DISTÂNCIA – AMBIENTE TELEDUC: USO CONTÍNUO E COMPLEMENTAR DO AMBIENTE TELEDUC; LOGIN E SENHA PARA CADA ALUNO; MATERIAL DE APOIO, INTERAÇÕES, TIRA-DÚVIDAS, AVALIAÇÕES, PERFIL DO ALUNO, PARADA OBRIGATÓRIA, DINÂMICA DO CURSO, AGENDA META : BUSCAR INFORMAÇÕES, PROPICIAR INTERAÇÃO/COMPARTILHAMENTO 12 O AMBIENTE TELEDUC SOFTWARE LIVRE DA UNICAMP Estrutura do Ambiente Dinâmica do Curso Agenda Avaliações Atividades Material de Apoio Bate-Papo Fóruns de Discussão Parada Obrigatória Mural Grupos Correio Perfil Portfólio Acessos Intermap Configurar Sair MODERNIZAÇÃO, QUALIFICAÇÃO DO ENSINO, INTERAÇÃO 13 OS MATERIAIS E SUAS PROPRIEDADES AÇO COMUM, AÇO DE ALTA RESISTÊNCIA, AÇO INOXIDÁVEL CONCRETO ARMADO ALUMÍNIO MADEIRAS CERÂMICAS 14 ESTRUTURAS DE CONCRETO ARMADO 15 ESTRUTURAS DE AÇO 16 ESTRUTURAS DE AÇO 17 ESTRUTURAS DE MADEIRA 18 ALUMÍNIO ESTRUTURAS E PEÇAS 19 RESISTÊNCIA DOS MATERIAIS DISCIPLINA BÁSICA DAS ENGENHARIAS; APLICAÇÃO EM PROJETOS, OBRAS, EQUIPAMENTOS, SOFTWARES; INTEGRAÇÃO TEORIA E PRÁTICA; RACIOCÍNIO, SIMULAÇÃO, DEDUÇÃO, EXERCÍCIO, ANÁLISE; ESTABILIDADE ESTRUTURAL. 20 NORMAS REGULATÓRIAS PARA USO DE MATERIAIS E DIMENSIONAMENTO UTILIZADAS POR PROFISSIONAIS E EMPRESAS PARA PROJETAR, CALCULAR, EXECUTAR SERVIÇOS, EQUIPAMENTOS, OBRAS; VARIAM DE PAÍS PARA PAÍS; APLICAM-SE A CADA TIPO DE MATERIAL: NB-1: CONCRETO ARMADO, NB-11: MADEIRAS, 14: AÇO, NB 6.120: CARGAS, NB-6.123: VENTO; ASTM (American Society for Testing of Materials) ISO NB- 21 CONDIÇÕES DE SEGURANÇA UMA ESTRUTURA COMO UM TODO OU SUAS PARTES PRECISAM: EVITAR ATINGIR TENSÕES DE RUPTURA OU ESCOAMENTO; DEFORMAR-SE ABAIXO DE LIMITES NORMATIVOS (ACUIDADE VISUAL, CONFORTO DOS USUÁRIOS); TER CUSTO ECONÔMICO (RACIONALIDADE DE PROJETO E EXECUÇÃO); TER BOM ASPECTO ESTÉTICO. 22 COEFICIENTES DE SEGURANÇA (TAXA DE AMOR AO DIPLOMA) AMPLIAM AS CARGAS NORMATIVAS, IMAGINANDO QUE PODEM SER NA REALIDADE MAIORES QUE AS PREVISTAS (EX: VENTO, SISMOS, NEVE, ETC); REDUZEM AS CAPACIDADES DOS MATERIAIS, IMAGINANDO NÃO CUMPRIREM ESPECIFICAÇÕES DE CATÁLOGOS; 23 ZONAS DE RUPTURA E SEGURANÇA TENSÕES RUPTURA ESCOAMENTO área de segurança zona elástica DEFORMAÇÕES DIAGRAMA TENSÃO X DEFORMAÇÃO NO AÇO COMUM 24 DIMENSIONAR A ESTRUTURA E SEUS ELEMENTOS ( antes da execução) ESCOLHER OS MATERIAIS; CONHECIDAS AS CARGAS, CALCULAR AS DIMENSÕES DOS ELEMENTOS E DA ESTRUTURA PARA QUE OBEDEÇAM LIMITES DE TENSÃO E DESLOCAMENTOS, COM SEGURANÇA E ECONOMIA; P= 5 tf p = 1 tf/m viga 6,0 m 2,0 m (qual a dimensão do perfil metálico a ser usado?) 25 VERIFICAÇÃO DAS ESTRUTURAS (após a execução) VERIFICAR SE OS MATERIAIS USADOS E SUAS DIMENSÕES SÃO COMPATÍVEIS COM OS LIMITES NORMATIVOS OU AS CARGAS APLICADAS TESTES (EXTENSÔMETROS PARA ANALISAR DEFORMAÇÕES, ULTRA-SOM) seção transversal da viga 30 cm 8 cm p=? 50 cm 6,0 m 2,0 m 6 cm 26 CARGAS EXTERNAS PERMANENTES DIREÇÃO, INTENSIDADE, SENTIDO, PONTO DE APLICAÇÃO CONSTANTES AO LONGO DA VIDA ÚTIL DA ESTRUTURA (EX: PESO PRÓPRIO) ACIDENTAIS OU VARIÁVEIS VARIAM AO LONGO DA VIDA ÚTIL (EX: VENTOS, PÚBLICO, TEMPERATURA ETC) 27 CARGAS CARGAS CONCENTRADAS F momento fletor Atuam em um ponto ou em área pequena, comparada com as dimensões da barra CARGAS DISTRIBUÍDAS vento empuxo de água linearmente distribuídas uniformemente distribuídas 28 CLASSIFICAÇÃO DAS ESTRUTURAS VÍNCULOS EXTERNOS E INTERNOS APOIO FIXO (transmite esforços horizontais e verticais; não transmite momento fletor) H V APOIO MÓVEL (transmite esforço na direção perpendicular ao movimento) H=0 V ENGASTE (transmite esforços e momento fletor) M H V 29 CLASSIFICAÇÃO DAS ESTRUTURAS b = n.º de barras (transmitem só esforços na direção de seu eixo longitudinal) F F n = n.º de nós ( pontos de encontro de barras ) nó c = n.º de chapas (transmitem esforços na horizontal, vertical e momentos) 30 CLASSIFICAÇÃO DAS ESTRUTURAS (quanto à geometria) HIPOSTÁTICAS (b<3c+2n) - Exemplos chapa (movimento) (1) (1) 1 1 1 b=2 c=1 2 < 3.1 + 2.0 (1 grau de mobilidade) São estruturas com algum grau de mobilidade 31 CLASSIFICAÇÃO DAS ESTRUTURAS (quanto à geometria) Estruturas Isostáticas (b=3c+2n) – geometricamente determinadas b=2 n=1 barra c=1, b=3, n=0 c=1, b=3, n=0 viga (2) (1) poste nó (2) treliça plana T r e l b=20, n=10, c=0 i (1) ç a p c=1, l n=0 b=3a (2) (1) n (3) (2) pórtico plano c=1, n=0 b=6 (2) (2) 32 ESTRUTURAS ISOSTÁTICAS treliça em balanço articulação entre 2 chapas (2) (2) chapa chapa b=16, n=8,c=0 (1) (2) arco b=6, c-2, n=0 chapa H V (2) (1) (2) H V b=3, c=1, n=0 33 ESTRUTURAS HIPERESTÁTICAS ( b>3c + 2n) b=6, c=1, n=0 3 x hiper b=4, c=1, n=0 (3) (2) (2) ( 2(1 vez hiperestática) ( (3) engaste (2) (2) (2) b= 23, n=10, c=0 3 x hiper b=4, c=1, n=0 1 vez hiper (2) arco bi-engastado b=6, c=1, n=0 3 vezes hiper (3) (3) engaste 34 CLASSIFICAÇÃO DAS ESTRUTURAS (QUANTO AO N.º DE ESFORÇOS) No plano, a estrutura fica equilibrada se: a) b) c) Soma de forças em x = 0 soma de forças em y = 0 soma de momentos em relação a qualquer ponto = 0 equações de equilíbrio Na estrutura hipostática, o número de incógnitas, (reações de apoio) é menor que o n.º de equações de equilíbrio M A B V A movimento V (3 equações, 2 incógnitas) B 35 ESTRUTURA ISOSTÁTICA N.º de equações de equilíbrio = n.º de reações de apoio + forças nos vínculos internos y C A N ab α α B P (carga externa) N bc x P Soma de forças em x = 0 .......................................... N = N ab bc Soma de forças em y = 0 .......................................... N = P / 2 x cos α ab 36 EXEMPLO 1 y 1 tf 1 tf 0,5 tf 1 tf 1.0 m H A 0,5 tf 1.0 m A B 1,50 m 1,50 m 1,50 m x 1,50 m VB VA ∑ F em x = 0 ..... H = 1,0 tf ∑ F em y = 0 ...... V + V = 3 tf A B ∑ M em A = 0 ..... 1.1,5 + 1.3,0 + 1.4,5 – 0,5.2,0 – 0,5.1,0 – V .6,0 =0 B VA = 1,25 tf V = 1,75 tf B 37 EXEMPLO 2 y R=p.L p MA H A A x V engaste F A (L) (L/2) ∑ F em x = 0 .... H = 0 A ∑ F em y = 0 ....V = p . L + F ∑ M = 0 .... M = p . L . L / 2 + F . L = p . L ² / 2 + F . L A A 38 ESTRUTURAS HIPERESTÁTICAS ( N.º DE EQUAÇÕES DE EQUILÍBRIO < N.º DE INCÓGNITAS) C N E N BC A (Barrra rígida) H B D A DE B D A F 2m F 3m 2m 3m VA V +N +N =F A BC H=0 DE A ∑ M = 0 .... N . 2,0 + N . 5,0 - F . 5,0 = 0 A BC DE Compatibilidade de deslocamentos A B (barra deslocada) 2m (EQUAÇÃO COMPLEMENTAR) D Δ Δ B Δ D B 2,0 3m Δ = D 5,0 Δ B = DESLOCAMENTO DA BARRA BC ( propor. a N Δ BC ) D = DESLOCAMENTO DA BARRA DE ( propor. a N ) DE 39 EXEMPLO 3 Y F = 4 tf + p = 1 tf/m X H A 60 º VB VA 2m 3m 5m 2m ∑ F em x = 0 ... H = 4 . cos 60º = 2,0 tf A V = 9,2 tf A ∑ F em y = 0 .... V + V = 1 . 12 + 4 . sen 60º A B ∑ M = 0 ...... 1 . 12 . 4,0 + 4 . sen 60º . 3,0 – V . 8,0 = 0 A V = 6,3 tf B B 40 EXEMPLO 4 Y 1 tf HA 1 tf 1 tf + A B X 0,5 m 0,5 tf 1 tf 1 tf V 1 tf 1 tf VB A 0,5 m 1,0 m 1,0 m 1,0 m 0,5 m ∑ F em x = 0 ... H = 0,5 tf A ∑ F em y = 0 .... V + V = 7 tf A B ∑ M = 0 ...... V . 4,0 – 0,5 . 0,5 – 1 (3,5 + 3,0 + 2,5 + 2,0 + 1,5 + 1,0 + 0,5) = 0 B A V = 3,56 tf A e V = 2,44 tf B 41 EXEMPLO 5 y 2 tf / m 0,5 tf / m + ∑ F em x = 0 ... 0,5 . 4 – H = 0 0,8 tf A 4m H = 2,0 tf A M A x HA VA 1m 4m ∑ F em y = 0 .... V - 2 . 5,0 – 0,8 = 0 A V = 10,8 tf A ∑ M = 0 ...... 2 . 5,0 . 1,5 + 0,5 . 4,0 . 2,0 + 0,8 . 4,0 – M = 0 A M = 22,2 tf . m A 42 EXEMPLO 6 1 tf / m Chapa 2 1 tf 0,5 tf / m β 1,5 m β Chapa 1 HA 1,5 m cos β = 4/5 = 0,8 sen β = 3/5 = 0,6 HC VC VA 4m 2m 2m Sem abrir a estrutura : V - 1 . 4 - 1 . 0,8 + V = 0 ...... V + V = 4,8 tf A C A C 0,5 . 3 - H - 1. 0,6 - H C= 0 .... H A + H = 0,9 t A C 0,5 . 3 . 1,5 + 1 . 4. 2 + 1 . 0,8 . 6 - 1 . 0,6 . 1,5 - V C. 8 = 0 ..... V C= 1,77 tf VA = 3,03 tf 43 Separando a estrutura na articulação B 1 tf / m Chapa 2 HB Chapa 2 ........... 1 tf B 1,5 m C β VB 0,75 - 1 . 0,6 - H = 0 .... H = 0,75 tf C 1,5 m HC 3,03 – 1 . 4 – 1 . 0,8 + V = 0 C VC V = 1,77 tf ( bate!! ) 4m Chapa 1 VB 2m C H B HB 0,5 tf / m 2m Chapa 1 ... V = V = 3,03 tf A A HA H = H = 0,5 . 3 / 2 = 0,75 tf (simetria) A VA B B 44