Sistemas CCAT com LCI e VSC Edson H. Watanabe Programa de Engenharia Elétrica Universidade Federal do Rio de Janeiro COPPE/UFRJ 1 CCAT – Corrente Contínua Alta Tensão LCI – Line Commutated Inverter CSI – Current Source Inverter VSC – Voltage Source Converter 2 DISPOSITIVO SEMICONDUTORES DE POTÊNCIA DIODOS TIRISTORES TRANSISTORES BIPOLARES (fora de uso) TRANSISTORES MOSFET (fonte de computador) GTO (Gate Turn-Off Thyristor) (fora de uso) MCT (Mos Controlled Thyristor) (fora de uso) IGBT (Insulated Gate Bipolar Transistor IGCT (Integrated Gate Commutated Thyristor 3 TIRISTOR Invenção 1957 (GE) Uso Comercial desde 1962 iA A Características: Disparo Controlado Corte Natural iG Fácil Conexão em Série G K Freqüência Baixa (50/60 Hz) Símbolo Potência: SCR (Silicon Controlled Rectifier): 4kV / 3kA LTT (Light Triggered Thyristor): 8kV / 3.5kA Uso: Retificadores / Inversores de Alta ou Altíssima Potência 4 TIRISTOR Características Básicas iA On Região de bloqueio reverso Reverse breakdown Off-to-on if iG pulse is applied vAK 0 Curva característica i-v Reverse breakdown voltage Off Forward breakdown voltage Corte é sempre natural Disparo e Corte R vS ~ iG iA vS iA vAK 0 T/2 t vAK T 5 TRANSISTOR BIPOLAR Resposta em Freqüência Média até centenas de kHz, normal 20 ~ 50 kHz (Centenas de W) 2 ~ 5 kHz (Dezenas de kW) ton=2s, toff=5s e tstg=5s Baixa Capacidade de Suportar Surtos de Tensão ou Corrente ib Possibilidade: Segundo Breakdown iC C B Ganho Baixo de Corrente ( 5 ~10) E Símbolo 6 TRANSISTOR MOSFET Freqüência de Chaveamento algumas centenas de kHz ton=100 ns toff=200 ns Tensão / Corrente 1000 V / 10 A 100 V / 100 A (50 kHz) D iG G S Símbolo Alta Resistência de Condução (Ron) Alta Perda de Condução Facilidade de Conexão em Paralelo Baixíssima Corrente de “Gate” Exemplo: id=25A, igmáx=1A e igo=0.5A 7 GTO (GATE TURN-OFF THYRISTOR) Freqüência de Chaveamento ton= 1 ~ 2 s, toff= 5 ~ 10 s Corte / Disparo pelo “Gate” Alta Potência: 6kV / 6kA iA A iG G K Conexão Série: Difícil, mas possível para poucas unidades Ganho de Corrente: Disparo: Igual ao SCR Corte: Ganho 1/3 Aplicação: Inversores de MW 8 IGBT (INSULATED GATE BIPOLAR TRANSISTOR) (Nasce do casamento do transistor bipolar com o MOSFET) Freqüência de Chaveamento Média: ton = 0,5 s, toff = 1 s Ganho de Corrente Muito Alto (Igual MOSFET) Perda de Condução: menor que no MOSFET ig G Exemplo: 1000 V / 25 A IgMÁX = 1 A, Igo = 0,5 A iA C Símbolo E 6,5 kV / 3 kA (maior atual) 9 IGBT (INSULATED GATE BIPOLAR TRANSISTOR) Exemplo: IGBT tipo “press pack” de condução reversa e 2500 V / 1 k A 10 IGBT (INSULATED GATE BIPOLAR TRANSISTOR) Chaveamento: Tensão Tensão Corrente Corrente (a) (b) 1,2 kV / 2 kA (200 V/div, 500 A/div, 200 ns/div (a) 25ºC (b) 125º 11 IGCT (GATE COMMUTATED THYRISTOR) Controllable turn-off current (snubber capacitor) Características 3kA (0F) 4kA (3F) Storage time 2,5 s at 3 kA Turn-on di/dt 1000 A/s On voltage Gate trigger current Thermal Resistence (Junction / sink) Gate off-current 3,8 V at 3 kA 4 A at 25ºC 0,11ºC/W = Anode current Exemplo: 4,5 kV IGCT Com Circuito de Gate 12 POTÊNCIA X FREQÜÊNCIA (Para um único dispositivo) SCR Potência (W) GTO - IGCT IGBT 10M 1M 100k MOSFET 10k 1k 60 100 1k 10k 100 k 1M Frequência (Hz) 13 ASSOCIAÇÃO SÉRIE / PARALELO TIRISTORES: Válvulas de SCR’s: Tecnologia dominada Exemplo: Transmissão de Corrente Contínua (Itaipú) + de 300 SCR’s em Série i Transistores de Alta Corrente: Conexão em Paralelo: difícil equalizar a corrente. 14 CONEXÃO SÉRIE DE GTO / IGCT / IGBT Problema: Equalização da Distribuição de Tensão Durante turn-on e turn-off No caso de IGBT existe caso de dezenas de dispositivos em série 15 APLICAÇÕES Inversor de Tensão e Inversor de Corrente Id Chave unidirecional em tensão e bidirecional em corrente Sintetiza Fonte de Corrente Chave unidirecional em corrente e bidirecional em tensão Sintetiza Fonte de Tensão 16 HVDC SYSTEMS Current Source Converter: (Conventional HVDC System) • Thyristor-based converter • Phase angle control • Current control Voltage Source Converter*: • IGBT or IGCT based converters • PWM control • Voltage control * - ABB: Light HVDC, Siemens: HVDC Plus 17 HVDC SYSTEMS Advantages: Transmission lines are more compact than AC lines No need of reactive power compensation in the line Highly flexible Good for connecting asynchronous systems (Long distance transmission or back-to-back connection) Excellent for long distance transmission Drawback: • High converter cost and few suppliers 18 ITAIPU HVDC SYSTEMS HVDC Transmission line 765 kV AC Transmission lines 19 Current Source Converter (CSI) or Line Commutated Conveter (LCI) Id L d VR AC Grid 1 Rectifier Vd Inverter AC Grid 2 Basic Circuit with 6-Pulse Converter 20 12-Pulse Converter Y-Y VR Y- Number of pulses are increased to mitigate problems with low frequency harmonic generation 21 HVDC Transmission System Smoothing reactor DC Line AC Grid 2 AC Grid 1 Y-Y Y- Y-Y Y- Y- AC Filter Y-Y DC Filter DC Line AC Filter Y- DC Filter Y-Y 22 Converters Characteristics Id Rd AC Grid 1 Vdr Vdr Id = min 1 2 3 Id0 Id AC Grid 2 Vdi Vdr-Vdi Rd Vdi min 1 2 3 Id 23 ITAIPU HVDC TRANSMISSION SYSTEM Total Power = 6.300 MW 2 bipoles of +/- 600 kV / 2625 A Length 800 km Total number of thyristors = 18432 (Each valve has 96 thyristors connected in series) 24 Problems with Conventional HVDC Systems 1 – Sensitivity to commutation failure 2 – Consumption of reactive power Solution: Capacitor-Commutated Converter - CCC Id Rd AC Grid 1 Vdr AC Grid 2 Vdi This system is used in Garabi connection with Argentina 25 CCC X Conventional HVDC M. Meisingset and A.M. Golé, “A comparison of conventional and capacitor commutated converters based on steady-state and dynamic considerations,” AC-DC Power Transmission Conference, IEE, 2001. 26 CCC X Conventional HVDC M. Meisingset and A.M. Golé, “A comparison of conventional and capacitor commutated converters based on steady-state and dynamic considerations,” AC-DC Power Transmission Conference, IEE, 2001. 27 HVDC BASED ON LCI • The AC system has to have high short circuit ratio • There are low frequency harmonic generation • The converters need reactive power for normal operation • No black start 28 HVDC BASED ON VSC Voltage Source Converter: - IGBT or IGCT based converters - PWM control - Voltage control Advantages: - Does not need reactive power or even power source - Can use PWM control and “does not generate harmonics” - Black start is possible 29 HVDC BASED ON VSC – Basic Configuration Vd CF AC Grid 1 • PWM control in both sides “eliminates” harmonic problems • AC grid can be a weak system and reactive power can be controlled by the converters 30 AC Grid 2 HVDC BASED ON VSC – Short Circuit Vd CF AC Grid 1 AC Grid 2 • If a short circuit happens in the DC side the diodes will keep supplying current. An AC circuit breaker has to protect the converter. 31 HVDC BASED ON VSC – Short Circuit DC reactor to limit short circuit current AC Grid 2 AC Grid 1 Transmission line • If a short circuit happens in the DC transmission line the reactors have to limit the current until the AC side circuit breaker operates. 32 HVDC BASED ON VSC – Control Converter 2 Converter 1 P1, Q1 Vd P2, Q2 CF AC Grid 1 AC Grid 2 • If Converter 1 controls P1, Converter 2 should control the DC voltage and P1 will be equal to P2. • (Or vice-versa) • Q1 and Q2 can be controlled independently both with capacitive or inductive characteristics. 33 HVDC BASED ON VSC – PWM Control - Sinus-triangle PWM can be used but it may produce high losses; - During transients better to use sinus-triangle method vcontr vtri ol t (1/fS) v d t - A small percentage of 3rd harmonic can be added to the reference voltage to increase fundamental component and use better the converter. vo1 34 HVDC BASED ON VSC – PWM Control - Harmonic elimination method guarantees low losses (Pulse number varies from 5 to 19) 60 Pulse Width Notch Width 1 2 3 4 180º-2 90 º t 180 º 180º- 180º-4 180º-3 1 Alpha () angles (deg) 0 50 40 200 2 160 120 11th harmonic 30 20 10 3 80 1 40 13th harmonic 0 0 0 20 40 60 80 100 Fundamental Voltage VS in (%) 35 Application Examples 36 Application Examples: Cross Sound Cable Project New Haven Cable New York Shoreharm 330 MW, +/-150 kV, 40 km Cable Transmission 37 Cross Sound Light HVDC – Circuit Diagram 38 Cross Sound Light HVDC - Control 39 Cross Sound Light HVDC - Harmonics 5th 7th 40 Cross Sound Light HVDC - Losses 41 36 MW, 138 kV (DC), 70 km 42 EAGLE PASS – PIEDRAS NEGRAS BtB 43 CONCLUSIONS VSC in BtB connection is still a new technology and may be important for connection of asynchronous systems, AC weak systems or use in congested areas; The converter controls are independent and does not need reactive power; Harmonic generation is relatively low; However, losses are still high (about 2 to 8 times the losses of a conventional thyristor based HVDC system). 44