Unisanta – Tópicos de Mecânica - Prof. Damin - Aula n.º ________ Data : ___/____/____
Momento De Inércia De Uma Figura Plana
Definição: (Murat, S.D.)
Seja uma figura plana qualquer, posicionada em
relação a um par de eixos de referência. Definese:
dIx = y2.da
dIy = x2.da
Considerado momento de 2ª ordem, momento de
1ª ordem é o estático.
Aplicando-se as definições acima para todos os
da, e somando-os temos:
Ix = (A) y2.da
Iy = (A) x2.da
Pela análise dimensional dessas definições, teremos como unidades para o MOMENTO
DE INÉRCIA: m4, cm4, pol4, etc.
Será adotada a unidade de m4 (metro a quarta).
Exercício Aplicativo para Cálculo do Momento Inércia:
Aplicar as definições acima para o Retângulo, posicionado em relação aos eixos, nas seguintes
situações:
Situação 1:
Situação 2:
Cálculo:
Cálculo:
Ix = (A) y2.da sendo da=B.dy
Ix = (A) y2.B.dy
Ix = B.(y3/3)0H
Ix = (B.H3)/3
Logo: Iy = (H.B3)/3
Página nº 1
Unisanta – Tópicos de Mecânica - Prof. Damin - Aula n.º ________ Data : ___/____/____
Considerações:
 Apesar de ser usado um par de eixos de referência (X e Y), o cálculo do Momento de Inércia
(Ieixo) é feito em relação a cada um deles separadamente, Podendo os eixos serem quaisquer
ou baricêntricos.
 De acordo com a distribuição da área da figura plana ao redor do eixo de referência, o
Momento de Inércia sempre resultará um número positivo.
 Se, o eixo de referência for um eixo de simetria, o eixo será baricêntrico. O inverso não é
verdadeiro.
 À medida que o eixo de referência se afasta do baricentro da figura plana, o resultado do
momento de inércia, em relação ao eixo de referência, aumenta.
Nomenclatura Utilizada:
Baricentro = G
Coordenadas de baricentro = xg e yg
Eixos de Referência = X e Y
Eixos baricêntricos = XG e YG
Momentos de Inércia para os eixos de referência = IX e IY
Momentos de Inércia para os eixos baricêntricos = IXG e IYG
Área da figura plana = A
Área infinitesimal = dA
Página nº 2
Unisanta – Tópicos de Mecânica - Prof. Damin - Aula n.º ________ Data : ___/____/____
MOMENTOS DE INÉRCIA DAS FIGURAS BÁSICAS
Figuras
Áreas
Retângulo
Mom. de Inércia
Ix = B.H3/3
A = B.H
Iy = H.B3/3
Ixg = B.H3/12
Iyg = H.B3/12
Triângulo Retângulo
Ix = B.H3/12
A = (B.H)/2
Iy = H.B3/12
Ixg = B.H3/36
Iyg = H.B3/36
Quarto de Círculo
Ix = .R4/16
A = (.R2)/4
Iy = .R4/16
Iyg = Ixg = Ix - A.(yg)2
Iyg = Ixg = 0,055.R4
Semi Círculo
Ix = .R4/8
A = (.R2)/2
Iyg = Iy = .R4/8
Ixg = Ix - A.(yg)2
Ixg = 0,1098.R4
Círculo
A = .R2
Iyg = Ixg = Ix = Iy
Ixg = .R4/4
(Miranda, 2000)
Página nº 3
Unisanta – Tópicos de Mecânica - Prof. Damin - Aula n.º ________ Data : ___/____/____
TEOREMA DE STEINER
Teorema da Translação de Eixos
Definição:(Murat, S.D.)
O momento de Inércia de uma Figura plana, em relação a um eixo qualquer, é igual à
soma do momento de inércia da figura, em relação ao seu eixo baricêntrico paralelo ao
eixo qualquer, com o produto da distância ao quadrado entre os eixos, pela área da
figura.
I = I + d2.Afig
Demonstração:
Utilizaremos os resultados obtidos no cálculo do momento de inércia do retângulo para
demonstrarmos este teorema:
Ou seja: IX - IXG = ?
Solução:
Ix = B.H3/3
Ixg = B.H3/12
Logo: [B.H3/3] - [B.H3/12] = [(4B.H3) - (B.H3)]/12
Desta Forma:
IX - IXG = B.H3/4
Reparar que, o valor encontrado pode ser decomposto em:
B.H3/4 = (H2/4).( B.H)
B.H3/4 = (yg)2.( A)
Analogamente:
IX = IXG + (yg)2.( A)
IY = IYG + (xg)2.( A)
Página nº 4
Unisanta – Tópicos de Mecânica - Prof. Damin - Aula n.º ________ Data : ___/____/____
Determinar os Momentos de Inércia das seguintes Figuras Compostas:
(P1 - 1º semestre, 1998)
Exemplo 15:
Resposta: IX ; IY ; IXG ; IYG
2 cm
7 cm
3 cm
Exemplo 16:
3 cm
Resposta: IX ; IY ; IXG ; IYG
9 cm
Página nº 5
Unisanta – Tópicos de Mecânica - Prof. Damin - Aula n.º ________ Data : ___/____/____
Determinar os Momentos de Inércia das seguintes Figuras Compostas:
Exemplo 17:
Resposta:
2
1
3
Da aula anterior temos:
Área da Figura 1 (4º círculo) = 28,27 cm2
Área da Figura 2 (triângulo) = 13,5 cm2.
Coordenada yg2 = 4 cm
Área da Figura 3 (triângulo) = 13,5 cm2.
Coordenada yg3 = 2 cm
Coordenadas do Baricentro: G = (xg ; yg)
G = (0,16 ; 2,77) cm.
Área da Figura Total (AT)= 55,27 cm2.
Exemplo 18
Cálculo de IX:
IX = IX1 + [IXG2 + A2.(yg2)2] + [IXG3 +
A3.(yg3)2] =
IX = .(6)4/16 + [9.(3)3/36 + 13,5.(4)2] +
[9.(3)3/36 + 13,5.(2)2] = 537,97 cm4.
Cálculo de IXG (aplicando Steiner),
temos:
IXG = IX - AT.(yg)2 =
IXG = 537,97 - 55,27.(2,77)2 = 113,89 cm4.
Cálculo de IY: (as figuras tocam o eixo Y)
IY = IY1 + IY2 + IY3 =
IY = .(6)4/16 + 3.(9)3/12 + 3.(9)3/12 =
IY = 618, 96 cm4.
Cálculo de IYG (aplicando Steiner),
temos:
IYG = IY - AT.(xg)2 =
IYG = 618, 96 - 55,27.(0,16)2 =
IYG = 617, 54 cm4.
Resposta:
Página nº 6
Unisanta – Tópicos de Mecânica - Prof. Damin - Aula n.º ________ Data : ___/____/____
Exercício 18:
Calcular, para a figura plana abaixo, o Baricentro e os Momentos de Inércia para os eixos de
referência (X eY), bem como, para os eixos baricêntricos. Posicionar o Ponto de Baricentro (G)
na figura, indicando suas coordenadas no desenho e a posição dos eixos baricêntricos.
Utilizar as unidades no Sistema Internacional.
Y
Solução:
5 x 10-2 m
3 x 10-2 m
X
Página nº 7
Download

Mom. Inércia