A IMPORTÂNCIA DA ESTATÍSTICA • A Estatística é aplicada como auxílio nas tomadas de decisão diante de incertezas para justificar cientificamente as decisões – – – – Governo Indústria Ciências sociais, biológicas, físicas, etc Pesquisas • A Estatística envolve técnicas para coletar, organizar, descrever, analisar e interpretar dados, ou provenientes de experimentos, ou vindos de estudos observacionais Vanessa Fortes Aula 4 1 O QUE É ESTATÍSTICA ? • Estatística pode ser pensada como a ciência de aprendizagem a partir de dados • No nosso cotidiano, precisamos tomar decisões, muitas vezes decisões rápidas DADOS ANÁLISE DECISÕES • Em linhas gerais, a Estatística fornece métodos que auxiliam o processo de tomada de decisão. Vanessa Fortes Aula 4 2 POR QUE USAR ESTATÍSTICA ? • Por que a natureza apresenta VARIABILIDADE – Variações de indivíduo para indivíduo – Variações no mesmo indivíduo • “A Estatística estuda como controlar, minimizar e observar • a variabilidade INEVITÁVEL de todas as medidas e observações” Sem Métodos Estatísticos, sem validade científica! Vanessa Fortes Aula 4 3 CONCEITOS BÁSICOS DE ESTATÍSTICA • FENÔMENO ESTATÍSTICO – qualquer evento que se pretenda analisar, cujo estudo seja possível da aplicação do método estatístico • DADO ESTATÍSTICO – dado numérico considerado matéria-prima sobre a qual se aplica os métodos estatísticos • POPULAÇÃO – conjunto total de elementos portadores de, pelo menos, uma característica comum observável X1 X2 X3... Vanessa Fortes Aula 4 4 CONCEITOS BÁSICOS DE ESTATÍSTICA • AMOSTRA – parcela representativa da população que é examinada com o propósito de tirarconclusões sobre a essa população – como selecionar uma amostra, de tal modo que as informações possam ser expandidas para a população ? Vanessa Fortes Aula 4 5 CONCEITOS BÁSICOS DE ESTATÍSTICA • Deseja-se fazer uma pesquisa para estimar a • preferência dos cariocas para a prefeitura Como selecionar uma amostra de n pessoas (n grande) dentre os moradores do município? Vanessa Fortes Aula 4 6 CONCEITOS BÁSICOS DE ESTATÍSTICA • Esta amostra é representativa da população? Vanessa Fortes Aula 4 7 CONCEITOS BÁSICOS DE ESTATÍSTICA • Esta amostra é representativa da população? Vanessa Fortes Aula 4 8 CONCEITOS BÁSICOS DE ESTATÍSTICA • Esta amostra é representativa da população? Vanessa Fortes Aula 4 9 CONCEITOS BÁSICOS DE ESTATÍSTICA • Ao selecionar uma amostra deve-se considerar alguns critérios de acordo com o tipo de pesquisa – – – – Região Sexo Nível sócio-econômico Idade • PARÂMETROS – valores singulares que existem na população e que servem para caracterizá-la. – para definir um parâmetro deve-se examinar toda a população – ex: Os alunos do 2º ano da UERJ têm em média 1,70 metros de estatura • ESTIMATIVA – valor aproximado do parâmetro – calculado com o uso da amostra Vanessa Fortes Aula 4 10 CONCEITOS BÁSICOS DE ESTATÍSTICA • ATRIBUTO – características que podem ser enumeradas • VARIÁVEL – características que podem ser medidas, controladas ou manipuladas em uma pesquisa • VARIÁVEL QUALITATIVA – valores expressos por atributos • sexo, cor da pele, etc. – Ex: pode-se dizer que 2 indivíduos são diferentes em termos da variável A (sexo, por exemplo), mas não se pode dizer qual deles "tem mais" da qualidade representada pela variável • VARIÁVEL QUANTITATIVA – conjunto de resultados numéricos – ex: pode-se dizer que a temperatura de 40°C é maior do que 30°C e que um aumento de 20°C para 40°C é duas vezes maior do que um aumento de 30°C para 40°C – e se dividem em: Vanessa Fortes Aula 4 11 CONCEITOS BÁSICOS DE ESTATÍSTICA • VARIÁVEL DISCRETA OU DESCONTÍNUA – valores expressos através de números inteiros não negativos – Ex: Nº de alunos presentes às aulas de CQ no 2º semestre de 2006 • agosto = 10, setembro = 13, outubro = 15 • VARIÁVEL CONTÍNUA – Valores mensuráveis – escala numérica correspondente ao conjunto R dos números Reais, ou seja, podem assumir, teoricamente, qualquer valor entre dois limites – Ex.: Quando se mede a temperatura do corpo com um termômetro de mercúrio o que ocorre é o seguinte: • O filete de mercúrio, ao dilatar-se, passará por todas as temperaturas intermediárias até chegar na temperatura atual do corpo Vanessa Fortes Aula 4 12 CONCEITOS BÁSICOS DE ESTATÍSTICA • FASES DO MÉTODO ESTATÍSTICO 1. DEFINIÇÃO DO PROBLEMA Saber exatamente aquilo que se pretende pesquisar é o mesmo que definir corretamente o problema 2. PLANEJAMENTO Como levantar informações? Que dados deverão ser obtidos? E o cronograma de atividades ? Os custos envolvidos ? etc. 3. COLETA DE DADOS Fase operacional, registro sistemático de dados, com um objetivo determinado. 4. APURAÇÃO DOS DADOS Resumo dos dados através de sua contagem e agrupamento. É a condensação e tabulação de dados. 5. APRESENTAÇÃO DOS DADOS Formas de apresentação dos dados 6. ANÁLISE E INTERPRETAÇÃO DOS DADOS A última fase do trabalho estatístico é a mais importante e delicada Está ligada essencialmente ao cálculo de medidas e coeficientes, cuja finalidade principal é descrever o fenômeno. Vanessa Fortes Aula 4 13 CONCEITOS BÁSICOS DE ESTATÍSTICA • Medidas de tendência central – representam uma série de dados orientando quanto à posição da distribuição em relação ao eixo horizontal do gráfico da curva de freqüência – verifica-se uma tendência dos dados observados a se agruparem em torno dos valores centrais – As medidas de tendência central mais utilizadas são: • Média aritmética • Moda • Mediana Vanessa Fortes Aula 4 14 X CONCEITOS BÁSICOS DE ESTATÍSTICA • Média Aritmética (X) – soma dos valores individuais dividido pelo total de elementos considerados. n X X X ... X i X 1 2 n i 1 X n n n – Exemplo: 10,2; 10,5; 10,4; 10,1; 10,4 10,2 10,5 10,4 10,1 10,4 X 10,32 5 Média: ponto de equilíbrio do conjunto Vanessa Fortes Aula 4 15 X CONCEITOS BÁSICOS DE ESTATÍSTICA • Moda (Xˆ ) – valor que ocorre com maior freqüência dentro de um conjunto de números. • Exemplo: 10,2; 10,5; 10,4; 10,1; 10,4 ˆ 10,4 X Moda: valor mais provável Vanessa Fortes Aula 4 16 X CONCEITOS BÁSICOS DE ESTATÍSTICA – A moda é facilmente reconhecida basta procurar o valor que mais se repete. – Há séries nas quais não exista valor modal, isto é, nas quais nenhum valor apareça mais vezes que outros • Exemplo: { 3 , 5 , 8 , 10 , 12 } não apresenta moda • A série é amodal – Em outros casos, pode haver dois ou mais valores de concentração. Então, a série tem dois ou mais valores modais • Exemplo: { 2 , 3 , 4 , 4 , 4 , 5 , 6 , 7 , 7 , 7 , 8 , 9 } apresenta duas modas: 4 e 7 • A série é bimodal Vanessa Fortes Aula 4 17 X CONCEITOS BÁSICOS DE ESTATÍSTICA – Uma vez agrupados os dados, é possível determinar imediatamente a moda: basta fixar o valor da variável de maior frequência – Ex: Qual a temperatura mais comum medida no mês abaixo? – 2º C é a temperatura modal, pois é a de maior frequência Vanessa Fortes Aula 4 18 X CONCEITOS BÁSICOS DE ESTATÍSTICA ~) • Mediana (Md = X – valor situado de tal forma no conjunto de dados que o separa em dois subconjuntos de mesmo número de elementos. – Dada uma série de valores como: { 5, 2, 6, 13, 9, 15, 10 } – 1º - ordenar a série { 2, 5, 6, 9, 10, 13, 15 } – O valor que divide a série acima em duas partes iguais é igual a 9, logo a Md = 9 Mediana: divide o conjunto em duas partes iguais. Vanessa Fortes Aula 4 19 CONCEITOS BÁSICOS DE ESTATÍSTICA • Método prático para o cálculo da Mediana – Se a série dada tiver número ímpar de termos: • O valor mediano será o termo de ordem dado fela fórmula: ( n + 1)/2 • Exemplo: Calcule a mediana da série { 1, 3, 0, 0, 2, 4, 1, 2, 5 } • 1º - ordenar a série { 0, 0, 1, 1, 2, 2, 3, 4, 5 } • n = 9 logo (n + 1)/2 é dado por (9+1) / 2 = 5, ou seja, o 5º elemento da série ordenada será a mediana • A mediana será o 5º elemento = 2 Vanessa Fortes Aula 4 20 CONCEITOS BÁSICOS DE ESTATÍSTICA • Se a série dada tiver número par de termos: – O valor mediano será o termo de ordem dado fela fórmula: [( n/2 ) +( n/2+ 1 )] / 2 – Obs: n/2 e (n/2 + 1) serão termos de ordem e devem ser substituídos pelo valor correspondente. – Exemplo: Calcule a mediana da série { 1, 3, 0, 0, 2, 4, 1, 3, 5, 6 } – 1º - ordenar a série { 0, 0, 1, 1, 2, 3, 3, 4, 5, 6 } – n = 10 logo a fórmula ficará: [( 10/2 ) + (10/2 + 1)] / 2 = [( 5 + 6)] / 2 será na realidade (5º termo+ 6º termo) / 2 – 5º termo = 2 e 6º termo = 3 – A mediana será = (2+3) / 2 ou seja, Md = 2,5 . A mediana no exemplo será a média aritmética do 5º e 6º termos da série. Vanessa Fortes Aula 4 21 CONCEITOS BÁSICOS DE ESTATÍSTICA • Quando o número de elementos da série estatística for ímpar, haverá coincidência da mediana com um dos elementos da série. • Quando o número de elementos da série estatística for par, nunca haverá coincidência da mediana com um dos elementos da série. • A mediana será sempre a média aritmética dos 2 elementos centrais da série. • Em um série a mediana, a média e a moda não têm, necessariamente, o mesmo valor. • A mediana, depende da posição e não dos valores dos elementos na série ordenada. • Essa é uma das diferenças marcantes entre mediana e média (que se deixa influenciar, e muito, pelos valores extremos). Vanessa Fortes Aula 4 22 CONCEITOS BÁSICOS DE ESTATÍSTICA • Exemplo: • Em { 5, 7, 10, 13, 15 } a média = 10 e a mediana = 10 • Em { 5, 7, 10, 13, 65 } a média = 20 e a mediana = 10 • A média do segundo conjunto de valores é maior do que a do primeiro, por influência dos valores extremos, ao passo que a mediana permanece a mesma. Vanessa Fortes Aula 4 23 CONCEITOS BÁSICOS DE ESTATÍSTICA • Dispersão ou Variabilidade: – maior ou menor diversificação dos valores de uma variável em torno de um valor de tendência central (média ou mediana) tomado como ponto de comparação. – A média - ainda que considerada como um número que tem a faculdade de representar uma série de valores - não pode, por si mesma, destacar o grau de homogeneidade ou heterogeneidade que existe entre os valores que compõem o conjunto. – Consideremos os seguintes conjuntos de valores das variáveis X, Y e Z: • X = { 70, 70, 70, 70, 70 } • Y = { 68, 69, 70 ,71 ,72 } • Z = { 5, 15, 50, 120, 160 } Vanessa Fortes Aula 4 24 CONCEITOS BÁSICOS DE ESTATÍSTICA • Dispersão ou Variabilidade: – Observamos então que os três conjuntos apresentam a mesma média aritmética = 350/5 = 70 – Entretanto, é fácil notar que o conjunto X é mais homogêneo que os conjuntos Y e Z, já que todos os valores são iguais à média. – O conjunto Y, por sua vez, é mais homogêneo que o conjunto Z, pois há menor diversificação entre cada um de seus valores e a média representativa. – Concluímos então que o conjunto X apresenta dispersão nula e que o conjunto Y apresenta uma dispersão menor que o conjunto Z. Vanessa Fortes Aula 4 25 CONCEITOS BÁSICOS DE ESTATÍSTICA • Medidas de Dispersão mais utilizadas – Amplitude – Desvio padrão – Variância Vanessa Fortes Aula 4 26 CONCEITOS BÁSICOS DE ESTATÍSTICA • Amplitude (R ou AT): é a diferença entre o maior e o menor valor de um conjunto de dados. RX X max. min. • Exemplo: 10,2; 10,5; 10,4; 10,1; 10,4 R 10,5 10,1 0,4 • A amplitude total tem o incoveniente de só levar em conta os dois valores extremos da série, descuidando do conjunto de valores intermediários. • Faz-se uso da amplitude total quando se quer determinar a amplitude da temperatura em um dia, por exemplo, no controle de qualidade ou como uma medida de cálculo rápido sem muita exatidão. Vanessa Fortes Aula 4 27 CONCEITOS BÁSICOS DE ESTATÍSTICA • Desvio padrão ( ou S) – Baseia-se nos desvios em torno da média aritmética e a sua fórmula básica pode ser traduzida como • raiz quadrada da média aritmética dos quadrados dos desvios e é representada por S . n σ i 1 X X 2 i n 1 – Expresso na unidade original de medida – Utilizado para avaliação da variabilidade de um processo/amostra – Indicador de variabilidade bastante estável, pois leva em consideração a totalidade dos valores da variável em estudo Vanessa Fortes Aula 4 28 CONCEITOS BÁSICOS DE ESTATÍSTICA – Exemplo: 10,2; 10,5; 10,4; 10,1; 10,4 i 1 2 3 4 5 Xi 10,2 10,5 10,4 10,1 10,4 X Xi X 10,32 10,32 10,32 10,32 10,32 -0,12 0,18 0,08 -0,22 0,08 Total Vanessa Fortes X X 2 i 0,0144 0,0324 0,0064 0,0484 0,0064 0,1080 0,1080 0,1643 5 1 Aula 4 29 CONCEITOS BÁSICOS DE ESTATÍSTICA • Variância ( ou S2) 2 – Desvio padrão elevado ao quadrado – Expresso na unidade original de medida elevada ao quadrado – Utilizado para avaliação da variabilidade de um processo/amostra X n 2 Vanessa Fortes i 1 X 2 i n 1 Aula 4 30 CONCEITOS BÁSICOS DE ESTATÍSTICA • Variância ( ) 2 – Exemplo: 10,2; 10,5; 10,4; 10,1; 10,4 i 1 2 3 4 5 Xi 10,2 10,5 10,4 10,1 10,4 X Xi X 10,32 10,32 10,32 10,32 10,32 -0,12 0,18 0,08 -0,22 0,08 Total Vanessa Fortes Aula 4 X X 2 i 0,0144 0,0324 0,0064 0,0484 0,0064 0,1080 31 CONCEITOS BÁSICOS DE ESTATÍSTICA 2 • Variância ( ) – Exemplo: 10,2; 10,5; 10,4; 10,1; 10,4 0,1080 0,1643 5 1 0,027 2 Vanessa Fortes Aula 4 32 CONCEITOS BÁSICOS DE ESTATÍSTICA • Regras de Arredondamento – O algarismo a ser cancelado é menor que 5: • Exemplo: 21,742 21,74 (aproximação 0,01) – O algarismo a ser cancelado é maior que 5: • Exemplo: 13,78 13,8 (aproximação 0,1) Vanessa Fortes Aula 4 33 CONCEITOS BÁSICOS DE ESTATÍSTICA • Regras de Arredondamento – O algarismo a ser cancelado é igual a 5: arredonda-se para o par mais próximo do algarismo que precede o 5. • Exemplo: 2,75 2,8 (aproximação 0,1) – O algarismo a ser cancelado é igual a 5: arredonda-se para o par mais próximo do algarismo que precede o 5. Caso o valor precedente seja par, cancela-se o 5. • Exemplo: 42,885 42,88 (aproximação 0,01) Vanessa Fortes Aula 4 34 CONCEITOS BÁSICOS DE ESTATÍSTICA • Regras de Aproximação – As aproximações devem ser feitas sempre no final do resultado e não durante os cálculos intermediários. – Caso necessário, durante os cálculos intermediários, as aproximações devem ser no mínimo 0,001 (três casas); usar as regras de arredondamento quando necessário; Vanessa Fortes Aula 4 35 CONCEITOS BÁSICOS DE ESTATÍSTICA • Regras de Aproximação – Para o cálculo das médias, desvios, limites, etc., aproximar em “uma casa” a mais do que a aproximação dos elementos da amostra. •Exemplo: Xi: 10; 11; 14 X 11,7 Vanessa Fortes Aula 4 36 CONCEITOS BÁSICOS DE ESTATÍSTICA • Exercício ~ , ˆ , R, , 2 , a partir dos – Calcular X , X X dados de uma amostra A. – Dados: • X1 – 22,0 • X2 – 22,5 • X3 – 22,5 • X4 – 24,0 • X5 – 23,5 Vanessa Fortes Aula 4 37