Matemática Pedro Paulo GEOMETRIA ESPACIAL VIII 1 – TRONCO DE PIRÂMIDE 3 – ÁREAS E VOLUME DO TRONCO DE PIRÂMIDE Chamaremos de tronco de pirâmide de bases paralelas a porção da pirâmide limitada por sua base e por uma secção transversal qualquer desta pirâmide. A secção transversal é a interseção entre a pirâmide e um plano paralelo à sua base. Como o plano é paralelo à sua base, é obtida uma pirâmide menor, que é semelhante à pirâmide maior. Isso significa que os lados das duas pirâmides (assim como as suas alturas) são proporcionais entre si. Os polígonos das bases também são semelhantes entre si. O tronco de pirâmide é a diferença entre a pirâmide maior e a pirâmide menor. 3.1 – Área lateral A área lateral de um tronco de pirâmide é a diferença entre a área lateral da pirâmide maior e a área lateral da pirâmide menor 3.2 – Área das bases As bases de um tronco de pirâmide são a base da pirâmide maior (que tem área ) e a base da pirâmide menor (que tem área ) 3.3 – Área total A área total de um tronco de pirâmide é a soma da sua área lateral com as áreas duas bases: 3.4 – Volume O volume de um tronco de pirâmide é a diferença entre o volume da pirâmide maior e o volume da pirâmide menor, isto é: Figura 1 – tronco de pirâmide Observação: As faces laterais do tronco de pirâmides sempre são trapézios. 2 – SEMELHANÇA ENTRE AS PIRÂMIDES Sejam , , o volume, a área da base e a altura da pirâmide maior, e , , , o volume, a área da base e a altura da pirâmide menor. Seja a razão de semelhança entre a pirâmide menor e a maior. Então é a razão entre comprimentos correspondentes (alturas, arestas da base, arestas laterais, apótemas da pirâmide, apótemas da base, etc). Logo Como os polígonos das bases também são semelhantes entre si também são semelhantes: Seja a altura do tronco, conforme a figura 1. Então, a altura do tronco é a diferença entre a altura da pirâmide maior e a altura da pirâmide menor: De e , é possível mostrar que o volume do tronco de pirâmide é dado pela expressão: [ √ ] , onde é a altura do tronco, base maior e é a área da base menor. é a área da ( ) ( ) 1 Geometria CASD Vestibulares 6. (UFPB - 07) As rapaduras, fabricadas no Engenho JB , têm a forma de um tronco de pirâmide regular , conforme ilustra a figura a seguir. EXERCÍCIOS PROPOSTOS Nível I 1. (UFSC - 06) A base quadrada de uma pirâmide tem de área. A do vértice traça-se um plano paralelo à base e a secção assim feita tem de área. Qual a altura da pirâmide? 2. (UDESC - 11) Considere um tronco de pirâmide regular, cujas bases são quadrados com lados medindo e Se o volume deste tronco é , então a altura da pirâmide que deu origem ao tronco é: a) b) c) d) e) 3. (UFG - 12) Pretende-se instalar, em uma via de tráfego intenso, um redutor de velocidade formado por blocos idênticos em forma de tronco de pirâmide. Cada tronco de pirâmide é obtido a partir de uma pirâmide de base retangular após seccioná-la por um plano paralelo à base e distante do vértice da altura da pirâmide. Ao término da instalação, a face superior (base menor) de cada tronco de pirâmide será pintada com tinta amarela. Cada litro de tinta custa , sendo suficiente para pintar . Sabendo-se que a área da base maior de cada tronco de pirâmide utilizado na construção do redutor é de calcule o custo da tinta amarela utilizada. 4. (UEG - 08) Uma lâmpada, cujas dimensões são consideradas desprezíveis, é fixada no teto de uma sala de metros de altura. Um objeto quadrado com lado de centímetros é suspenso a metro do teto, de modo que fique paralelo ao solo e seu centro esteja na mesma vertical que a lâmpada. Calcule a área da sombra projetada pela luminosidade da lâmpada no solo. Sabendo-se que os segmentos e medem, respectivamente, e , e que a altura da pirâmide mede , o volume de cada rapadura, em , é igual a: a) b) c) d) e) 7. (UFTM - 11) O perímetro da base de uma pirâmide quadrangular é . Seccionando-se essa pirâmide por um plano paralelo à base, obtém-se outra pirâmide quadrangular de base cuja altura é igual a da altura da pirâmide inicial, determinando assim um tronco de pirâmide, de bases quadradas e paralelas. 5. (UDESC - 12) Uma caixa de um perfume tem o formato de um tronco de pirâmide quadrangular regular fechado. Para embrulhá-la, Pedro tirou as seguintes medidas: aresta lateral e arestas das bases e . A quantidade total de papel para embrulhar esta caixa, supondo que não haja desperdício e nem sobreposição de material, foi: a) b) c) d) e) Determine: a) A área da secção b) A altura e o volume do tronco de pirâmide, sabendose que o volume da pirâmide inicial é igual a CASD Vestibulares Geometria 2 10. (UNESP – 07 (BIOLÓGICAS)) Com o fenômeno do efeito estufa e consequente aumento da temperatura média da Terra, há o desprendimento de icebergs (enormes blocos de gelo) das calotas polares terrestres. Para calcularmos o volume aproximado de um iceberg podemos compará-lo com sólidos geométricos conhecidos. Suponha que o sólido da figura, formado por dois troncos de pirâmides regulares de base quadrada simétricos e justapostos pela base maior, represente aproximadamente um iceberg. Nível II 8. (UFMG - 05) Observe esta figura: Nessa figura, estão representados um cubo, cujas arestas medem, cada uma, , e a pirâmide , que possui três vértices em comum com o cubo. O ponto M situa-se sobre o prolongamento da aresta do cubo. Os segmentos e interceptam arestas desse cubo, respectivamente, nos pontos e e o segmento mede . Considerando-se essas informações, é CORRETO afirmar que o volume da pirâmide é, em : a) b) c) d) 9. (UFRGS - 11) Na figura abaixo, estão representados um cubo de aresta e uma pirâmide triangular de altura . Os pontos , e são vértices da pirâmide e do cubo, e pertence ao prolongamento de . As arestas das bases maior e menor de cada tronco medem, respectivamente, e e a altura mede . Sabendo que o volume da parte submersa do iceberg corresponde a aproximadamente do volume total , determine 11. (UNESP – 07 (EXATAS) ) Para calcularmos o volume aproximado de um iceberg, podemos comparálo com sólidos geométricos conhecidos. O sólido da figura, formado por um tronco de pirâmide regular de base quadrada e um paralelepípedo reto-retângulo, justapostos pela base, representa aproximadamente um iceberg no momento em que se desprendeu da calota polar da Terra. As arestas das bases maior e menor do tronco de pirâmide medem, respectivamente, e , e a altura mede . Passado algum tempo do desprendimento do iceberg, o seu volume era de , o que correspondia O volume comum aos dois sólidos é a a) 3 b) c) . d) e) do volume inicial. Determine a altura , em , do sólido que representa o iceberg no momento em que se desprendeu. Geometria CASD Vestibulares 12. (UFBA - 10) Sobre um cilindro circular reto e uma pirâmide triangular regular sabe-se que • tem volume igual a e área de cada base igual a , • tem a mesma altura que e base inscrita em uma base de . 15. (FUVEST - 11) Na figura abaixo, o cubo de vértices , , , , , , , tem lado ℓ. Os pontos e são pontos médios das arestas ̅̅̅̅ e ̅̅̅̅ , respectivamente. Calcule a área da superfície do tronco de pirâmide de vértices , , , , , . Calcule o volume do tronco dessa pirâmide determinado pelo plano paralelo à base que dista do vértice. 13. (UNICAMP - 09) Uma caixa d'água tem o formato de um tronco de pirâmide de bases quadradas e paralelas, como mostra a figura, na qual são apresentadas as medidas referentes ao interior da caixa. 16. (ITA - 07) Considere uma pirâmide regular de base hexagonal, cujo apótema da base mede √ . Secciona-se a pirâmide por um plano paralelo à base, obtendo-se um tronco de volume igual a e uma nova pirâmide. Dado que a razão entre as alturas das pirâmides é √ , a altura do tronco, em centímetros, é igual a a) a) Qual o volume total da caixa d'água? b) Se a caixa contém d) √ √ b) √ e) √ √ √ c) √ √ √ de água, a que altura de sua base está o nível d'água? 14. (UNICAMP - 07) Seja um cubo com aresta de comprimento e sejam o ponto médio de e o centro da face , conforme mostrado na figura a seguir. a) Se a reta intercepta a reta no ponto e a reta intercepta e em e , respectivamente, calcule os comprimentos dos segmentos e . b) Calcule o volume do sólido com vértices , , , , e . CASD Vestibulares √ 17. (UFMG - 07) Nesta figura, está representado o prisma reto , cuja base é um triângulo retângulo, em que é o ângulo reto: Sabe-se que - as arestas , e medem, respectivamente, , e ;e e são, respectivamente, os pontos médios dos segmentos e . a) Calcule a área do quadrilátero . b) Calcule o volume do sólido . Geometria 4 5. A figura do problema é a seguinte: DICAS E FATOS QUE AJUDAM 1. Sejam , a área da base e a altura da pirâmide maior, e , , a área da base e a altura da pirâmide menor. Então , e ( ) √ ( ) 2. Sejam , , , o volume, a área da base, o lado da base e a altura da pirâmide maior, , , , o volume, o lado da base e a altura da pirâmide menor e o volume do tronco. Então , e . ( ) ( ) ( ) Sejam a aresta lateral do tronco, a aresta da base maior e a aresta da base menor. Sejam e as projeções ortogonais de e sobre . Como o tronco é formado a partir de uma pirâmide quadrangular regular, o trapézio é isósceles, logo e . Além disso, e . Usando Pitágoras no triângulo retângulo : 3. Sejam , a área da base e a altura da pirâmide maior, e , , a área da base e a altura da pirâmide menor. Então e ( ) A área total ( ) Como há blocos em forma de tronco de pirâmide, a área total das faces superiores é (lembre que ). Como um litro de tinta amarela é suficiente para pintar , são necessários litros de tinta amarela. Lembre que cada litro de tinta amarela custa . do tronco é: 6. Sejam , , a área da base, o lado da base e a altura da pirâmide maior, , , , a área da base, o lado da base e a altura da pirâmide menor e o volume e a altura do tronco. Então , e . 4. A sombra projetada pela luminosidade da lâmpada no solo é a base de uma pirâmide maior, cujo vértice é a lâmpada, enquanto o objeto quadrado com lado de é a seção transversal e a base da pirâmide menor. Sejam , , a área da base, o lado da base e a altura da pirâmide maior, e , a área da base e a altura da pirâmide menor. Então , e [ [ √ [ 5 Geometria ] √ [ ] √ √ [ ] ] ] CASD Vestibulares 7. a) Sejam , , , o volume, a área da base, o lado da base e a altura da pirâmide maior, , a área da base e a altura da pirâmide menor e o volume e a altura do tronco. Então Como o perímetro da base ( ) é 10. Sejam , a área da base e o lado da base da pirâmide maior, , , a área da base e o lado da base da pirâmide menor e o volume e a altura do tronco Então e , tem-se: [ ( ) ] √ [ b) [ √ [ [ [ ] √ [ [ ] [ ] √ [ [ 9. Sejam a área da base da pirâmide maior, a área da base da pirâmide menor e o volume do tronco. ) ] [ √ ] √ √ ] Como o volume final do iceberg é do volume inicial), tem-se: [ ] ] (que é ( ) [ [ [ 11. Sejam , a área da base e o lado da base da pirâmide maior, , , a área da base e o lado da base da pirâmide menor, o volume e a altura do tronco e o volume e a altura do paralelepípedo. Então e ] 8. ( ] √ ] √ ] √ ] √ √ CASD Vestibulares √ ] ] [ [ √ ] ] Geometria 6 12. Sejam , , , o volume, a área da base, o raio da base e a altura do cilindro , , , , o volume, a área da base, o lado da base e a altura da pirâmide maior , , a área da base e a altura da pirâmide menor e o volume e a altura do tronco. Então , , e . 13. a) A figura do problema é a seguinte: Como a pirâmide é triangular regular, a sua base é um triângulo equilátero de lado . Além disso, a sua base está inscrita em uma base de , que é um círculo de raio . Então o plano das bases de e de está ilustrado abaixo: Sejam , , , o volume, a área da base, o lado da base e a altura da pirâmide maior, , a área da base e a altura da pirâmide menor e o volume e a altura do tronco. Logo , e ( ) A altura do triângulo equilátero de lado Além disso, o raio vale √ é da altura. Então: √ √ ( ) [ √ √ √ ) ( ) √ √ √ O volume da pirâmide menor mais o volume da água é o volume de uma pirâmide intermediária: √ ( ) ] √ a altura do √ Como a altura da pirâmide intermediária é [ ] ] b) Sejam o volume da pirâmide menor e nível d’água. Então, tem-se: √ √ √ √ √ √ ( √ ) √ √ ( √ [ √ [ √ ] √ √ √ √ [ √ √ ( ) ( : ) ] √ [ √ √ √ ] √ 7 [ √ √ √ ] √ Geometria CASD Vestibulares 14. a) Ilustrando o triângulo (medidas em b) ): e são pirâmides semelhantes ( e são arestas é ponto médio de ) ( ) ( ) ; ; Seja : Logo No triângulo e CASD Vestibulares , seja o ponto médio de . Então . Além disso, . Sejam ainda . Ilustrando o triângulo : Geometria 8 15. Ilustrando o triângulo e , tem-se: são pontos médios, logo Aplicando Pitágoras no triângulo : ( ) ( ) Ilustrando o trapézio , tem-se: √ Ilustrando o triângulo , tem-se: √ ( √ ( épontos médios, logo √ √ ) Aplicando Pitágoras no triângulo . Aplicando Pitágoras no triângulo √ ( : √ : ) ( √ ) ( ) √ √ Ilustrando o triângulo √ ( √ , tem-se: ( Aplicando Pitágoras no triângulo ) √ √ ) √ √ √ ) √ √ : √ 9 Geometria CASD Vestibulares 16. Seja o lado e o apótema da base da √ pirâmide maior. Ilustrando a base maior abaixo: Seja a altura da pirâmide menor. Então, tem-se: √ √ √ √ √ Seja √ (√ (√ √ A área da base da pirâmide maior é: √ ( √ √ √ √ √ √ a altura do tronco. Então, tem-se: é a altura de um triângulo equilátero de lado . Então: √ √ √ ) √ ) √ ) (√ ( √ (√ √ ) √ ) √ ) √ Seja a altura da pirâmide maior. Então o volume da pirâmide maior é: √ √ Seja o volume da pirâmide menor. Como a razão entre a altura da pirãmide menor e a altura da pirâmide maior é √ , tem-se: ( √ √ ) √ √ √ √ √ √ √ √ √ √ Seja o volume do tronco. Então √ √ √ (√ (√ √ √ √ √ ) (√ √ ) √ ) √ √ √ ) (√ CASD Vestibulares . Logo: √ (√ √ ) √ √ √ Geometria 10 17. a) O quadrilátero está ilustrado abaixo: GABARITO 1. A altura da pirâmide é 2. C 3. O custo da tinta amarela utilizada é aproximadamente , o que é 4. A área da sombra projetada pela luminosidade da lâmpada no solo é 5. E 6. D Como e são os pontos médios de e respectivamente, é base média do triângulo Logo e é paralelo a Como é paralelo a , tem-se que é paralelo . Assim, o quadrilátero é um trapézio. , . . a 7. a) A área da seção é b) A altura do tronco de pirâmide é tronco de pirâmide é e o volume do 8. B 9. E é ponto médio de 10. O volume Usando Pitágoras no triângulo retângulo da parte submersa do iceberg é : 11. A altura √ é √ 12. O volume do tronco dessa pirâmide é 13. a) O volume total da caixa d’água é b) Note que o sólido é um tronco de pirâmide triangular, cuja base maior é o triângulo , cuja base menor é o triângulo e cuja altura é b) O nível d’água está a da sua base 14. a) O comprimento de é e o de b) O volume do sólido com vértices , , , , e é é é ponto médio de 15. A área da superfície do tronco de pirâmide de vértices [ [ √ ] √ ] [ √ , , , , , 16. C 17. a) A área do quadrilátero ] b) O volume do sólido Note que o volume do sólido entre o volume do prisma tronco de pirâmide 11 é é é é a diferença e o volume do Geometria CASD Vestibulares