KARINA INACIO LADISLAU DE CARVALHO SALMAZI ASPECTOS IMUNOLÓGICOS DA CO-INFECÇÃO PELO Mycobacterium leprae E O VÍRUS DA IMUNODEFICIÊNCIA HUMANA. Tese apresentada à Universidade Federal de São Paulo – Escola Paulista de Medicina, para obtenção do título de Doutor em Ciências. São Paulo 2008 KARINA INACIO LADISLAU DE CARVALHO SALMAZI ASPECTOS IMUNOLÓGICOS DA CO-INFECÇÃO PELO Mycobacterium leprae E O VÍRUS DA IMUNODEFICIÊNCIA HUMANA. Orientador: Prof. Dr. Esper Georges Kállas Tese apresentada à Universidade Federal de São Paulo – Escola Paulista de Medicina, para obtenção do título de Doutor em Ciências. São Paulo 2008 Ficha Catalográfica Carvalho, KI Aspectos Imunológicos da co-infecção do Mycobacterium leprae e o vírus da imunodeficiência humana. / Karina Incaio Ladislau de Carvalho Salmazi. São Paulo, 2008.123p. Tese (Doutorado) – Universidade Federal de São Paulo – Escola Paulista de Medicina. Programa de Pós-graduação em Infectologia. Título em inglês: Immune aspects in coinfection of Mycobacteirum lepare and human immunodeficiency virus. 1. Imunidade inarta. 2. Células NKT. 3. Citometria de fluxo 4.Mycobacterium leprae. Trabalho realizado na Disciplina de Infectologia do Departamento de Medicina e no Centro Interdisciplinar de Terapia Gênica (Cintergen) da Universidade Federal de São Paulo - Escola Paulista de Medicina, com o auxílio financeiro concedido pela Conselho Nacional de Pesquisa e Desenvolvimento (CNPQ). Aos meus pais pelo amor incondicional, incentivo e apoio, indispensável para a realização deste projeto e de muitos outros de minha vida. Ao meu querido Cristiano, que com muito amor, compreensão esteve sempre presente. À minha filha Julia, que é a luz de minha vida. À vocês, minha eterna gratidão. AGRADECIMENTOS Ao meu orientador Prof. Dr. Esper George Kállas, que me ensina a cada minuto, pela sua amizade, compreensão e por sempre procurar meu limite para tornar os trabalhos sempre melhores e mais completos. Ao Prof. Dr. Douglas Nixon, pelo apoio e confiança, pelas oportunidades de interação e colaboração junto a sua equipe e principalmente pelas sugestões. Ao Prof. Dr. Patrick Hasllett, pelo incentivo de trabalhar com hanseníase, e por suas sugestões. À querida amiga Daniela Santoro Rosa pelo seu apoio, por muitas discussões científicas e pela amizade maravilhosa. À querida amiga Ana Lucia Girello sua fidelidade, incentivo e apoio durantes todos estes anos. À minha querida amiga Maria Regina, que me iniciou neste processo de pesquisa, meu eterno agradecimento. À minha querida amiga Jennifer Snyder-Cappione, pelo seu incentivo e ajuda. À todos que fizeram e fazem parte do grupo Kallas Lab, pelo apoio e incentivo. Em especial a Helena Tomiyama, por sua paciência e ensinamento em todos estes anos. À minha borbes Fernanda Romano Bruno pela cumplicidade e carinho desses últimos tempos. À minha querida amiga Mariana Melillo Sauer pelo carinho, apoio e incentivo. À minha querida amiga Candida, que sua experiência é um brilho constante. Ao grupo do Prof. Dr. Mauricio Rodrigues e Prof.Dr. Edécio Cunha-Neto, pelo apoio e incentivo, em especial a Susan Ribeiro pelo carinho e apoio. Ao Issler Silva pelas informações importantes e por tantos favores que me prestou. À Profª.Drª. Marília Xavier Brasil, pela colaboração entre dois laboratório distantes, que proporcionou enriquecer este trabalho. À minha querida amiga Solange Maeda, pelo seu ensinamento, ajuda e alegria, que foram importantes para a realização deste doutorado. À todos os voluntários, pela compreensão, paciência e dedicação. Aos amigos que me apoiam e me alegram sempre. Ao CNPq, pelo auxílio financeiro que proporcionou a realização deste trabalho. SUMÁRIO LISTA DE ABREVIATURAS…..…………………………………………….……. v RESUMO……………………………………………………………………………. vi ABSTRACT…………………………………………………………………………. viii INTRODUÇÃO……………………………………………………………………… 1 OBJETIVOS………………………………………………………………………… 20 ARTIGOS PUBLICADOS OU EM PREPARAÇÃO: RESUMO 1…………………………………………………………………………. 21 ARTIGO 22 “Immune cellular parameters of leprosy and human immunodeficiency virus1 co-infected subjects.” RESUMO 2………………………………………………………………………….. 31 ARTIGO……………………………………………………………………………… 32 “Lower Th1 cytokine secretion ex vivo by CD1d-restricted NKT cells in HIV1-infected individuals is associated with high CD161 expression.” RESUMO 3………………………………………………………………………….. 46 ARTIGO……………………………………………………………………………… 47 “NKT cells profile in HIV and leprosy coinfected patients.” CONCLUSÕES…………………………………………………………………….. 67 REFERÊNCIA 68 BIBLIOGRÁFICA…………………………………………………………………... ANEXOS…………………………………………………………………………….. 80 LISTA DE ABREVIATURAS AIDS - Sindrome da imunodeficiência adiquirida APC - Células Apresentadoras de antígeno CCR - Co-receptores de quimiocinas DNA - Ácido desoxiboribonucléico Gp - Glicoproteína HIV - Vírus da imunodeficiência humana HLA - Antígeno leucocitário humano IFN - Interferon IL - Interleucina MB - Multibacilar MHC - Complexo major de histocompatibilidade NK - Células natural killer NKT - Células natural killer T NRAMP1 - natural resistance-associated macrophage protein one OMS - Organização Mundial da Saúde PB - Paucibacilar PACRG - Parkin co-regulated gen PQT - Polioquimioterapia TLR - Receptores do tipo toll TCR - Receptor de células T TNF - Fator de necrose tumoral TR - Transcriptase reversa v Carvalho, KI Abstract RESUMO As características da resposta imunológica em pacientes infectados pelo Mycobacterium leprae e pelo virus da imunodeficiência humana (HIV) não estão bem elucidadas. O objetivo geral desta tese foi avaliar diferentes parâmetros imunológicos na interação destas doenças. Inicialmente avaliamos a imunidade celular em quatro grupos de pacientes dividos em: indivíduos saudáveis, monoinfectados pelo Mycobacterium leprae, monoinfectados pelo virus da imunodeficiência humana e coinfectados pelo M. leprae e HIV. Observamos que o grupo coinfectado apresentou diminuição da razão de células CD4:CD8, aumento de níveis de ativação em células T CD8+, aumento da razão de células T Vδ1:Vδ2 e diminuição da porcentagem de células dendríticas plasmocitóides, comparadas com o grupo de indivíduos monoinfectados pelo HIV-1. A produção de IL-4 por linfócitos T CD4+ foi correlacionado positivamente com a porcentagem de subpopulações de memória efetora de células T CD4+, sugerindo diferenciação antigênica da população de células T em ambas as infecções de HIV-1 e M. leprae. A coinfecção por M. leprae pode exacerbar a imunopatologia da doença induzida pelo HIV-1. Houve uma tendência na expressão de citocinas Th2 na resposta de células T CD4+ em ambas infecções de M. leprae e HIV-1, mas não obtivemos efeitos aparentes nos pacientes coinfectados. No trabalho subsequente, avaliamos de forma quantitativa e qualitativa as células NKT da imunidade inata nos indivíduos saudáveis e infectados pelo HIV. A frequência de células NKT que secretam IFN-γ e TNF-α estava significantemente diminuída em pacientes HIV-1 quando comparados com os indivíduos saudáveis. A magnitude da resposta de IFN-γ teve correlação inversa com o número de anos da infecção, sugerindo que a função das células NKT está diminuída progressivamente ao longo do tempo. Não houve alteração na resposta das células NKT dos indivíduos infectados pelo HIV após tratamento com Forbol12-Miristato13-Acetato (PMA) e ionomicina, sugerindo um defeito no sinal do TCR prejudicando a produção de citocina. Foi observado uma vi Carvalho, KI Abstract diminuição na magnitude da resposta com produção de citocinas Th1 pelas células NKT quando correlacionado com a expressão de CD161, sugerindo um mecanismo inibitório deste receptor na regulação da resposta de células NKT. Por último, nós demonstramos que pacientes coinfectados tem redução da frequência de células NKT no sangue periférico, quando comparados com indivíduos saudáveis e pacientes monoinfectados pelo M. lepare. Por outro lado, as células NKT de pacientes coinfectados secretam mais IFN-γ quando comparadas com pacientes monoinfectados pelo M. lepare. Estes resultados sugerem que as células NKT têm atividade aumentada em pacientes coinfectados, contudo em frequência diminuída no sangue periférico. vii Carvalho, KI Abstract ABSTRACT The immune response characteristics in patients Mycobacterium leprae and human immunodeficiency infected with virus (HIV) is not elucidated. The aim of this study was to evaluate different immune parameters in the overlapping of both diseases. In the first paper we observaded The co-infected group exhibited lower CD4:CD8 ratio, higher levels of CD8 T-cell activation, increased Vδ1 : Vδ2 T cell ratio and lower percentage of plasmacytoid dendritic cells, compared to HIV-1 infected subjects. Across infected groups, IL-4 production by CD4 T lymphocytes was positively correlated with the percentage of effector memory CD4 T cells, suggesting antigenically-driven differentiation of such T cell population in both HIV-1 and M. leprae infections. Co-infection with M. leprae may exacerbate the immunopathology of HIV-1 induced disease. A T helper 2 (Th2) bias in the CD4 T-cell response was evident in both HIV-1-infection and leprosy, but no additive effect was apparent in co-infected patients. Subsequently, we evaluated quantitatively and qualitatively the NKT cells from innate immune response in HIV-infected subjects and healthy controls. The frequencies of NKT cells secreting IFN-γ and TNF-α were significantly lower in HIV-1-infected subjects and the magnitude of the IFN-γ production was negatively correlated with the number of years of infection, suggesting that NKT cell function is progressively lost over time. NKT cell responses in HIV-1 infected subjects were essentially normal after treatment with Phorbol12-Myristate13Acetato (PMA) and ionomycin, suggesting that defective TCR-signaling was the underlying defect in the cytokine production. The lower levels of the NKT Th1 response correlated with higher CD161 expression, suggesting a role for this inhibitory receptor in regulating NKT cell responsiveness. Finally, we have investigated the NKT cells in the context of HIV and M. leprae coinfection. The volunteers were enrolled into four groups: twenty-seven healthy controls, seventeen HIV seropositive patients, seventeen patients with leprosy, and twenty-three co-infected patients with leprosy and HIV-1 infection. viii Carvalho, KI Abstract Flow cytometric and ELISPOT assays were performed in stored PBMC. We demonstrated that coinfected patients have reduced NKT cells in the peripheral blood when compared to healthy subjects and leprosy monoinfected patients. On the other hand, NKT cells from coinfected patients secrete more IFN-γ when compared to leprosy monoinfected patients. These results suggest that NKT cells are highly active in coinfected patients, although occurring in lower frequency in the peripheral blood. ix Carvalho KI Introdução 1. HANSEN Há muitos séculos a hanseníase tem passado uma imagem de horror e fascinação. Até os dias de hoje vários aspectos da doença permanecem obscuros e abertos à investigação científica. A primeira descrição do bacilo da hanseníase foi realizada pelo médico norueguês Gerhard Henrik Hansen. Ele descobriu o bacilo em 1873 em nódulos lepromatosos e foi sua primeira idéia da etiologia da doença. Tentou demonstrar que a hanseníase era transmissível e acabou com uma ação criminosa. Em 3 de novembro de 1879, Hansen inoculou material proveniente de um nódulo hansênico em uma mulher. O experimento não alcançou o objetivo proposto, que era comprovar que a hanseníase era uma doença infecto-contagiosa. No entanto, Hansen estava convencido que era uma doença transmissível e colocou a primeira lei (1877 “Norweigian Leprosy Act”) de isolamento dos pacientes baseados em teorias não comprovadas de transmissão (Alter, Alcais et al. 2008) A hanseníase é causada pelo Mycobacterium leprae (M. leprae) e continua sendo um dos maiores problemas de saúde pública mundial (Cole, Eiglmeier et al. 2001). É um bacilo álcool-ácido-resistente, parasita intracelular obrigatório, possui tropismo por macrófagos e células de Schwann e cresce de preferência em regiões frias do organismo (Britton and Lockwood 2004). Além disso, é relativamente resistente e pode viver fora do corpo humano por cerca de 45 dias. O M. leprae é encontrado em abundância na mucosa do septo-nasal de pacientes sem tratamento e provavelmente sobrevive no ambiente antes de infectar um novo indivíduo (Lockwood and Suneetha 2005). O único animal conhecido por hospedar o M. leprae é o Dasypus novemcinctus, conhecido como tatu, comum nas regiões do Texas e da Lousiana, nos Estados Unidos, e não há evidências de outros animais que possam atuar como vetores do agente (Kirchheimer and Storrs 1971; Lockwood and Suneetha 2005; Alter, Alcais et al. 2008). 1 Carvalho KI Introdução A hanseníase consiste em uma infecção crônica que afeta nervos periféricos e pele. As lesões nos nervos resultam em deformidades e/ou desabilidades sensoriais e motoras. Os bacilos da hanseníase parecem depender de produtos metabolizados pelo hospedeiro, fato este que poderia explicar a cronicidade da doença e a incapacidade de seu crescimento em culturas (Cole, Eiglmeier et al. 2001). O fato de ser um microorganismo que não é cultivado em cultura e ser uma doença de curso lento faz com que os estudos in vitro e ensaios clínicos se tornem complexos (Britton and Lockwood 2004). Nas últimas décadas, vários avanços foram obtidos no estudo da patogênese da hanseníase, enquanto mais de 11 milhões de pacientes foram tratados com o esquema de polioquimioterapia (PQT). Nos dias atuais, é díficil obter-se classificação das formas clínicas universalmente aceitas, devido a discordância na valorização dos critérios habitualmente utilizados. Entre as classificações existentes, é importante fazer referência a Ridley e Jopling, que utilizam as características imunológicas dos indivíduos afetados e os classifica em um espectro que varia entre o pólo tuberculóide, onde há grande resposta imunológica celular ao bacilo, e o pólo lepromatoso, onde há uma anergia relativa ao M. leprae (Ridley and Jopling 1966). O Ministério da Saúde do Brasil adotou a recomendação da Organização Mundial da Saúde (OMS), que propõe o agrupamento dos pacientes em formas paucibacilares (PB), multibacilares (MB). Os pacientes classificados como PB têm lesões eritêmato-hipocrômicas, eritematosas e com bordas discretamente elevadas. O centro da lesão é habitualmente poupado, mostrando a evolução centrífuga do processo. É frequente o comprometimento de nervos de forma assimétrica, podendo ser a única manifestação clínica em alguns casos. Já nos pacientes com a forma MB, as lesões são eritematosas, eritemato-violáceas, nodulares e infiltradas. As lesões das formas disformes apresentam contorno interno bem definido e externo mal definido, conhecidas como lesões foveolares. A presença de nódulos e infiltrações na face são comuns, juntamente com o comprometimento neurológico. A hanseníase indeterminada é uma manifestação inicial da doença, caracterizada por manchas hipocrômicas, 2 Carvalho KI Introdução planas, únicas ou múltiplas, e com alteração na sensibilidade (Organization 2007). O exame baciloscópico auxilia na classificação do paciente. A baciloscopia deve ser realizada em todos com a suspeita clínica de hanseníase, embora nem sempre seja possível evidenciar o M. leprae nas lesões hansênicas ou em outros sítios de coleta. O M. leprae apresenta-se sob a forma de bastonete pela microscopia, na maioria das vezes reto ou ligeiramente encurvado ou, mais raramente, formando ângulos. Mede 1,5 a 8 micra de comprimento por 0,2 a 0,5 micron de largura. A hanseníase apresenta um amplo aspecto nas manifestações clínicas e histopatológicas. Biópsias realizadas em lesões de pacientes hansênicos do pólo PB, apresentam infiltração granulomatosa e raros bacilos. Aparentemente estes pacientes apresentam resistência ao M. leprae. Contudo, no pólo MB as lesões são nodulares, com presença de muitos bacilos, com infiltrado de macrófagos espumosos (células de virchow) (Scollard, Adams et al. 2006). Esta doença é tratada com o uso combinado de dapsona, rifampicina e clofazimina, que tem efeito direto na bactéria e minimiza o desenvolvimento de cepas resistentes a drogas (Alter, Alcais et al. 2008). A OMS recomenda tratar por 6 a 12 meses os pacientes com a forma paucibacilar e multibacilar, respectivamente (Tabela 1) (Organizaton 1982). Tabela 1. Esquema de poliquimioterapia (PQT) recomendado pela Organização Mundial da Sáude. Classificação da Esquema de PQT Duração do Hanseníase tratamento Mensal Diário (meses) Paucibacilar Rifampicina 600 mg Dapsona 100 mg 6 Multibacilar Rifampicina 600 mg Clofazimina 50 mg 12 Clofazimina 300 mg Dapsona 100 mg 3 Carvalho KI Introdução Em alguns paises endêmicos, tais como Indonésia e Etiópia, mais de 5% da população apresenta o ácido desoxicoribonucleíco (DNA) do M. leprae nos septos-nasais, mas essas pessoas não apresentam os sintomas clínicos da doença (Klatser, van Beers et al. 1993). Nas últimas décadas foi descrito que até 90% dos indivíduos expostos ao M. leprae permanecem assintomáticos (Convit, Sampson et al. 1992; Chaudhury, Hazra et al. 1994; Gupte, Vallishayee et al. 1998), sugerindo que a progressão para a doença necessita de fatores adicionais. A hanseníase, assim como outras doenças infecciosas, apresenta um fator causal (ex.: agente infeccioso) que é necessário, mas às vezes insuficiente para a manifestação clínica. Esta doença aparentemente necessita de fatores de risco adicionais, como meio ambiente e/ou genéticos (Alter, Alcais et al. 2008). Em 1973, pela primeira vez foram descritas alterações genéticas, marco para uma série de estudos que correlacionaram o desenvolvimento da hanseníase e a suceptibilidade genética (Shields, Russell et al. 1987; Abel and Demenais 1988; Abel, Vu et al. 1995). O fator genético de susceptibilidade ao bacilo pode estar presente em dois níveis: imunidade inata ou adquirida. Um dos maiores avanços de associação da suceptibilidade genética à doenças infecciosas foi realizado em 2003 (Scollard, Adams et al. 2006). Com relação a imunidade inata, foi identificado que o locus específico PARK2, co-regulatório de PACRG (Mira, Alcais et al. 2004) ou alterações na proteína NRAMP1 estão associados a susceptibilidade na doença de Hansen. A proteína NRAMP1 possivelmente interfere na expressão de complexo principal de histocompatibilidade classe II (MHCII) e na regulação da expressão de fator de necrose tumoral alfa (TNF-α) (Abel and Demenais 1988). Já em relação à imunidade adquirida, vários fatores podem conferir maior susceptibilidade à doença. Diversos estudos sugerem que o antígeno leucocitário humano (HLA) é determinante para a resposta ao M. leprae e alguns estudos associam os alelos HLA-D2 e DR3 com a forma PB (Ottenhoff, Converse et al. 1987; Ottenhoff and de Vries 1987). Outra molécula 4 Carvalho KI Introdução associada à suceptibilidade o TNF-α, relacionado à resistência ao M. leprae. Os níveis séricos desta citocina em pacientes com a forma PB estão elevados, como também a expressão da mesma nas células retiradas de lesões hansências (Roy, McGuire et al. 1997; Moraes, Sarno et al. 1999; Ferreira, Goulart et al. 2004). Os receptores semelhantes ao toll (toll-like receptors ou TLRs), são moléculas de superfície que têm um papel importante no reconhecimento de patógenos. Estudos recentes em pacientes hansênicos indicaram que o TLR2 controla a produção de citocinas, sinais celulares e outros aspectos da resistência ao M. leprae (Kang, Lee et al. 2002; Bochud, Hawn et al. 2003; Heine and Lien 2003; Krutzik, Ochoa et al. 2003; Kang, Yeum et al. 2004). Evidências epidemiológicas e biológicas sugerem que a hanseníase não pode ser eliminada apenas por esquema de PQT. Esta teoria resultou de um estudo matemático recente, que sugere um declínio lento da doença (Meima, Smith et al. 2004). Esse declínio, porém, se mantém incerto e comprova a necessidade de uma política de controle mais eficaz da doença. Segundo a OMS, a hanseníase foi eliminada como um problema de saúde pública mundial no final do ano de 2000. A eliminação é definida por uma prevalência menor que um paciente registrado para tratamento por 10.000 habitantes. A prevalência mundial era de 5.35 milhões de pessoas (12 para 10.000) em 1985 e 597.035 mil pessoas (1 para 10.000) no final de 2000. No último boletim de casos de hanseníase, observou-se que quatro países necessitam eliminar esta doença: Brasil, República do Congo, Moçambique e Nepal (Smith and Richardus 2008). O Brasil é o segundo país no mundo em número de casos novos registrados. Mais de 64.000 indivíduos infectados estão em tratamento e cerca de 47.000 novos casos são detectados ao ano. Aproximadamente 8% dos novos casos são em jovens abaixo de 15 anos e 6% apresentam algum grau de alteração motora. Dos novos casos registrados pelo Ministério da Saúde do Brasil, 53% apresentam a forma multibacilar (Gráfico 1) (Organization 2007). 5 Carvalho KI Introdução Gráfico 1. Incidência de casos de hanseníase no Brasil. Fonte: Ministério da Saúde 60,000 50,000 40,000 30,000 20,000 10,000 0 Casos 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 14,515 17,133 16,994 18,798 18,854 19,303 18,497 19,728 26,615 27,844 28,765 30,874 33,396 34,251 33,190 36,263 40,505 45,125 42,444 42,389 41,305 44,609 47,506 49,026 49,366 38,410 A hanseníase era descrita como uma doença com características bem definidas que dependia da resposta imunológica do hospedeiro (mediada por células) contra o M. leprae (Ridley and Jopling 1966; Bloom 1986). Aparentemente a resposta imunológica ocorre em resposta a estimulação antigênica de linfócitos T (timo-dependente), podendo ser desencadeada diretamente pelo patógeno ou após o mecanismo de fagocitose por macrófagos. Isso leva a uma proliferação linfocitária e secreção de citocinas, que aumenta a capacidade antimicrobiana dos macrófagos. Pacientes que apresentam a forma PB têm a capacidade de restringir o crescimento do patógeno e produzem uma resposta de células T contra o M. leprae com especificidade de citocinas, como o interferon gama (IFN-γ). Entretanto, pacientes que apresentam a forma MB têm manifestação disseminada do M. leprae, sendo que a resposta de células T é diminuída e as células T presentes nas lesões expressam interleucina 4 (IL-4) e IL-10, associadas à resposta imunológica humoral, e suprimem a resposta imunológica mediada por células (Quiroga, Martinez et al. 2004). Estudos imunológicos nos extremos do espectro da hanseníase são raros e geralmente realizados nas lesões de pele. Há evidências, no entanto, que o M. leprae não induz supressão de maturação/ativação das células dendríticas in vitro; por outro lado o Mycobacterium tuberculosis e o Mycobacterium bovis, cepa Calmètte-Guérin, estimulam estas células (Murray, Siddiqui et al. 2007). 6 Carvalho KI Introdução Um trabalho recente demonstrou que em pacientes com ambas formas de apresentação clínica nos pólos da doença e com a forma indeterminada apresentam contagem de células T CD4+ aumentadas, sendo que estas células produzem uma quantidade maior de IFN-γ enquanto as células T CD8+ apresentam-se diminuídas na forma multibacilar (Sridevi, Neena et al. 2004). Embora a imunidade adaptativa tenha um papel essencial na resistência à infecção pelo M. leprae, alguns indivíduos que apresentam a forma multibacilar da doença têm danos permanentes em nervos periféricos (Scollard, Adams et al. 2006). A combinação de uma resposta imunológica efetiva e a baixa virulência do bacilo pode levar o indivíduo a não desenvolver manifestações clínicas da doença. 2. HIV O primeiro caso da síndrome da imunodeficiência adquirida (AIDS) foi relatado no início da década de 80 (Prevention 1983). É causada pelo vírus da imunodeficiência humana (HIV) e é conhecida por uma infecção persistente que pode ter um período latência clínica entre a infecção primária e os sintomas associados a imunodeficiência grave (Barre-Sinoussi 1996). Uma das primeiras características da infecção pelo HIV é a diminuição da resposta imunológica celular, com alterações quantitativas nas subpopulações de linfócitos T CD4+ e CD8+ (Barre-Sinoussi 1996). Esta diminuição pode resultar em infecções oportunistas recorrentes, que podem ser causadas por fungos, bactérias, vírus e micobactérias. Uma das infecções oportunistas mais frequentes em pacientes infectados pelo HIV é a causada pelo M. tuberculosis. Não existem esclarecimentos suficientes do comprometimento imunológico que as coinfecções exercem em indivíduos infectados pelo HIV. Os cientistas têm respondido aos desafios desta pandemia: já foram identificadas a etiologia, a rota de transmissão, os aspectos centrais na patogênese da imunodeficiência, e foram desenvolvidos testes diagnósticos e tratamento específico. No entanto, isto não resultou no controle global da 7 Carvalho KI Introdução pandemia causada pelo HIV. Estima-se que ocorreram mais de 25 milhões de mortes e 33 milhões de pessoas vivem com o vírus, ao final de 2007, com consequências socio-econômicas, culturais, e políticas bastante significativas. O alvo principal dessa epidemia são pessoas em idade economicamente produtiva, os adultos jovens. A rota de transmissão pode ser sexual, vertical e parenteral, essa última principalmente envolvendo o uso drogas ilícitas por via intravenosa e, raramente hoje, transfusão de sangue e hemoderivados. A pandemia está fora de controle, mesmo com tratamento anti-retroviral existente. No último boletim epidemiológico do Ministério da Saúde do Brasil, aproximadamente 480.000 casos de AIDS foram notificados até junho de 2007, sendo 60% localizados na região sudoeste do país (Saúde 2007). Desde a descoberta do HIV do tipo 1 (HIV-1) em 1983, tem sido a doença infecciosa mais estudada na história (Barre-Sinoussi, Chermann et al. 1983). O HIV-1 é um retrovírus e o seu conteúdo genético está disposto em duas fitas duplas de RNA. A extrema variabilidade dos retrovírus decorre do fato da transcriptase reversa (TR) não possuir a propriedade de correção durante o processo de replicação viral, característica comum à DNA-polimerase de outros organismos. O genoma do HIV é pequeno e contém poucos genes, mas tem a capacidade de neutralizar e escapar de diferentes componentes da defesa (Barre-Sinoussi 1996; Emerman and Malim 1998). Atualmente, a classificação adotada se baseia na análise do genoma completo de amostras de HIV-1 colhidas em diferentes regiões geográficas: grupo M (major), composto por nove subtipos nomeados A – D, F – H, J e K (as variantes A e F são ainda segregadas como sub subtipos A1 ou A2 e F1 e F2, respectivamente), e o grupo O (out-group) e o N (new) (Simon, Ho et al. 2006). Em termos de diversidade viral, o subtipo C continua dominante e é responsável por 55 a 60% de todas as novas infecções pelo HIV-1 no mundo (Simon, Ho et al. 2006). Além destes, várias formas recombinantes circulantes (circulating recombinant forms ou CRFs) contribuem com o avanço da epidemia (Korber, Gaschen et al. 2001; Thomson and Najera 2005). 8 Carvalho KI Introdução O ciclo de vida do HIV é complexo e a duração e seu desenvolvimento dependem do tipo e estado de ativação celulares. No início da infecção, o HIV não causa danos letais às células do sistema imunológico, mas o processo pode estimular sinais intracelulares que facilitam a replicação viral (Cicala, Arthos et al. 2002; Balabanian, Harriague et al. 2004). Duas moléculas do envelope viral, a glicoproteína externa (gp120) e a proteína transmembrana (gp41), formam a ligação inicial do vírus com a célula alvo (Ray and Doms 2006). Durante este processo, a gp120 se liga ao receptor de membrana das células T CD4+. Logo, ocorre a interação entre o vírus e os co-receptores de quimiocinas (principalmente CCR5 e CXCR4), formando uma ligação irreversível (Eckert and Kim 2001; Ray and Doms 2006). Esta fusão leva minutos para formar um poro na membrana celular (Eckert and Kim 2001; Platt, Shea et al. 2005) e liberar o vírus para o interior citoplasmático. A distribuição destes receptores permitem que a infecção não seja apenas direcionada às células T CD4+, mas também às células apresentadoras de antígeno (APCs), incluindo macrófagos e células dendríticas. O vírus HIV-1 parece ter características biológicas únicas para a predileção destas células (Stevenson 2003). A destruição gradual de linfócitos T CD4+ naïve e de memória é a marca da infecção pelo HIV-1, que leva ao desenvolvimento da AIDS (Douek, Picker et al. 2003). Apesar da ausência de sintomas durante a fase aguda e crônica na maioria dos casos, a replicação do HIV é dinâmica. A meia vida do vírus é tão pequena, que metade da população viral plasmática pode se replicar em menos de 30 minutos (Ramratnam, Bonhoeffer et al. 1999), sendo que o total de partículas virais produzidas na infecção crônica de um indivíduo infectado pode chegar à 1010 particulas por dia (Ramratnam, Bonhoeffer et al. 1999; Simon and Ho 2003). A ativação celular é um marcador de progressão (Giorgi, Hultin et al. 1999), e parece ser o foco central da patogenia do HIV. O diagnóstico da infecção pelo HIV pode ser realizado através da detecção de anticorpos específicos, antígenos, ou ambos, e vários ensaios sorológicos estão disponíveis nos dias de hoje. Testes imunoenzimáticos são geralmente utilizados para triagem. Para acompanhamento da infecção é 9 Carvalho KI Introdução necessário realizar a contagem de células T CD4+ e a quantificação de cópias de RNA do HIV no plasma (carga viral). A carga viral é utilizada principalmente para monitoramento do tratamento anti-retroviral. Vários testes para quantificação carga viral também estão disponíveis nos dias atuais. A carga viral, contudo, não determina o estágio destrutivo do sistema imunológico. Por outro lado, o número de células T CD4+ revela o grau de imunodeficiência e é utilizado como medidor do avanço para doença. O critério para classificação da infecção do HIV é medido através da contagem de células T CD4+ e manifestções clínicas (infecções oportunistas). A citometria de fluxo é o método padrão para a quantificação de células T CD4+ no sangue periférico. O tratamento anti-retroviral é a melhor opção para a supressão viral e, subsequente, para a redução da morbidade e mortalidade. Nos dias de hoje, há aproximadamente 20 drogas anti-retrovirais disponíveis para tratamento. Definir o melhor momento para iniciar o tratamento anti-retroviral é uma das decisões mais importantes no acompanhamento do indivíduo infectado pelo HIV. O Ministério da Saúde do Brasil determina que pacientes com doença sintomática e os que, apesar de assintomáticos, apresentam imunodeficiência avançada (contagem de linfócitos T CD4+ abaixo de 200/mm3) devem iniciar tratamento; já aqueles com contagem entre 200 e 350 céls./mm3 devem iniciar o tratamento na presença de manifestações clínicas associadas a imunodeficiência ou a critério do médico que está assistindo ao indivíduo (Saúde 2006). 3. Coinfecção HIV e Hanseníase A infecção pelo HIV tem um efeito profundo na incidência e na patologia clínica da tuberculose. No entanto, houve uma preocupação no início da epidemia quanto a possibilidade de existir uma interação similar entre a infecção pelo HIV e a hanseníase, que não foi confirmada até hoje. A prevalência da infecção pelo HIV tem aumentado em países endêmicos para a hanseníase. O número de pacientes com a co-infecção, no entanto, não 10 Carvalho KI Introdução foi estimado e acredita-se que a sobreposição geográfica dessas duas doenças poderá resultar no aumento do número de indivíduos com ambas infecções (Figura 1) (Ustianowski, Lawn et al. 2006). O tempo prolongado de incubação da infecção pelo M. leprae e sua baixa incidência tornam complicada a realização de um estudo prospectivo de incidência da co-infecção ou um estudo casocontrole de pacientes infectados ou não pelo HIV. Figura 1. Distribuição mundial do número de adultos e adolescente que vivem com HIV/AIDS até o final de 2002 e seis paises com o maior número de novos casos com hanseníase no mesmo ano (adaptado de Ustianowski, Lawn et al. 2006). Alguns estudos demonstraram que a prevalência de casos de pacientes co-infectados pelo HIV/M. tuberculosis ou infecções pelo M. avium tende a ser maior que os casos de HIV/M. leprae (Meeran 1989; Borgdorff, van den Broek et al. 1993; Moses, Adelowo et al. 2003). Lucas B e cols. constataram que a prevalência de pacientes infectados pelo HIV entre os casos de hanseníase não é elevada quando comparada com o grupo de pacientes não infectados pelo HIV, e a co-infecção não afetou o espectro clínico de pacientes que apresentaram a forma multibacilar da hanseníase (Lucas, Fine et al. 1995). 11 Carvalho KI Introdução Um estudo realizado na Tanzânia, em 1990, identificou que 83 (12,2%) estavam infectadas pelo HIV entre 679 pessoas infectadas pelo M. leprae. Este resultado deve ser visto com cautela, já que o diagnóstico da infecção pelo HIV contava com apenas um tipo de ensaio imunoenzimático (van den Broek, Chum et al. 1997). De fato, já havia sido descrito que a hanseníase podia afetar a especificidade e sensibilidade de alguns testes para o diagnóstico da infecção pelo HIV (ShivRaj, Patil et al. 1988; Andrade, Avelleira et al. 1991), porque pacientes com hanseníase multibacilar podem apresentar hipergamaglobulemia que eventualmente resultava em testes falso-positivos em sorologias para sífilis e ensaios de fator reumatóide (Murray 1982; Harboe 1988). Também foi descrito que pacientes com forma multibacilar da hanseníase produzem anticorpos contra antígenos micobacterianos, que podem ocasionar reações cruzadas em ensaios sorológicos com proteínas Pol e Gag do HIV-1 (Kashala, Marlink et al. 1994; Milanga, Kashala et al. 1999), embora alguns trabalhos tenham falhado em detectar estes efeitos (Lucas, Fine et al. 1995; Sterne, Turner et al. 1995). O espectro clínico da hanseníase depende do sistema imunológico do hospedeiro. O HIV afeta a resposta imunológica celular, sugerindo, portanto, que pacientes co-infectados apresentariam a forma multibacilar da hanseníase com maior freqüência (Turk and Rees 1988). Cinco grandes estudos descreveram que a razão entre as formas paucibacilar e multibacilar não muda significantemente com a co-infecção pelo HIV (Munyao, Bwayo et al. 1994; van den Broek, Chum et al. 1997; Gebre, Saunderson et al. 2000). Alguns estudos sugeriram que pacientes co-infectados podem ter uma hanseníase mais severa, com neurite e aumento de reações reversas. Também sugerem que o uso de terapia anti-retroviral pode potencializar efeitos adversos, aumentando os episódios inflamatórios. Não há evidências, todavia, que a neurite esteja aumentada na co-infecção, apesar do HIV poder ter efeito neuropático concomitante (Pereira, Stefani et al. 2004; Ustianowski, Lawn et al. 2006). Um estudo histopatológico realizado em pacientes co-infectados demonstrou que alguns genes produtores de citocinas, como, IL-4, IL-10, IFN-γ e 12 Carvalho KI Introdução TNF-α tendem a ter sua expressão aumentada, mesmo com as células T CD4+ diminuídas no organismo (Sampaio, Caneshi et al. 1995). A grande modificação clínica observada na co-infecção entre hanseníase e o HIV ocorreu após o advento do tratamento anti-retroviral, que possibilitou a caracterização de reações reversas como fenômenos de reconstituição imune. Há atualmente poucos casos documentados desta associação, na qual há aparecimento de manifestações clínicas da hanseníase previamente latente, após a introdução do tratamento anti-retroviral (Couppie, Abel et al. 2004; Hirsch, Kaufmann et al. 2004; Goebel 2005; Batista, SM. et al. 2007; Kharkar, Bhor et al. 2007; Murdoch, Venter et al. 2007). As diversas conclusões destes estudos refletem a dificuldade de estudar a interação de ambas doenças, sendo que a maioria dos estudos realizados possui amostragens pequenas de co-infectados. 4. Células T natural killer (NKT) As células T natural killer (NKT) são linfócitos T especializados e com características funcionais únicas. Originalmente descritos em camundongos, essas células expressam o receptor de célula T (TCR) e o receptor C-lectina de células natural killer (NK), o NK 1.1 (CD161 nos humanos) (Bendelac 1995; Bendelac, Rivera et al. 1997; Godfrey, Hammond et al. 2000; Kronenberg and Gapin 2002). Aproximadamente, 5 a 10% das células T do sangue periférico expressam CD161 (Unutmaz 2003; Kronenberg 2005). A maioria das células NKT humanas expressam TCRs V 24-J 18/V 11(Bendelac, Savage et al. 2007). Estas células têm um papel importante em várias respostas imunológicas, incluindo ação anti-tumoral, em doenças auto-imunes e em infecções virais e bacterianas (Godfrey, Hammond et al. 2000). As subpopulações de células NKT diferem na expressão de moléculas de integrina envolvidas na interação de célula-célula e na matriz extracelular (Rolf, Berntman et al. 2008). Existem no mínimo duas subpopulações distintas, CD4+ e CD4-, nos humanos e nos macacos, que também podem expressar fenótipos 13 Carvalho KI Introdução CD8+ e CD4-CD8- (Prussin and Foster 1997; Kawano, Nakayama et al. 1999; Nicol, Nieda et al. 2000; Metelitsa, Naidenko et al. 2001). As subpopulações CD4+ tendem a produzir citocinas tanto Th1 (IFN-γ) e Th2 (IL-4, IL-10), embora células NKT CD4- produzam apenas citocinas do tipo Th1 (Chen, Wang et al. 2007). Grumperz e cols., demonstraram que células NKT CD4+ e CD4- têm diferentes expressões de perforina e células CD4- expressam o receptor coestimulatório de células NK (NKG2D). Já a expressão de FASL é aparentemente limitada à subpopulação CD4+ (Gumperz, Miyake et al. 2002). Eger e cols., no entanto, descreveram que as células NKT dos neonatos são diferentes na função e no fenótipo quando comparadas às células de adultos. Apresentam alta expressão de marcadores de diferenciação, como CCR7 e CD62L, e baixa expressão de marcadores de células NK (CD94) além de serem mais efetoras (Eger, Sundrud et al. 2006). A expressão de CD4 distingue as subpopulações de NKT fenotipicamente e funcionalmente. Não é claro que a molécula CD4 é simplesmente um marcador da linhagem das células NKT ou as subpopulações CD4 contribuam diretamente para as propriedades funcionais das células NKT (Chen, Wang et al. 2007). A molécula CD4 tem a capacidade de ativar células T restritas ao MHC II, via domínio terminal D1, e essa ligação parece estabilizar a interação TCR/MHC classe II (Wang, Meijers et al. 2001; Wang and Reinherz 2002) . Chen e cols., demonstraram que a molécula CD4 pode contribuir com as vias de sinalização das células NKT, com sinais de coestimulação na molécula MHC classe II nas células T. Os resultados apresentados mostraram que a molécula CD4 pode afetar a ativação das células NKT, independente do ligante na célula apresentadora de antígeno (APC) (Chen, Wang et al. 2007). Estas subpopulações podem ser distribuídas com diferentes frequências e em diversos tecidos (Eberl, Lees et al. 1999; Hammond, Pelikan et al. 1999). No início da gestação são encontrados os progenitores das células NKT e estes são mais frequentes no timo, mas o número relativo declina com o tempo e são raros ou ausentes no timo após o nascimento. No sangue periférico de adultos, 50% das 14 Carvalho KI Introdução células NKT são CD4- com baixa ou nenhuma expressão de CD8 (Sandberg, Stoddart et al. 2004). Há muito interesse em descobrir os sinais necessários para o desenvolvimento e funções das células NKT. Células T convencionais e NKT, expressam receptores αβ. Um número considerável de estudos recentes, por outro lado, sugerem que os sinais necessários para o desenvolveimento e função destas células são diferentes dos necessários para as células T convencionais (Au-Yeung and Fowell 2007). Alguns estudos têm sugerido que uma função importante das células NKT pode ser a de proteger tecidos (particularmente órgãos vitais) de danos inflamatórios ocasionados pela resposta imunológica (Godfrey, Hammond et al. 2000). Estas células têm efeitos múltiplos na resposta imunológica, incluindo ativação, regulação e atração de células do sistema imunológico inato e regulação do sistema imunológico adaptativo (Rolf, Berntman et al. 2008). As células NKT têm capacidade especial de reconhecer antígenos associados a molécula de CD1. Existem evidências que membros da família CD1 nos humanos podem reconhecer algumas células T γδ e αβ que se ligam ou são expressos em células T CD4+ e CD8+ (Bendelac, Lantz et al. 1995). A familia CD1 consiste em dois grupos de lipídeos, incluindo CD1a, CD1b e CD1c no Grupo I e CD1d no Grupo II. Após estímulo, as células NKT restritas a CD1d rapidamente produzem várias citocinas do tipo Th1 e Th2 (Kronenberg and Gapin 2002; Taniguchi, Harada et al. 2003; Godfrey and Kronenberg 2004; Mercer, Ragin et al. 2005; Seino, Motohashi et al. 2006). Nos camungongos, as células NKT foram detectadas em diversos tecidos e as proporções destas células maduras nos tecidos são consideravelmente diferentes: fígado 30 a 50%, medula óssea 20 a 30%, e no timo 10 a 20% e 0,3 a 0,5% dos timócitos totais. Há presença destas células em menor quantidade no baço (3%), linfonodos (0,3%), sangue periférico (4%) e pulmão (7%) (Godfrey, Hammond et al. 2000). Nos humanos a distribuição de células NKT nos tecidos não esta bem definida, mas está claro que são raras no fígado (<1%) quando comparadas ao modelo de camundongo (Ishihara, Nieda et al. 15 Carvalho KI Introdução 1999; Exley, He et al. 2002; Kenna, Golden-Mason et al. 2003) e tendem, nos humanos, a ser aproximandamente dez vezes menos freqüêntes em todas as outras localizações (Bendelac, Savage et al. 2007). A freqüência de células NKT Vα24 no sangue periférico em indivíduos normais varia de 0.01 a 1%, fazendo com que seja difícil de avaliar as diferenças entre indivíduos normais e aqueles que apresentam algum tipo de patologia (Ohteki and MacDonald 1994; Nuti, Rosa et al. 1998; Emoto, Emoto et al. 1999). Um dos componentes mais eficientes para ativar as células NKT é um glicolípedo sintético (originalmente derivado das esponjas marinhas) (Hong, Scherer et al. 1999; Hayakawa, Godfrey et al. 2004) conhecido como - galctosilceramida ( -GalCer), que se liga efetivamente à molécula CD1d. O complexo CD1d e o glicolípideo então se liga ao TCR das células NKT (Sidobre, Naidenko et al. 2002). As células NKT podem ser identificadas por um fluorocromo conjugado, a um complexo de tetrâmero CD1d com α-GalCer (Benlagha, Weiss et al. 2000; Matsuda, Naidenko et al. 2000; Hammond, Pellicci et al. 2001). Vários estudos têm utilizado o α-GalCer, um potente agonista das células NKT (Hayakawa, Godfrey et al. 2004). Várias outras moléculas de glicolipídeos foram testadas como estimuladores destas células e de suas subpopulações, incluindo glangliosideo GD3 (Wu, Segal et al. 2003), glicofosfatidilinositol (Schofield, McConville et al. 1999; Hansen, Siomos et al. 2003), fosfoetanolamina (Rauch, Gumperz et al. 2003), e algumas formas de βGalCer (Ortaldo, Young et al. 2004). Quando ativadas, as células NKT respondem vigorosamente com produção de citocinas após uma a duas horas (Godfrey, Hammond et al. 2000; Kronenberg and Gapin 2002). Essas células têm capcidade de secretar IFN-γ, TNF-α e também citocinas do tipo Th2, incluindo IL-4 e IL-13 (Smyth and Godfrey 2000; Wilson, Johansson et al. 2003). Além disso, são capazes de secretar simultaneamente citocinas tipo Th1 e Th2. Curiosamente, o estímulo de sangue total ex vivo faz com que não secretem muita quantidade de citocinas Th2 (Gadue and Stein 2002). O estímulo α-GalCer atua através da molécula de CD4+ e CD40L, que, conseqüentemente, se liga ao CD40+ da APC, induzindo a 16 Carvalho KI Introdução produção de IL-12 (Tomura, Yu et al. 1999). O mecanismo exato através do qual as células NKT secretam as citocinas não está totalmente elucidado, o que é um desafio para especialistas que atuam nessa área (Figura 2A e B). APC CD1d + glicolip’deo (ex. α-GalCer, OCH, C-glicos’deo) TCR IL-7 IL-12 Diminui‹ o do sinal de TCR? Aumento do sinal TCR? Tipo de APC? NKT Tipo APC? Outros fatores? Outros fatores? IL-4 IFN-γγ IL-10 CD40L IL-13 DC Gr-1+ Tempo? CTL IL-12 CD8+ Treg NK Prote‹ o imunol—gica e Th1 IFN-γγ CD8DC TGF-β β Supress‹ o imunol—gica e Th2 Figura 2 A e B: Esquema de como as células NKT influenciam a resposta imunológica. (A) O lado em verde demosntra fatores que podem gerar uma resposta Th1 pelas células NKT, enquanto o lado vermelho demonstra fatores que podem gerar uma resposta Th2 pelas células NKT. (B) Subpopulações de células NKT humanas CD4- e CD4+ são programadas para produzir diferentes razões de citocinas Th1/Th2 (adaptado de Godfrey & Kronenberg, 2004). 17 Carvalho KI Introdução CD1d + glicolip’deo CD1d + glicolip’deo TCR TCR IFN-γγ CD40L IL-12 IL-4 IL-10 IL-13 TGF-β β Prote‹ o imunol—gica e Th1 IFN-γγ Supress‹ o imunol—gica e Th2 As células NKT têm um papel importante no desenvolvimento de outras respostas, incluindo a prevenção e o desenvolvimento de certas doenças autoimunes, inibição do desenvolvimento de tumores e crescimento e a eliminação de algumas infecções. A depleção destas células pode ter um papel importante durante a infecção pelo HIV (Sandberg, Fast et al. 2002; van der Vliet, von Blomberg et al. 2002). É possível que a diminuição de células NKT vista em pacientes infectados esteja relacionada à suceptibilidade destes indivíduos em desenvolverem doenças como o sarcoma de Kaposi (Crowe, Godfrey et al. 2003). As células NKT CD4+ expressam o receptor de quimiocina 5 (CCR5), também co-receptor da ligação do HIV à célula alvo (impresso de unutmaz03). Alguns trabalhos observaram que as células NKT (Vα24+Vβ11+) no sangue 18 Carvalho KI Introdução periférco de indivíduos infectados pelo HIV ocorrem em percentagens menores quando comparados com indivíduos saudáveis. Também foi descrito que existe uma correlação positiva entre a carga viral do HIV e o número de células NKT CD4+ . Estas células são mais suceptíveis ao tropismo R5 na infecção do HIV quando comparadas com o tropismo X4 (Motsinger, Haas et al. 2002; Sandberg, Fast et al. 2002; van der Vliet, von Blomberg et al. 2002). A suceptibilidade das células NKT para com o vírus HIV R5, é dependente do nível de moléculas CCR5 expressas nestas células. O número reduzido de células NKT, especialmente a subpopulação CD4+, em pacientes infectados pelo HIV deve ter consequências significativas devido às suas importantes funções, descritas anteriormente (Unutmaz 2003). Alguns autores descreveram que as células NKT são protetoras durante infecções bacterianas (Gumperz and Brenner 2001) e virais (Nuti, Rosa et al. 1998; Asselin-Paturel, Boonstra et al. 2001). Com isso, podem ter papel importante durante as infecções oportunistas, freqüêntes nos pacientes imunodeficientes (Unutmaz 2003). Umas das co-infecções mais comuns em portadores do HIV são as causadas por micobactérias (Barnes, Bloch et al. 1991). As células NKT são conhecidas por reconhecer e responder às infecções micobacterianas (Apostolou, Takahama et al. 1999; Emoto, Emoto et al. 1999). Existem algumas evidências que antígenos glicolipídicos de micobactérias apresentados pela molécula CD1d podem ativar funções efetoras das células NKT, tais como secreção de citocinas e citotoxicidade contra células infectadas por micobacterias (Apostolou, Takahama et al. 1999). Todavia, estas células são capazes de agir diretamente com a secreção de granulosina na ação antimicobacteriana (Gansert, Kiessler et al. 2003). Portanto, a diminuição das células NKT em indivíduos infectados pelo HIV podem contribuir para infecções micobacterianas. No presente trabalho, é apresentada uma série de experimentos para investigar diferentes aspectos da resposta imunológica do tipo celular em pacientes coinfectados pelo M. leprae e pelo HIV-1. Entre os diversos aspectos analisados, foi possível demonstrar várias alterações vistas nessa co-infecção, que podem 19 Carvalho KI Introdução auxiliar a compreensão de fenômenos envolvidos na fisiopatogênese de ambas doenças e contribuir com o entendimento do impacto das co-infecções em pessoas que vivem com HIV. 20 Carvalho KI Objetivos Objetivo Principal Caracterizar parâmetros imunológicos em pacientes que apresentam a coinfecção pelo HIV-1 e Mycobacterium leprae. Objetivo 1 Caracterizar ativação celular, contagem de células T e distribuição de células dendríticas. Objetivo 2 Avaliar a distribuição do estado de maturação dos linfócitos T CD4+. Objetivo 3 Identificar a resposta produtiva de IL-4, INF-γ e TNF-α após estímulo inespecífico. Objetivo 4 Identificar a distribuição e a função de células NKT na infecção pelo HIV-1 comparadas com controles. Objetivo 5 Identificar a distribuição e função da população de células NKT nos grupos de indivíduos coinfectados e respectivos controles. 20 Carvalho KI Trabalho 1 Hanseníase e o vírus da imunodeficiência humana do tipo 1 (HIV) são exemplos de infecções humanas cuja interação entre o patógeno e a imunidade celular do hospedeiro determina a manifestação clínica da doença. No entanto, é esperada uma interação significantiva dos aspectos imunopatológicos entre o HIV-1 e a hanseníase. Neste estudo, avaliamos vários aspectos da imunidade celular em pacientes coinfectados com HIV-1 e a Mycobacterium leprae. Vinte oito indivíduos foram estudados, divididos em quarto grupos: controles saudáveis, coinfectados pelo HIV-1 e M. leprae, monoinfectados pelo HIV-1, e monoinfectados pelo M.lepare. Os indivíduos dos grupos monoinfectados e coinfectados foram pareados tanto quanto possível pela carga bacilar e parâmetros imunológicos relacionados ao HIV. Células mononucleares do sangue periférico (CMSP) foram analisadas no citômetro de fluxo de seis e sete cores para avaliar subpopulações e níveis de ativação cellular, distribuição de fenótipos de células dendríticas (DC) e expressão de IL-4 por células T. O grupo coinfectado apresentou diminuição da razão de células CD4:CD8, aumento de níveis de ativação de células T CD8+, aumento da razão de células T Vδ1:Vδ2 e diminuição da porcentagem de células dendríticas plasmocitóides, comparadas com o grupo de indivíduos monoinfectados pelo HIV-1. A produção de IL-4 por linfócitos T CD4+ foi correlacionado positivamente com a porcentagem da subpopulação de memória efetora de células T CD4+, sugerindo diferenciação antigênica da população de células T em ambas as infecções de HIV-1 e M. leprae. A coinfecção com o M. lepare pode exacerbar a imunopatologia da doença do HIV-1. Houve uma tendência na expressão de citocinas Th2 na resposta de células T CD4+ em ambas infecções, mas não obtivemos efeitos aditivos aparentes nos pacientes coinfectados. 21 IMMUNOLOGY ORIGINAL ARTICLE Immune cellular parameters of leprosy and human immunodeficiency virus-1 co-infected subjects Karina I. Carvalho,1 Solange Maeda,1 Luciana Marti,2 Jane Yamashita,1 Patrick A. J. Haslett3 and Esper G. Kallas1 1 Federal University of São Paulo, São Paulo, Brazil, 2Albert Einstein Research Institute, São Paulo, Brazil, and 3University of Miami, FL, USA doi:10.1111/j.1365-2567.2007.02756.x Received 1 June 2007; revised 15 October 2007; accepted 16 October 2007. Correspondence: E. G. Kallas, MD, PhD, Laboratório de Imunologia, Disciplina de Doenças Infecciosas e Parasitárias, Escola Paulista de Medicina/UNIFESP, Rua Mirassol 207, 04044-010 - São Paulo – SP, Brazil. Email: [email protected] Senior author: Esper Kallas Abstract Leprosy and human immunodeficiency virus-1 (HIV-1) are examples of human infections where interactions between the pathogen and the host cellular immunity determine the clinical manifestations of disease. Hence, a significant immunopathological interaction between HIV-1 and leprosy might be expected. In the present study we explored several aspects of cellular immunity in patients co-infected with HIV-1 and Mycobacterium leprae. Twenty-eight individuals were studied, comprising four groups: healthy controls, HIV-1 and M. leprae co-infection, HIV-1 mono-infection, and M. leprae mono-infection. Subjects in the mono-infection and co-infection groups were matched as far as possible for bacillary load and HIV disease status, as appropriate. Peripheral blood mononuclear cells (PBMC) were analysed using six- and seven-colour flow cytometry to evaluate T-cell subpopulations and their activation status, dendritic cell (DC) distribution phenotypes and expression of IL-4 by T cells. The co-infected group exhibited lower CD4 : CD8 ratios, higher levels of CD8+ T-cell activation, increased Vd1 : Vd2 T cell ratios and decreased percentages of plasmacytoid DC, compared with HIV-1 mono-infected subjects. Across infected groups, IL-4 production by CD4+ T lymphocytes was positively correlated with the percentage of effector memory CD4+ T cells, suggesting antigenically driven differentiation of this population of T cells in both HIV-1 and M. leprae infections. Co-infection with M. leprae may exacerbate the immunopathology of HIV-1 disease. A T helper 2 (Th2) bias in the CD4+ T-cell response was evident in both HIV-1 infection and leprosy, but no additive effect was apparent in co-infected patients. Keywords: HIV; leprosy; co-infection; lymphocytes; IL-4 Introduction Leprosy is a chronic infectious disease, affecting the skin and peripheral nerves, caused by the intracellular bacillus Mycobacterium leprae.1 The incidence of new cases of leprosy remains constant at 286 000 per year, and Brazil is one of the countries worst affected, accounting for the majority of new cases reported in the Americas.2 As the prevalence rates of human immunodeficiency virus-1 (HIV-1) infection are escalating in some countries where leprosy is endemic, one might expect that the geographic overlap of the two epidemics may lead to increased numbers of co-infected patients. The current situation 206 concerning leprosy endemicity and HIV-1 prevalence in Brazil and other countries emphasizes the importance of monitoring for co-infections.3 In addition to the public health aspect of this co-infection, these pathogens may have a potentially interesting immunologic interaction in the human host. It has been previously suggested that leprosy is a human infection model in which to study the T helper 1/T helper 2 (Th1/Th2) paradigm,4 permitting the delineation of polarized human T helper responses in response to a single pathogen. The spectrum of M. leprae-specific immune responses between these poles correlates with the range of clinical manifestations of the infection.5 At the Ó 2008 The Authors Journal compilation Ó 2008 Blackwell Publishing Ltd, Immunology, 124, 206–214 Immunity in M. leprae and HIV-1 co-infection Th1 pole, tuberculoid, or paucibacillary, leprosy is characterized by high levels of specific cell-mediated immunity that effectively limits bacillary replication and is associated with limited disease, although often with concomitant immunological damage to the nerves. At the other pole, lepromatous, or multibacillary, leprosy is characterized by a selective unresponsiveness to M. leprae antigens, diffuse cutaneous disease and the uncontrolled multiplication of organisms in the skin, often to extraordinary numbers. Much of the morbidity of leprosy results from episodic inflammatory exacerbations of leprosy lesions in the skin and nerves, called ‘lepra’ reactions, thought to be caused by spontaneous shifts in host immunity.6 Because HIV-1 infection has a profound effect on the incidence and clinico–pathological features of other mycobacterial diseases, such as tuberculosis, one might expect a significant interaction also to exist between HIV-1 and leprosy.7 In HIV-1/M. tuberculosis co-infections, immune suppression secondary to HIV-1 infection accelerates the progress of tuberculosis, and, conversely, the cellular immune activation associated with tuberculosis is associated with more rapid progression of HIV-1 disease.8,9 In the setting of HIV-1/M. leprae co-infections, there has been a general expectation that immune deficiency caused by HIV-1 infection would shift the spectrum of leprosy towards the lepromatous (Th2) pole, although epidemiological data are sparse and conflicting.10 Paradoxically, the most detailed description of leprosy immunopathology in HIV-1 co-infected patients revealed no change in immune cell infiltrates across the leprosy spectrum, despite advanced HIV-1-associated immune deficiency.7,11 On the other hand, there has been little or no attempt to evaluate the impact of M. leprae infection on HIV-1 pathogenesis. This interaction has been studied in the macaque/simian immunodeficiency virus (SIV) model, however, where M. leprae infection was observed to exert an unexpected and unexplained ameliorating effect on SIV disease, prolonging survival of the animals, despite equal or increased viral burdens.12 In light of these various reported interactions of mycobacterial infections with HIV and SIV pathogenesis, we were interested in investigating whether human M. leprae co-infection might exacerbate or attenuate HIV-1 pathogenesis. As an initial exploration of these questions, we performed a cross-sectional analysis of immune cellular parameters in blood cells from relatively rare HIV-1 and M. leprae co-infected subjects, in comparison with HIV-1 and M. leprae mono-infected subjects, and healthy volunteers. Our investigation focused on peripheral blood immune cells that are known to be altered in HIV-1 disease and that are implicated in the immunity and/or pathogenesis of mycobacterial infections, including leprosy. Thus, in addition to CD4 and CD8 T-cell subsets, we examined the two main subsets of cd T cells: Vd2 cells and Vd1 cells. Vd2 cells are stimulated by isoprenoid phosphoantigens that are present in bacteria, including mycobacteria.13 This population of cells plays a role in antimycobacterial defense,14,15 but the cell population shrinks dramatically during acute HIV-1 infection, with variable recovery following antiviral chemotherapy.16,17 In contrast, the Vd1 population, of unknown function, expands during HIV-1 infection, so that the ratios of Vd1 to Vd2 T cells are increased with progressive HIV-1 infection.16,17 We also examined the two main subsets of peripheral blood dendritic cells (DC), called plasmacytoid and myeloid DC. DC are key components of the innate immune system, acting as antigen-presenting cells that are essential for the priming and regulation of T-cell immunity. Hence, the responses and interactions of these populations of DC are thought to determine whether T cells differentiate into Th1 or Th2 cells,18 spanning the range of phenotypes observed in leprosy. Mycobacteria are known to stimulate DC via toll-like receptors (TLR) present on both myeloid (TLR2) and plasmacytoid (TLR9) subsets.19–21 Both subsets of DC can be infected by HIV-1, but a differential and striking loss of peripheral blood plasmacytoid DC characterizes progressive HIV-1 disease.22 In light of the complex and contrasting effects of HIV-1 and mycobacterial infections on cd T-cell and DC populations, we were interested in examining these immune cells in patients with HIV-1 and M. leprae co-infections. Materials and methods Subjects and sample collection This study was reviewed and approved by the local institutional review board (IRB, Comitê de Ética em Pesquisa Humana da Universidade Federal de São Paulo/UNIFESP), and IRB-approved informed consent was obtained from all participants. Leprosy patients were treated according to World Health Organization guidelines.23 Acquired immunodeficiency syndrome (AIDS) was defined using modified criteria adopted by the Brazilian Ministry of Health that includes patients with a CD4 cell count of < 200 cells/ll or clinical conditions related to AIDS.24 Seven healthy controls and seven HIV-seropositive patients, most of whom had CD4+ T-cell counts of < 400 cells/ll, were identified at UNIFESP. Seven patients with leprosy were enrolled at the Leprosy Clinic at the State Health Department (Sao Paulo, Brazil) and were classified according to their bacillary load.25 Seven patients co-infected with leprosy and HIV-1 infection were recruited at UNIFESP, using local identification and referral from other services in Sao Paulo. Leprosy patients were matched for bacillary load with the patients in the co-infected group. In this study, the major presentations Ó 2008 The Authors Journal compilation Ó 2008 Blackwell Publishing Ltd, Immunology, 124, 206–214 207 K. I. Carvalho et al. of leprosy were the paucibacillary form rather than the multibacillary form. The HIV mono-infected and co-infected patients were receiving highly active antiretroviral therapy (HAART) and multidrug therapy (MDT). Patients with immune reconstitution inflammatory syndrome were not included in the present study to avoid potential interference in the immune parameters, as described in different mycobacterial diseases.26–28 Peripheral blood mononuclear cells (PBMC) were isolated from the study subjects by density-gradient sedimentation over Ficoll–Paque (Pharmacia Biotech, Uppsala, Sweden). The isolated PBMC were then washed twice in Hank’s balanced salt solution (Gibco, Grand Island, NY). Cells were cryopreserved in RPMI 1640 (Gibco), supplemented with 20% heat-inactivated fetal bovine serum (FBS; HyClone Laboratories, Logan, UT), 50 U/ml of penicillin (Gibco), 50 lg/ml of streptomycin (Gibco), 10 mM glutamine (Gibco) and 75% dimethyl sulphoxide (DMSO; Sigma, St Louis, MO). Cryopreserved cells were stored in liquid nitrogen until used in the assays. At the time of the assay, PBMC were rapidly thawed in a 37° water bath and washed in RPMI 1640 supplemented with 10% fetal calf serum, 100 U/ml of penicillin, 100 lg/ml of streptomycin and 20 mM glutamine (R10). Cells were counted, checked for viability and resuspended in R10 at a concentration of 106 cells/ml. Plasma HIV-1 RNA detection The plasma HIV RNA detection load was assessed using the ultrasensitive AMPLICOR HIV-1 MONITOR test version 1.5 (Roche Diagnostics, Indianapolis, IN), according to the manufacturer’s instructions. Flow cytometry The following monoclonal antibodies were used for surface staining: CD3–allophycocyanin (APC) (clone UCHT1), CD8–allophycocyanin carbocyanin 7 (APCCy7) (clone SK1), Vd2–phycoerythrin (PE) (cloneB6), CD45RA–peridin chlorophyll protein (PerCP) (clone HI 100), CCR7–phycoerithrin carbocyanin 7 (PeCY7) (clone 3D12) and CD69–fluorescein isothiocyanate (FITC) (clone FN50), from BD PharMingen (San Jose, CA); CD4–Alexa 610 (clone S3.5) from Caltag Laboratories (Burlingame, CA); Vd1–FITC (clone T58.2) from Endogen (Rockford, IL); Lineage Cocktail 1 (Lin 1: CD3, CD14, CD16, CD19, CD20 and CD56) FITC, human leucocyte antigen (HLA)-DR–PerCP (clone L243), CD11c–APC (clone S-HCL3), CD123–PE [anti-interleukin (IL)-3 receptor], CD38–PE (clone HB7), CD4–FITC (clone L120), from BD Biosciences (San Jose, CA); and CD25– PE–CY7 (clone BC96), from e-Bioscience, (San Diego, 208 CA). Intracellular staining for cytokines was performed using mouse anti-human IL-4–PE (clone 3010.211), mouse anti-human interferon (IFN)-c–PE–CY7 (clone B27) and mouse anti-human tumour necrosis factor (TNF)-a–APC (clone Mab11), all from BD PharMingen. Fluoresce minus one (FMO) was used for gate strategy.29 In some experiments, thawed PBMC were incubated in 24-well plates (1 ml/well) (Becton Dickinson, San Jose, CA) in the presence of 1 lM ionomycin (Sigma) and 20 ng/ml of phorbol 12-myristate 13-acetate (PMA; Sigma), for 16 hr. After stimulation, cells were centrifuged at 1500 g for 5 min and transferred into V-bottom 96-well plates (Nunc, Roskilde, Denmark) in 100 ll of staining buffer [phosphate-buffered saline (PBS) supplemented with 01% sodium azide (Sigma) and 1% FBS, pH 74–76] with the panel of surface monoclonal antibodies. Cells were incubated at 4° in darkness for 30 min, washed twice and then resuspended in 100 ll of fixation buffer [1% paraformaldehyde (Polysciences, Warrington, PA) in PBS, pH 74–76]. Intracellular staining was performed after surface staining with CD4–FITC, CD3–PerCP and CD8–APC–CY7. Cells were incubated with 100 ll of 4% fixation buffer and washed with permeabilization buffer (PBS supplemented with 01% sodium azide, 1% FBS and 01% saponin; Sigma). Each sample was resuspended in 100 ll of permeabilization buffer, incubated for 15 min at room temperature in the dark, washed with 100 ll of staining buffer and incubated for 30 min at 4° in the dark with either no antibody (unstained tube) or anti-IL-4–PE, antiIFN-c–PE–CY7 and anti-TNF-a–APC in 50 ll of staining buffer.30 Cells were washed with 200 ll of staining buffer and resuspended in 100 ll of 1% paraformaldehyde (PFA) for flow cytometry analysis. Samples were acquired on a FACSCanto or FACSAria, using FACSDIVA software (BD Biosciences), and the analysed with FLOWJO software (Tree Star, San Carlo, CA). Fluorescence voltages were determined using matched unstained cells. Compensation was carried out using CompBeads (BD Biosciences) singlestained with CD3–PerCP, CD4–FITC, CD8–APC–CY7, CD4–PE–CY7, CD3–PE or CD3–APC. Samples were acquired until at least 200 000 events in a live lymphocyte gate or at least 500 000 events in a live DC gate were obtained. Statistical analyses Groups were compared using non-parametric models; data are reported as median and interquartile range. Comparisons among groups were carried out using the Kruskall–Wallis non-parametric test, followed by intergroup comparisons by the Dunnet test. Correlations were performed using the Spearman non-parametric test. P-values were considered significant if <005. Results are expressed in medians and interquartile ranges (IQR). Ó 2008 The Authors Journal compilation Ó 2008 Blackwell Publishing Ltd, Immunology, 124, 206–214 Immunity in M. leprae and HIV-1 co-infection Table 1. Demographic, clinical and laboratory characteristics of participants Case numbers1 Groups Gender Age (years) Leprosy clinical presentation 102 103 104 105 106 110 113 128 131 142 1001 1004 1020 1039 1050 2008 2011 1 2 3 4 5 6 7 10 11 12 13 14 15 16 Control Control Control Control Control Control Control Control Control Control HIV HIV HIV HIV HIV HIV HIV HIV-Leprosy HIV-Leprosy HIV-Leprosy HIV-Leprosy HIV-Leprosy HIV-Leprosy HIV-Leprosy Leprosy Leprosy Leprosy Leprosy Leprosy Leprosy Leprosy Male Female Male Male Male Male Female Male Male Male Male Male Male Male Male Male Male Male Male Male Female Male Male Male Male Male Male Male Male Female Male 29 47 40 34 49 54 51 37 38 49 37 34 33 35 51 38 38 38 38 31 51 35 53 47 38 43 37 33 48 31 39 – – – – – – – – – – – – – – – – – BL BT BT BL BT BT BT LL TT BT BT LL BL LL Bacillary index Leprosy therapy (months of MDT) Viral load (HIV-RNA copies/ml) CD4+ T cells/ mm3 – – – – – – – – – – – – – – – – – 2+ Negative 1+ 1+ Negative Negative 1+ 3+ Negative Negative Negative 3+ 1+ 3+ – – – – – – – – – – – – – – – – – 10 12 8 12 12 2 5 20 4 7 5 23 14 22 – – – – – – – – – – <399 925 <399 200 <399 <399 762 <399 <399 <399 <399 7220 <399 <399 – – – – – – – 1358 1695 742 774 1084 661 949 1571 713 980 405 503 410 170 265 275 297 161 269 235 390 127 236 481 ND ND ND ND ND ND ND HIV therapy – – – – – – – – – – HAART HAART HAART HAART HAART HAART HAART HAART HAART HAART HAART HAART HAART HAART BL, borderline-lepromatous; BT, borderline-tuberculoid; HAART, highly active antiretroviral therapy; HIV, human immunodeficiency virus; LL, lepromatous-lepromatous; MDT, multidrug therapy; ND, not done; TT, tuberculoid. 1 Case numbers reflect the enrollment sequences only within each individual group. Results Characteristics of the HIV-1-M. leprae co-infected patients Demographic, clinical, microbiological and laboratory characteristics are detailed in Table 1. The median ages of all participants was 38 years (IQR: 35–48) and most were male (839%). No difference in gender distribution was observed between groups. For the leprosy and coinfected groups, 80% of the patients had a paucibacillary presentation at the time of diagnosis. Co-infected patients were treated with the appropriate MDT for paucibacillary and multibacillary leprosy. Median CD4+ T-cell counts in both HIV-infected groups were matched (949 cells/ll, IQR 7275–1465 for controls; 297 cells/ll, IQR 265–410 for HIV-infected patients; and 236 cells/ll, IQR 161–390 for co-infected patients Table 1). Leprosy and HIV-1 infections lead to marked disturbances of T-lymphocyte distribution The CD4 : CD8 T-cell ratio was decreased in both HIV-1infected groups, but more in co-infected patients compared with controls (016, IQR 009–020; and 130, IQR 095–19, respectively, P < 0001, Fig. 1a). Although not statistically significant, co-infected patients exhibited lower CD4 : CD8 ratios than HIV-1 monoinfected subjects, suggesting more severe immunopathology in the former group, despite similar CD4+ T-cell counts (Fig. 1a). Ó 2008 The Authors Journal compilation Ó 2008 Blackwell Publishing Ltd, Immunology, 124, 206–214 209 K. I. Carvalho et al. 2·0 1·5 1·0 300 200 0 Control Control HIV HIV–leprosy Leprosy P < 0·01 (d) Plasmocytoid DC (%) 70 60 Vδ1 : Vδ2 ratio 400 100 0·5 0·0 (c) P < 0·01 (b) 500 P < 0·01 HLA-DR MFI CD4 : CD8 ratio (a) 2·5 50 40 30 20 10 HIV HIV–leprosy Leprosy P < 0·01 0·7 0·6 0·5 0·4 0·3 0·2 0·1 0·0 0 Control HIV HIV–leprosy Leprosy Control Surface activation markers were evaluated in all four groups. Marked HLA-DR up-regulation on CD8+ T cells was observed in both HIV/M. leprae co-infected and HIV mono-infected groups compared with controls [mean fluorescence intensities of 165 (IQR 94–271), 134 (IQR 114– 249) and 46 (IQR 21–68), respectively, P < 005, Fig. 1b], but this was not seen in CD4+ T cells. There was a nonsignificant trend towards increased HLA-DR expression in the co-infected compared with the HIV-1 mono-infected group (Fig. 1b). No differences were observed in the expression of CD69, CD25 and CD38 on CD4+ and CD8+ T lymphocytes (data not shown). Dendritic cells and Vd2 T lymphocytes are proportionately diminished in co-infected patients The Vd2 T-cell subset was decreased in the co-infection group when compared with the control group (median 153%, IQR 073–24, P < 005), whereas the percentage of Vd1 T cells was similar in all groups. There was a statistically significant overall difference in the Vd1 : Vd2 cell ratio, exaggeratedly inverted in the co-infected group compared with subjects infected with HIV-1 only (co-infection, 303%, IQR 99–357; HIV, 59%, IQR 38– 137; controls, 063%, IQR 025–31; and leprosy, 286%, IQR 044–1084, P < 005, Fig. 1c). The percentages of plasmacytoid DC in total PBMC were diminished in co-infected patients when compared with controls (co-infected, 001%, IQR 0005–002; HIV, 002%, IQR 0005–018; control, 013%, IQR 009–018; and leprosy, 003%, IQR 00–015, P < 005, Fig. 1d). On the other hand, no significant differences in the percentages of myeloid DC were observed (data not shown). 210 HIV HIV–leprosyLeprosy Figure 1. Several cellular immunological markers obtained using flow cytometry were evaluated and compared among the four groups of volunteers. These markers comprised (a) the CD4 : CD8 ratio, (b) cellular activation of CD8+ T cells, measured by human leucocyte antigen (HLA)-DR expression, (c) the Vd1 : Vd2 ratio and (d) the percentage of plasmacytoid dendritic cells among total peripheral blood mononuclear cells (PBMC). Comparisons were carried out using the Kruskal–Wallis non-parametric test followed by intergroup comparisons by the Dunnet test. HIV, human immunodeficiency virus; MFI, mean fluorescence intensity. HIV-1 and leprosy drives the maturation of T lymphocytes CD4+ T cells were stained for surface expression of CD45RA and CCR7. Phenotypic nomenclature was based on that proposed by Sallusto et al., where CCR7+ CD45RA+ are described as naı̈ve cells, CCR7+ CD45RA) as central memory cells and CCR7) CD45RA) as effector memory cells 31. Control subjects had higher percentages of naı̈ve and central memory cells compared with the other groups, with a corresponding decrease in the proportion of effector memory cells (Fig. 2). The most pronounced difference in these maturation subsets was seen when control subjects were compared with leprosy patients (CCR7+ CD45RA+ naı̈ve: 547%, IQR 166–182 for controls and 056%, IQR 022–184 for leprosy; CCR7+ CD45RA) central memory: 338%, IQR 281–357 for controls and 1505%, IQR 86–22 for leprosy; CCR7) CD45RA) effector: 499%, IQR 476–64 for controls and 826%, IQR 7515–873 for leprosy). For CD8+ T-cell subsets, the only statistically significant difference was observed when comparing central memory CCR7+ CD45RA) cells from control subjects (177%, IQR 1315– 30) with co-infected (428%, IQR 263–132) and leprosy (567%, IQR 479–1045) patients. Both pathogens tend to direct the immune response towards IL-4 production Next, we assessed cytokine production after PMA and ionomycin stimulation. No differences were observed in the production of TNF-a and IFN-c between CD4+ and CD8+ T lymphocytes. On the other hand, IL-4 production, determined by high expression of IL-4 in gated Ó 2008 The Authors Journal compilation Ó 2008 Blackwell Publishing Ltd, Immunology, 124, 206–214 Immunity in M. leprae and HIV-1 co-infection Control (a) Naïve (a) SSC 3000 0·42% 4·25% 0 10 0 102 103 104 105 0 102 103 104 105 IL-4 (b) 7 r = –0·5861; P = 0·0003 Control HIV HIV–leprosy Leprosy Central memory (b) + P < 0·01 40 6 5 4 3 2 1 0 30 0 5 10 15 20 – 25 – 30 35 40 + CCR7 CD45RA among CD4 T cells (%) 20 (c) 7 10 0 Control HIV HIV–leprosy Leprosy Effector memory (c) + P < 0·01 CD4 T cells producing IL-4 (%) CCR7+ CD45RA– % in CD4+ T cells 2000 1000 CD4 T cells producing IL-4 (%) CCR7+ CD45RA+ % in CD4+ T cells 20 0 95 CCR7– CD45RA– % in CD4+ T cells Co-infected 4000 P < 0·01 90 6 5 4 3 2 1 0 30 85 r = 0·4791; P = 0·0041 40 50 – 60 – 70 80 90 100 + CCR7 CD45RA among CD4 T cells (%) 80 75 70 65 60 55 50 45 Control HIV HIV–leprosy Leprosy Figure 2. Distribution of cellular maturation markers of CD4+ T cells. Cellular subpopulations were determined by the expression of CCR7 and CD45RA after gating on CD3+ CD4+ cells. The percentage of (a) naı̈ve (CCR7+ CD45RA+), (b) central memory (CCR7+ CD45RA)) and (c) effector memory (CCR7) CD45RA)) cells are depicted for all groups of subjects. HIV, human immunodeficiency virus. Figure 3. Interleukin-4 (IL-4) production was determined by intracellular staining and flow cytometry after stimulation with ionomycin and phorbol 12-myristate 13-acetate for 16 hr. (a) The IL-4+ gate was set for cells producing high levels of cytokine. The level of IL-4 production was negatively correlated with the percentage of central memory (CCR7+ CD45RA)) CD4+ T cells (b) and positively correlated with effector memory (CCR7) CD45RA)) CD4+ T cells (c). The results for all four study subject groups are shown: solid circles, healthy controls; open circles, co-infection; open triangles, human immunodeficiency virus-1; open squares, leprosy. Correlations were assessed using the non-parametric Spearman’s test. SSC, side scatter. CD4+ T cells, was statistically lower in controls (057%, IQR 033–093) when compared with the other three groups (109%, IQR 062–285; P = 003). No statistically Ó 2008 The Authors Journal compilation Ó 2008 Blackwell Publishing Ltd, Immunology, 124, 206–214 211 K. I. Carvalho et al. significant differences of cytokine production by CD8+ T cells were observed. The IL-4 production by CD4+ T lymphocytes was negatively correlated with the percentage of central memory cells (r = )059, P < 001) and positively correlated with the percentage of effector CD4+ T cells (r = 048, P < 001) (Fig. 3). As shown in Fig. 3, the frequency of IL-4+ T cells in control subjects clustered tightly, whereas those in the three infected groups were increased and in an overlapping distribution. Discussion There is considerable epidemiological overlap between M. tuberculosis and HIV epidemics, so that co-infections may be common in certain areas. In contrast, at present, rather distinct populations tend to be infected with M. leprae and HIV, so co-infections are much less common. However, future projections of spread of the HIV epidemic into areas with more prevalent M. leprae infection may change the co-infection epidemiological characteristics. The importance of tuberculosis and HIV co-infection as a public health problem is obvious, but this is less clear for M. leprae and HIV co-infections.32,33 However, the special nature of M. leprae stimulates unique questions about the possible consequences of co-infection. Infection with M. leprae differs in several ways from that with M. tuberculosis – there is a much more gradual evolution of disease, a classic spectrum of clinical manifestations related to Th1 and Th2 responsiveness by the host, often huge antigenic burdens that are slow to clear, and pathogenesis that is largely caused by spontaneous shifts in host immune responsiveness, resulting in inflammatory lepra reactions. We set out to compare cellular immune parameters in HIV-1-infected patients with and without leprosy. A limitation of the present study was the small sample size, owing to the relative rarity of HIV-1/M. leprae co-infected patients. Moreover, the challenge of interpreting results from this cohort was compounded by the variability of HIV disease, according to stage of progression, superimposed on the spectral nature of leprosy. In an attempt to derive meaningful data from the present sample, we endeavoured to match HIV-1 and M. leprae co-infected patients with HIV-1 and M. leprae monoinfected subjects, for CD4 and bacillary index, respectively (Table 1). In the present study, we confirmed that leprosy mono-infection is associated with increased IL-4 production by CD4+ T cells (Fig. 3). A similar increase was observed in HIV-1 mono-infection, as has been reported by others,34 but no apparent additive or synergistic effect was seen in HIV-1/M. leprae co-infected patients. Our data suggest that leprosy co-infection may aggravate, rather than ameliorate, HIV pathogenesis, as indicated 212 by the decreased ratio of CD4 : CD8 T cells, higher frequency of activated CD8+ T cells and loss of plasmacytoid DC, all recognized features of progressive HIV-1 disease. This is in contrast to the observation of Gormus et al., who made the unexpected observation of SIV disease amelioration in the setting of experimental M. leprae co-infection of rhesus macaques.12 In the latter studies, we speculate that the immunologic environment associated with a high M. leprae antigenic burden might have attenuated the immune activation-driven pathogenesis of SIV disease. However, our data do not support the hypothesis that M. leprae co-infection can attenuate the immunopathogenesis of human HIV-1 disease. On the contrary, the results suggest that M. leprae co-infection may exacerbate HIV-1 pathogenesis. Clearly, there are important differences between the macaque model system and natural human infections. Macaques are natural hosts of neither M. leprae nor SIV, and the animals were infected with a large intravenous inoculum of bacilli. Perhaps most importantly, no inflammatory manifestations of leprosy were described in the experimental animals. On the other hand, inflammatory lepra reactions can complicate up to half of human cases of leprosy, and this immunopathology may indeed account for much of the nerve damage and morbidity of this disease. Cutaneous and systemic expression of proinflammatory cytokines, such as TNF-a, have been extensively documented in lepra reactions35,36 and may be expected to promote HIV-1 replication. Indeed, cytokine-driven enhancement of viral replication has been invoked to explain the aggravation of HIV-1 disease in patients with concurrent tuberculosis.37 Thus, in HIV-1/ M. leprae co-infection, inflammation associated with clinical or subclinical lepra reactions may offset the potential for any beneficial immune-modulatory effects of M. leprae on HIV-1 disease progression. Sallusto et al. described that immunological memory is displayed by distinct T-cell subsets: lymph node-homing CCR7+ CD45RA) (central memory T cells, TCM) and tissue-homing cells CCR7) CD45RA) (effector memory T cells, TEM).31 Our results suggest that leprosy patients have a decreased number of naı̈ve cells when compared with healthy controls, together with a decreased percentage of TCM and an increased percentage of TEM, mostly in co-infected patients. We hypothesize that the imbalance in the percentage distribution seen in leprosy and co-infected patients reflects a switch from naı̈ve to memory CD4+ T lymphocytes, as a result of continuous antigenic stimulation and cellular activation, as also seen in the context of tuberculosis.38 This finding may well represent a reactive expansion of ‘protective memory’ TEM cells in response to M. leprae and HIV as a result of differentiation of TCM to combat the pathogen, especially in the tissues, considering the high antigenic burden observed in both diseases.39 Ó 2008 The Authors Journal compilation Ó 2008 Blackwell Publishing Ltd, Immunology, 124, 206–214 Immunity in M. leprae and HIV-1 co-infection Curiously, a positive correlation was observed between the proportional expansion of circulating TEM CD4+ T cells and the percentage of IL-4+-producing CD4+ T cells after stimulation with PMA and ionomycin (Fig. 3b). Although our analysis did not permit us to ascertain directly whether TEM are actually the producers of IL-4, it is likely that these Th2-differentiated cells are indeed antigen-experienced members of the CD4+ TEM population. This interpretation is consistent with previous reports of higher IL-4 production in the context of M. leprae40,41 and HIV-142 infections. As increased frequencies of these cells were observed in chronic HIV-1 and/or M. leprae infections, there is clearly an association between IL-4 production and the presence of antigen. However, our approach did not address the antigen specificity of the IL-4-producing T cells. Others have demonstrated expression of Th2 cytokines in leprosy lesions,35,40,43 which may represent antigen-driven or cytokine-driven expansion of M. leprae-specific T cells.44 These responses may be influenced by the genetic background of the individual as well as by environmental factors.44 We suggest that the continuing production of IL-4 by HIV-1 and M. leprae-specific T cells may create a ‘Th2 environment’ in which the priming of T cells to heterologous antigens is biased towards IL-4 production.45 Exploring the association of higher IL-4 production after PMA and ionomycin stimulation, and expansion of TEM, may present an opportunity to elucidate the mechanisms involved in the possibly deleterious effect of M. leprae infection in HIV-1-infected patients observed in our study. In conclusion, this initial exploration of the cellular immune interactions of leprosy and HIV-1 disease suggests that chronic infection with M. leprae might exacerbate the immunopathogenesis of HIV-1 disease. We speculate that this may be the result of a combination of inflammatory lepra reactions and the aggravated Th2 environment induced by M. leprae antigens. Prospective longitudinal studies are needed to address the questions raised in this work. Acknowledgements This work was partially supported by Fundação Paulista contra a Hansenı́ase, National Institutes of Health, grant #R01-AI052731-06, and The Fogarty International Center, grant #D43 TW00003; KCS’s PhD scholarship was provided by the Conselho Nacional de Desenvolvimento Cientı́fico e Tecnológico (CNPq), Brazilian Ministry of Science and Technology. We are also thankful for support from the Heiser Program for Research in Leprosy and Tuberculosis of The New York Community Trust. Conflicts of interests References 1 Lockwood DN, Kumar B. Treatment of leprosy. BMJ 2004; 328:1447–8. 2 Meima A, Smith WC, van Oortmarssen GJ, Richardus JH, Habbema JD. The future incidence of leprosy: a scenario analysis. Bull World Health Organ 2004; 82:373–80. 3 Pereira GA, Stefani MM, Araujo Filho JA, Souza LC, Stefani GP, Martelli CM. Human immunodeficiency virus type 1 (HIV-1) and Mycobacterium leprae co-infection: HIV-1 subtypes and clinical, immunologic, and histopathologic profiles in a Brazilian cohort. Am J Trop Med Hyg 2004; 71:679–84. 4 Mosmann TR, Cherwinski H, Bond MW, Giedlin MA, Coffman RL. Two types of murine helper T cell clone. I. Definition according to profiles of lymphokine activities and secreted proteins. J Immunol 1986; 136:2348–57. 5 Modlin RL. Th1-Th2 paradigm: insights from leprosy. J Invest Dermatol 1994; 102:828–32. 6 Bloom BR. Learning from leprosy: a perspective on immunology and the Third World. J Immunol 1986; 137:i–x. 7 Ustianowski AP, Lawn SD, Lockwood DN. Interactions between HIV infection and leprosy: a paradox. Lancet Infect Dis 2006; 6:350–60. 8 Toossi Z, Mayanja-Kizza H, Hirsch CS et al. Impact of tuberculosis (TB) on HIV-1 activity in dually infected patients. Clin Exp Immunol 2001; 123:233–8. 9 Whalen C, Horsburgh CR, Hom D, Lahart C, Simberkoff M, Ellner J. Accelerated course of human immunodeficiency virus infection after tuberculosis. Am J Respir Crit Care Med 1995; 151:129–35. 10 Nath I, Vemuri N, Reddi AL, Jain S, Brooks P, Colston MJ, Misra RS, Ramesh V. The effect of antigen presenting cells on the cytokine profiles of stable and reactional lepromatous leprosy patients. Immunol Lett 2000; 75:69–76. 11 Sampaio EP, Caneshi JR, Nery JA et al. Cellular immune response to Mycobacterium leprae infection in human immunodeficiency virus-infected individuals. Infect Immun 1995; 63:1848–54. 12 Gormus BJ, Murphey-Corb M, Baskin GB, Uherka K, Martin LN, Marx PA, Xu K, Ratterree MS. Interactions between Mycobacterium leprae and simian immunodeficiency virus (SIV) in rhesus monkeys. J Med Primatol 2000; 29:259–67. 13 Eberl M, Hintz M, Reichenberg A, Kollas AK, Wiesner J, Jomaa H. Microbial isoprenoid biosynthesis and human gammadelta T cell activation. FEBS Lett 2003; 544:4–10. 14 Barnes PF, Grisso CL, Abrams JS, Band H, Rea TH, Modlin RL. Gamma delta T lymphocytes in human tuberculosis. J Infect Dis 1992; 165:506–12. 15 Fujita M, Miyachi Y, Nakata K, Imamura S. Appearance of gamma delta T cell receptor-positive cells following alpha beta T cell receptor-positive cells in the lepromin reaction of human skin. Immunol Lett 1993; 35:39–44. 16 Poccia F, Gougeon ML, Agrati C et al. Innate T-cell immunity in HIV infection: the role of Vgamma9Vdelta2 T lymphocytes. Curr Mol Med 2002; 2:769–81. 17 Poles MA, Barsoum S, Yu W et al. Human immunodeficiency virus type 1 induces persistent changes in mucosal and blood gammadelta T cells despite suppressive therapy. J Virol 2003; 77:10456–67. The authors declare no competing conflicts of interests. Ó 2008 The Authors Journal compilation Ó 2008 Blackwell Publishing Ltd, Immunology, 124, 206–214 213 K. I. Carvalho et al. 18 Pulendran B. Modulating TH1/TH2 responses with microbes, dendritic cells, and pathogen recognition receptors. Immunol Res 2004; 29:187–96. 19 Kadowaki N, Ho S, Antonenko S, Malefyt RW, Kastelein RA, Bazan F, Liu YJ. Subsets of human dendritic cell precursors express different toll-like receptors and respond to different microbial antigens. J Exp Med 2001; 194:863–9. 20 Krutzik SR, Ochoa MT, Sieling PA et al. Activation and regulation of Toll-like receptors 2 and 1 in human leprosy. Nat Med 2003; 9:525–32. 21 Bafica A, Scanga CA, Feng CG, Leifer C, Cheever A, Sher A. TLR9 regulates Th1 responses and cooperates with TLR2 in mediating optimal resistance to Mycobacterium tuberculosis. J Exp Med 2005; 202:1715–24. 22 Levy JA, Scott I, Mackewicz C. Protection from HIV/AIDS: the importance of innate immunity. Clin Immunol 2003; 108:167– 74. 23 Organizaton WH. Chemotherapy of leprosy for control programme, report of WHO study group. WHO TechRepSer 1982; 675:1–33. 24 Saúde MD. Recomendações para Terapia Anti-Retroviral em Adultos e Adolescentes Infectados pelo HIV. Brası́lia-DF: Ministério da Saúde, 2006:1–85. 25 Ridley DS, Jopling WH. Classification of leprosy according to immunity. A five-group system. Int J Lepr Other Mycobact Dis 1966; 34:255–73. 26 Hirsch HH, Kaufmann G, Sendi P, Battegay M. Immune reconstitution in HIV-infected patients. Clin Infect Dis 2004; 38:1159– 66. 27 Goebel FD. Immune reconstitution inflammatory syndrome (IRIS) – another new disease entity following treatment initiation of HIV infection. Infection 2005; 33:43–5. 28 Couppie P, Abel S, Voinchet H, Roussel M, Helenon R, Huerre M, Sainte-Marie D, Cabie A. Immune reconstitution inflammatory syndrome associated with HIV and leprosy. Arch Dermatol 2004; 140:997–1000. 29 Roederer M. Spectral compensation for flow cytometry: visualization artifacts, limitations, and caveats. Cytometry 2001; 45:194– 205. 30 Kallas EG, Gibbons DC, Soucier H, Fitzgerald T, Treanor JJ, Evans TG. Detection of intracellular antigen-specific cytokines in human T cell populations. J Infect Dis 1999; 179:1124–31. 31 Sallusto F, Lenig D, Forster R, Lipp M, Lanzavecchia A. Two subsets of memory T lymphocytes with distinct homing potentials and effector functions. Nature 1999; 401:708–12. 32 Stenger S, Modlin RL. T cell mediated immunity to Mycobacterium tuberculosis. Curr Opin Microbiol 1999; 2:89–93. 33 Antas PR, Sales JS, Pereira KC, Oliveira EB, Cunha KS, Sarno EN, Sampaio EP. Patterns of intracellular cytokines in CD4 and 214 34 35 36 37 38 39 40 41 42 43 44 45 CD8 T cells from patients with mycobacterial infections. Braz J Med Biol Res 2004; 37:1119–29. Sousa AE, Chaves AF, Doroana M, Antunes F, Victorino RM. Bulk cytokine production versus frequency of cytokine-producing cells in HIV1 infection before and during HAART. Clin Immunol 2000; 97:162–70. Yamamura M, Wang XH, Ohmen JD, Uyemura K, Rea TH, Bloom BR, Modlin RL. Cytokine patterns of immunologically mediated tissue damage. J Immunol 1992; 149:1470–5. Barnes PF, Abrams JS, Lu S, Sieling PA, Rea TH, Modlin RL. Patterns of cytokine production by mycobacterium-reactive human T-cell clones. Infect Immun 1993; 61:197–203. de Castro Cunha RM, Kallas EG, Rodrigues DS, Nascimento Burattini M, Salomao R. Interferon-gamma and tumour necrosis factor-alpha production by CD4+ T and CD8+ T lymphocytes in AIDS patients with tuberculosis. Clin Exp Immunol 2005; 140:491–7. Rodrigues DS, Medeiros EA, Weckx LY, Bonnez W, Salomao R, Kallas EG. Immunophenotypic characterization of peripheral T lymphocytes in Mycobacterium tuberculosis infection and disease. Clin Exp Immunol 2002; 128:149–54. Sallusto F, Geginat J, Lanzavecchia A. Central memory and effector memory T cell subsets: function, generation, and maintenance. Annu Rev Immunol 2004; 22:745–63. Yamamura M, Uyemura K, Deans RJ, Weinberg K, Rea TH, Bloom BR, Modlin RL. Defining protective responses to pathogens: cytokine profiles in leprosy lesions. Science 1991; 254:277– 9. Salgame P, Abrams JS, Clayberger C, Goldstein H, Convit J, Modlin RL, Bloom BR. Differing lymphokine profiles of functional subsets of human CD4 and CD8 T cell clones. Science 1991; 254:279–82. Galli G, Annunziato F, Mavilia C et al. Enhanced HIV expression during Th2-oriented responses explained by the opposite regulatory effect of IL-4 and IFN-gamma of fusin/CXCR4. Eur J Immunol 1998; 28:3280–90. Sieling PA, Abrams JS, Yamamura M, Salgame P, Bloom BR, Rea TH, Modlin RL. Immunosuppressive roles for IL-10 and IL-4 in human infection. In vitro modulation of T cell responses in leprosy. J Immunol 1993; 150:5501–10. Mitra DK, De Rosa SC, Luke A et al. Differential representations of memory T cell subsets are characteristic of polarized immunity in leprosy and atopic diseases. Int Immunol 1999; 11:1801– 10. Stutz A, Graf P, Beinhauer B, Hammerschmid F, Neumann C, Woisetschlager M, Jung T. CD45 isoform expression is associated with different susceptibilities of human naive and effector CD4+ T cells to respond to IL-4. Eur J Immunol 2005; 35:575– 83. Ó 2008 The Authors Journal compilation Ó 2008 Blackwell Publishing Ltd, Immunology, 124, 206–214 Carvalho KI Trabalho 2 O HIV-1 tem vários mecanismos para tentar abolir a atividade antiviral das células NKT, incluindo induzir menor expressão de CD1d em células apresentadoras de antígeno. Para evitar este efeito e obter novos conhecimentos da resposta ex vivo das células NKT, células de pacientes infectados pelo HIV-1 e indivíduos controle saudáveis foram estimulados com alfa-galactosil-ceramida conjugado com CD1d para analisar a secreção de citocinas pelas células NKT. A frequência de células NKT que secretaram IFN-γ e TNF-α estava significantemente diminuída em infectados pelo HIV-1 quando comparados com os controles. A magnitude da resposta de IFN-γ tem correlação inversa com o número de anos de infecção, sugerindo que a função das células NKT são diminuídas progressivamente ao longo do tempo. Não houve alteração na resposta das células NKT nos indivíduos infectados pelo HIV após tratamento com PMA e ionomicina, sugerindo um defeito no sinal do TCR que prejudica a produção de citocinas. Foi observado uma diminuição na magnitude da resposta de citocinas Th1 nas células NKT quando correlacionado com a expressão de CD161, sugerindo um mecanismo inibitório deste receptor na regulação da resposta de células NKT. 31 Carvalho KI Trabalho 2 O HIV-1 tem vários mecanismos para tentar abolir a atividade antiviral das células NKT, incluindo induzir menor expressão de CD1d em células apresentadoras de antígeno. Para evitar este efeito e obter novos conhecimentos da resposta ex vivo das células NKT, células de pacientes infectados pelo HIV-1 e indivíduos controle saudáveis foram estimulados com alfa-galactosil-ceramida conjugado com CD1d para analisar a secreção de citocinas pelas células NKT. A frequência de células NKT que secretaram IFN-γ e TNF-α estava significantemente diminuída em infectados pelo HIV-1 quando comparados com os controles. A magnitude da resposta de IFN-γ tem correlação inversa com o número de anos de infecção, sugerindo que a função das células NKT são diminuídas progressivamente ao longo do tempo. Não houve alteração na resposta das células NKT nos indivíduos infectados pelo HIV após tratamento com PMA e ionomicina, sugerindo um defeito no sinal do TCR que prejudica a produção de citocinas. Foi observado uma diminuição na magnitude da resposta de citocinas Th1 nas células NKT quando correlacionado com a expressão de CD161, sugerindo um mecanismo inibitório deste receptor na regulação da resposta de células NKT. 31 Carvalho KI Trabalho 2 O HIV-1 tem vários mecanismos para tentar abolir a atividade antiviral das células NKT, incluindo induzir menor expressão de CD1d em células apresentadoras de antígeno. Para evitar este efeito e obter novos conhecimentos da resposta ex vivo das células NKT, células de pacientes infectados pelo HIV-1 e indivíduos controle saudáveis foram estimulados com alfa-galactosil-ceramida conjugado com CD1d para analisar a secreção de citocinas pelas células NKT. A frequência de células NKT que secretaram IFN-γ e TNF-α estava significantemente diminuída em infectados pelo HIV-1 quando comparados com os controles. A magnitude da resposta de IFN-γ tem correlação inversa com o número de anos de infecção, sugerindo que a função das células NKT são diminuídas progressivamente ao longo do tempo. Não houve alteração na resposta das células NKT nos indivíduos infectados pelo HIV após tratamento com PMA e ionomicina, sugerindo um defeito no sinal do TCR que prejudica a produção de citocinas. Foi observado uma diminuição na magnitude da resposta de citocinas Th1 nas células NKT quando correlacionado com a expressão de CD161, sugerindo um mecanismo inibitório deste receptor na regulação da resposta de células NKT. 31 Snyder-Cappione et al Lower Th1 cytokine secretion ex vivo by CD1d-restricted NKT cells in HIV-1-infected individuals is associated with high CD161 expression. Jennifer E. Snyder-Cappione,1* Christopher P. Loo,1 Karina I. Carvalho,2 Carlotta Kuylenstierna,3 Steven G. Deeks,4 Frederick M. Hecht,4 Michael G. Rosenberg,5 Johan K. Sandberg,3 Esper G. Kallas,2,6 and Douglas F. Nixon1 1 Division of Experimental Medicine, Department of Medicine, University of California, San Francisco, CA, USA. 2 Infectious Diseases Division, Federal University of Sao Paulo/SP and Brazil Laboratório de Imunologia II Disciplina de Infectologia, Universidade Federal de São Paulo, Rua Mirassol 207 04044-010, Sao Paulo, SP Brazil. 3 CIM, Department of Medicine, F59, Karolinska Institute, Karolinska University Hospital, Huddinge, 14186 Stockholm, Sweden. 4 Positive Health Program, San Francisco General Hospital, San Francisco, California, USA. 5 Jacobi Medical Center, Albert Einstein College of Medicine, Bronx, New York, USA. 6 Clinical Immunology and Allergy Division, University of São Paulo, São Paulo, Brazil. Short Title: NKT cell functions in HIV * Address correspondence to: Jennifer E. Snyder-Cappione, Ph.D. University of California San Francisco 1001 Potrero Avenue, Building 3, Room 607 San Francisco, CA 94110 Tel: (415) 206-4981 Fax: (415) 206-8091 Email: [email protected] Snyder-Cappione et al. 2 Nonstandard abbreviations used: Elispot, enzyme-linked immunosorbent spot; α-GalCer, alpha-galactosyl ceramide; DX-αGalCer, DimerX-CD1d reagent loaded with α-GalCer; ART, anti-retroviral treatment, TCR, T cell receptor Snyder-Cappione et al. 3 Abstract HIV-1 has several mechanisms to abrogate the anti-viral activity of NKT cells, including the down-regulation of CD1d on antigen presenting cells. To circumvent this effect and gain new understanding of the ex vivo NKT cell response, we measured cytokines from NKT cells of HIV-1 infected and healthy individuals after stimulation with alpha-galactosyl ceramideloaded CD1d dimers. The frequencies of NKT cells secreting IFN-gamma and TNF-alpha were significantly lower in HIV-1-infected subjects than healthy controls. The magnitude of the IFN-gamma response correlated inversely with the number of years of infection, suggesting NKT cell functions are progressively lost over time. NKT cell responses in HIVinfected subjects after treatment with PMA and ionomycin were essentially normal, suggesting that defective TCR-signaling was underlying the impaired cytokine production. Lower magnitude of the NKT Th1 response correlated with higher CD161 expression, suggesting a role for this inhibitory receptor in regulating NKT cell responsiveness. Key Words: NKT cell, ex vivo, HIV, CD161, IFN-gamma, TNF-alpha Snyder-Cappione et al. 4 Introduction NKT cells are a unique subset of T cells thought to bridge the innate and adaptive arms of the immune response (1). Human invariant NKT cells express a canonical TCR incorporating Vα24JαQ with a limited Vβ repertoire, predominantly Vβ11 (2, 3). TCRs of human NKT cells recognize glycolipid antigens on the nonclassical MHC molecule CD1d. NKT cells recognize both self and nonself glycolipids, including alpha-galactosyl ceramide (αGalCer) (4), which is derived from the marine sponge Agelas mauritianus. NKT cells secrete a variety of Th1, Th2, and Th17 cytokines (5-14) and contribute to immune responses against foreign, self, and tumor antigens. Considerable evidence suggests that NKT cells contribute to an effective immune response in HIV-1 infection (15). A subset of NKT cells expresses CD4, the co-receptor for HIV entry. These CD4+ NKT cells are selectively infected and depleted by the virus (16-18). HIV-1 also down-regulates CD1d in infected cells (19-21). Thus, HIV-1 appears to have evolved distinct NKT evasion mechanisms to ensure its propagation in the host. While it is suggested that ART may increase NKT cell functions (22), the effect of HIV-1 on the functional capacity of circulating NKT cells is largely unknown. In this study, we measured the ex vivo effector functions of NKT cells from healthy and HIV-1infected individuals after stimulation with DimerX, a human CD1d-Ig recombinant fusion protein used for targeted NKT cell stimulation (22) or PMA and Ionomycin. We also compared the disease status of the infected individuals and subsets of the NKT compartment with the magnitude of the cytokine response to DimerX-αGalCer stimulation. Snyder-Cappione et al. 5 Methods Subjects. Healthy volunteers and HIV-1-infected subjects were recruited at the University of California, San Francisco (San Francisco, CA) and the JACOBI Medical Center (Bronx, NY). All samples were obtained according to protocols approved by the Research Subjects Review Board at each institution. Informed consent was obtained from all subjects. The characteristics of the subjects are summarized in Supplemental Table 1. Human lymphocyte preparation. Blood was drawn into ACD or EDTA tubes. PBMCs were frozen in heat-inactivated FBS containing 10% DMSO at a concentration of 1 x 106 to 10 x 106/ml and stored in liquid nitrogen until use. Antigens. For dimer loading, 20 µg of human CD1d-Ig recombinant fusion proteins (BD DimerX; BD Biosciences) was mixed with 5 µg of αGalCer (Kirin Brewery, Japan) in a final volume of 100 µl and incubated overnight at 37oC. PBS was used a loading (vehicle) control for all αGalCer stimulation assays. After overnight incubation, an additional 320 µl of PBS was added. DimerX complexes were added to culture wells at a final concentration of 15 µl/ml. Titration was performed to ensure this concentration provided maximal stimulation of all NKT cells in PBMC cultures. Cells were also stimulated with PMA (50 ng/ml), and ionomycin (500 ng/ml). Fluorescent antibodies and tetramers. CD1d-tetramer loaded with PBS57 PE was from the NIH Tetramer Facility (Emory University, Atlanta, GA). Other reagents include: anti-CD3 ECD (Beckman Coulter); anti-IL4 FITC, anti-IFNγ PE-Cy7, anti-TNFα Alexa 700, antiCD69 APC-Cy7, anti-CD4 Alexa 700, anti-CD56 PE-Cy7, and anti-CD161 APC (all from BD Biosciences); Amine Aqua for live/dead discrimination (Invitrogen), anti-CD8 Qdot 605 (University of California, San Francisco), and anti-vα24 biotin (Beckman Coulter). Snyder-Cappione et al. 6 Flow cytometry. For phenotypic staining, PBMCs were incubated with CD1d-tetramerPBS57, anti-CD3, anti-CD56, anti-CD161, anti-CD4, anti-CD69, Amine Aqua, anti-CD8, and anti-vα24 for 30 minutes at 4oC. Cells were then washed twice with FACS buffer (PBS with 0.5% BSA and 2 mM EDTA), resuspended in 2% paraformaldehyde, and run on a LSRII Flow Cytometer (BD Biosciences). For measurement of NKT cell cytokine production by intracellular cytokine staining, PBMCs were cultured with DimerX-PBS, DimerX-αGalCer, or PMA and ionomycin as described above. After 1 hour at 37oC in 5% CO2 brefeldin A (5 µg/ml) was added. After incubation for 12–16 hours, the cells were washed and CD1dtetramer-PBS57, anti-CD4, anti-CD69, anti-CD8, anti-vα24, and Amine Aqua were added for 30 minutes at 4oC in the dark. The cells were washed and incubated with 2% paraformaldehyde and permeabilization buffer (BD Biosciences) for 20 minutes at room temperature. The cells were washed and anti-IL4, anti-CD3, anti-IFNγ, anti-TNFα, and Qdot 655 streptavidin (Invitrogen) were added. After incubation for 30 minutes at 4oC in the dark, the cells were washed, resuspended in 2% paraformaldehyde, and run on a LSR-II Flow Cytometer. The data were analyzed with FlowJo software (version 8.5.2, Tree Star). Gating and analysis were performed without knowledge of the subjects’ characteristics, including HIV status. Statistical analysis. The two-tailed t test with Welsh's correction was used to compare the different groups in Figures 1C, and 1D. Linear regression analysis was used in Figures 1E and 2A. Results and Discussion Circulating NKT cells from HIV-infected subjects exhibit weak Th1 cytokine responses to DX-αGalCer. We measured the ex vivo effector functions of NKT cells from 24 HIV-1- Snyder-Cappione et al. 7 infected subjects and 10 healthy controls by intracellular cytokine staining. Due to the variability of NKT cell frequencies and limitations of available PBMC, a subject's data were included in this study if greater than 20 events were collected within the NKT gate. After completion of blinded analysis from all samples, data from 11 of the HIV-1-infected subjects and six of the healthy controls met this criterion (Supplemental Table 1). Seven of the HIV-1infected subjects had suppressed virus at the time of sample collection, with five on ART (mean CD4+ T cell count, 561 cells/µl; mean plasma HIV-1 RNA level, 136 copies/ml). Four subjects were defined as viremic (with viral loads greater than 1,000 copies/ml), and three of these subjects were on ART (mean CD4+ T cell count, 555 cells/µl; mean plasma HIV-1 RNA level, 15,032 copies/ml). NKT cells were identified as CD3+, Vα24+, and CD1dtetramer+ (Figure 1A). The mean NKT cell frequencies were lower in the HIV-1 infected subjects than in healthy controls (Supplemental Table 1 and data not shown). After DX-αGalCer stimulation, the percentage of NKT cells that produced TNF-α or IFN-γ was significantly higher in the healthy controls than in the HIV-1-infected subjects (p < 0.0001 for TNF-α; p = 0.0016 for IFN-γ) (Figure 1B, 1C), but both groups exhibited similar NKT responses to PMA + ionomycin (Figure 1C). HIV-1 may render the Th1-biased NKT subsets unresponsive to CD1-TCR signaling but not PMA and Ionomycin, as has been observed by mouse NKT cells after exposure to bacterial products in vivo (23). Among HIV1 infected subjects, the TNF-α and IFN-γ responses to DX-αGalCer were higher, on average, in those with suppressed virus than in virologic subjects; however, the difference was not statistically significant (Figure 1D). Neither the CD4+ T cell counts nor the viral loads of the infected subjects correlated with the percentage of NKT cells producing IFN-γ or TNF-α in response to αGalCer (data not shown). However, there was a significant negative correlation between the years since infection and the magnitude of the IFN-γ response to DX-αGalCer. This suggests NKT cells undergo exhaustion due to chronic stimulation and/or exposure to inflammatory cytokines. Snyder-Cappione et al. 8 The frequency of NKT cells secreting Th1 cytokines in response to DX-aGalCer correlates with surface expression of CD161 in HIV-infected subjects. We compared the distribution of NKT cell subsets and Th1 cytokines induced by DX-αGalCer in HIV-infected subjects. The percentages of IFN-γ or TNF-α secreting NKT cells did not correlate with expression of CD56, CD69, or all combinations of CD4 and CD8 antigens (data not shown). However, the percentage of NKT cells expressing CD161, a reported NKT cell maturation marker (Since we were the first to publish this in PNAS 2004 I think it would be better to cite our own paper) (24), correlated negatively with the production of both TNF-α and IFN-γ (Figure 2). The percentage of circulating CD161+ NKT cells was higher in the healthy controls than in the HIV-1 infected subjects (Figure 2B). Therefore, it was surprising that a lack of CD161 expression by NKT cells from HIV-1 infected subjects correlated with stronger Th1 responses. CD161 is often used to define the maturation state of NKT cell populations, with higher expression reflecting a more mature phenotype (24). Interestingly, anergic CD161+ human T cells have been reported (25). These data suggest chronic HIV-1 infection disables the ability of NKT cells to respond to MHC-antigen stimulation in vivo. Future longitudinal studies comparing the DX-αGalCer response of NKT cells with rates of disease progression may elucidate the role of these cells in viral control. Acknowledgements Support for this work was provided by National Institute of Allergies and Infectious Diseases Snyder-Cappione et al. 9 (NIAID R37-A152731, the NIH (AI060379), the UCSF CFAR (P30 AI27763, P30 MH59037), NIAID (AI055273), the Center for AIDS Prevention Studies (P30 MH62246), and the UCSF Clinical and Translational Science Institute (UL1 RR024131-01). Additional support was provided by the Brazilian Program for STD and AIDS, Ministry of Health (914/BRA/3014 – UNESCO / Kallas), the São Paulo City Health Department (20040.168.922-7/Kallas), Fundação de Amparo a Pesquisa do Estado de São Paulo (04/158569/Kallas), the John E. Fogarty International Center (D43 TW00003), the AIDS Research Institute of the AIDS Biology Program at UCSF. KIC was supported by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Brazilian Ministry of Education. Snyder-Cappione et al. 10 References 1. Benlagha, K., and Bendelac, A. 2000. CD1d-restricted mouse V alpha 14 and human V alpha 24 T cells: lymphocytes of innate immunity. Semin Immunol 12:537-542. 2. Lee, P.T., Benlagha, K., Teyton, L., and Bendelac, A. 2002. Distinct functional lineages of human V(alpha)24 natural killer T cells. J Exp Med 195:637-641. 3. Prussin, C., and Foster, B. 1997. TCR V alpha 24 and V beta 11 coexpression defines a human NK1 T cell analog containing a unique Th0 subpopulation. J Immunol 159:5862-5870. 4. Kronenberg, M., and Gapin, L. 2002. The unconventional lifestyle of NKT cells. Nat Rev Immunol 2:557-568. 5. de Lalla, C., Galli, G., Aldrighetti, L., Romeo, R., Mariani, M., Monno, A., Nuti, S., Colombo, M., Callea, F., Porcelli, S.A., et al. 2004. Production of profibrotic cytokines by invariant NKT cells characterizes cirrhosis progression in chronic viral hepatitis. J Immunol 173:1417-1425. 6. Exley, M., Porcelli, S., Furman, M., Garcia, J., and Balk, S. 1998. CD161 (NKRP1A) costimulation of CD1d-dependent activation of human T cells expressing invariant V alpha 24 J alpha Q T cell receptor alpha chains. J Exp Med 188:867-876. 7. Gumperz, J.E., Miyake, S., Yamamura, T., and Brenner, M.B. 2002. Functionally distinct subsets of CD1d-restricted natural killer T cells revealed by CD1d tetramer staining. J Exp Med 195:625-636. 8. Kim, C.H., Johnston, B., and Butcher, E.C. 2002. Trafficking machinery of NKT cells: shared and differential chemokine receptor expression among V alpha 24(+)V beta 11(+) NKT cell subsets with distinct cytokine-producing capacity. Blood 100:1116. 9. Spada, F.M., Koezuka, Y., and Porcelli, S.A. 1998. CD1d-restricted recognition of synthetic glycolipid antigens by human natural killer T cells. J Exp Med 188:15291534. 10. Wilson, S.B., Kent, S.C., Patton, K.T., Orban, T., Jackson, R.A., Exley, M., Porcelli, S., Schatz, D.A., Atkinson, M.A., Balk, S.P., et al. 1998. Extreme Th1 bias of invariant Valpha24JalphaQ T cells in type 1 diabetes. Nature 391:177-181. 11. Coquet, J.M., Chakravarti, S., Kyparissoudis, K., McNab, F.W., Pitt, L.A., McKenzie, B.S., Berzins, S.P., Smyth, M.J., and Godfrey, D.I. 2008. Diverse cytokine production by NKT cell subsets and identification of an IL-17-producing CD4-NK1.1- NKT cell population. Proc Natl Acad Sci U S A 105:11287-11292. 12. Lee, K.A., Kang, M.H., Lee, Y.S., Kim, Y.J., Kim, D.H., Ko, H.J., and Kang, C.Y. 2008. A distinct subset of natural killer T cells produces IL-17, contributing to airway infiltration of neutrophils but not to airway hyperreactivity. Cell Immunol. 13. Pichavant, M., Goya, S., Meyer, E.H., Johnston, R.A., Kim, H.Y., Matangkasombut, P., Zhu, M., Iwakura, Y., Savage, P.B., DeKruyff, R.H., et al. 2008. Ozone exposure in a mouse model induces airway hyperreactivity that requires the presence of natural killer T cells and IL-17. J Exp Med 205:385-393. 14. Rachitskaya, A.V., Hansen, A.M., Horai, R., Li, Z., Villasmil, R., Luger, D., Nussenblatt, R.B., and Caspi, R.R. 2008. Cutting Edge: NKT Cells Constitutively Express IL-23 Receptor and ROR{gamma}t and Rapidly Produce IL-17 upon Receptor Ligation in an IL-6-Independent Fashion. J Immunol 180:5167-5171. 15. Unutmaz, D. 2003. NKT cells and HIV infection. Microbes Infect 5:1041-1047. 16. Sandberg, J.K., Fast, N.M., Palacios, E.H., Fennelly, G., Dobroszycki, J., Palumbo, P., Wiznia, A., Grant, R.M., Bhardwaj, N., Rosenberg, M.G., et al. 2002. Selective loss of innate CD4(+) V alpha 24 natural killer T cells in human immunodeficiency Snyder-Cappione et al. 11 17. 18. 19. 20. 21. 22. 23. 24. 25. virus infection. J Virol 76:7528-7534. Motsinger, A., Haas, D.W., Stanic, A.K., Van Kaer, L., Joyce, S., and Unutmaz, D. 2002. CD1d-restricted human natural killer T cells are highly susceptible to human immunodeficiency virus 1 infection. J Exp Med 195:869-879. van der Vliet, H.J., von Blomberg, B.M., Hazenberg, M.D., Nishi, N., Otto, S.A., van Benthem, B.H., Prins, M., Claessen, F.A., van den Eertwegh, A.J., Giaccone, G., et al. 2002. Selective decrease in circulating V alpha 24+V beta 11+ NKT cells during HIV type 1 infection. J Immunol 168:1490-1495. Chen, N., McCarthy, C., Drakesmith, H., Li, D., Cerundolo, V., McMichael, A.J., Screaton, G.R., and Xu, X.N. 2006. HIV-1 down-regulates the expression of CD1d via Nef. Eur J Immunol 36:278-286. Cho, S., Knox, K.S., Kohli, L.M., He, J.J., Exley, M.A., Wilson, S.B., and Brutkiewicz, R.R. 2005. Impaired cell surface expression of human CD1d by the formation of an HIV-1 Nef/CD1d complex. Virology 337:242-252. Hage, C.A., Kohli, L.L., Cho, S., Brutkiewicz, R.R., Twigg, H.L., 3rd, and Knox, K.S. 2005. Human immunodeficiency virus gp120 downregulates CD1d cell surface expression. Immunol Lett 98:131-135. Vasan, S., Poles, M.A., Horowitz, A., Siladji, E.E., Markowitz, M., and Tsuji, M. 2007. Function of NKT cells, potential anti-HIV effector cells, are improved by beginning HAART during acute HIV-1 infection. Int Immunol 19:943-951. Kim, S., Lalani, S., Parekh, V.V., Vincent, T.L., Wu, L., and Van Kaer, L. 2008. Impact of bacteria on the phenotype, functions, and therapeutic activities of invariant NKT cells in mice. J Clin Invest 118:2301-2315. Berzins, S.P., Cochrane, A.D., Pellicci, D.G., Smyth, M.J., and Godfrey, D.I. 2005. Limited correlation between human thymus and blood NKT cell content revealed by an ontogeny study of paired tissue samples. Eur J Immunol 35:1399-1407. Takahashi, T., Dejbakhsh-Jones, S., and Strober, S. 2006. Expression of CD161 (NKR-P1A) defines subsets of human CD4 and CD8 T cells with different functional activities. J Immunol 176:211-216. Snyder-Cappione et al/ A B 10 CD1d-Tetramer 200K 5 100K 50K 0 0 10 2 10 3 CD3 10 4 10 10 3 10 2 0 5 0 10 2 10 3 10 4 10 % of NKT cells 75 Vα24 9.7 0.87 93 0.43 100 25 75 50 25 0 TNFα 25.6 5.65 PMA and Ionomycin 50 0 60.1 IFNγ p<.0016 p<.0001 4.57 5 DX-αGalCer C HIV-Infected TNFα 10 4 150K % of NKT cells Side Scatter 250K Healthy TNFα IFNγ IFNγ Healthy Control HIV-infected D E % of NKT cells 50 40 TNFα 30 IFNγ 40 30 p=.0260 r2=.6620 20 20 20 10 10 0 TNFα IFNγ Suppressed Virologic 0 0 0 10 20 0 10 20 Years Since Infection Figure 1. NKT cells from HIV-infected subjects exhibit low IFNγ and TNFα production in response to DimerX-αGalCer. (A) NKT cell gating included CD3+, Vα24+, CD1d-tetramer+ cells. (B) Percentages of NKT cells secreting TNFα and IFNγ in response to DX-αGalCer; sample plots from one healthy control subject and one HIV-infected subject with similar NKT cell levels are shown. (C) Percentage of NKT cells producing IFNγ, and TNF - α in response to stimulation with DX- αGalCer or PMA + ionomycin. (D) Cytokine secretion in response to DX-αGalCer in cells from HIV-infected subjects with or without suppressed virus. The differences were not statistically significant. (E) Association between the NKT cytokine response to DX-aGalCer and the years since HIV infection. Snyder-Cappione et al/ p = 0.0457 r = .3735 90 80 70 0 25 % of IFNγ+ NKT cells 50 % of CD161+ NKT cells % of CD161+ NKT cells 100 100 p = 0.0094 r = .5462 85 70 0 20 % of TNFα+ NKT cells 40 % of CD161+ NKT cells B A 100 90 80 70 60 Healthy HIV-infected Figure 2. Th1 cytokine secretion by NKT cells correlates inversely with CD161 expression in HIV-infected subjects. (A) Association between the percentage of CD161+ NKT cells and production of TNFα and IFNγ by NKT cells in response to αGalCer in HIV-infected subjects. (B) CD161 expression on NKT cells of healthy controls and HIV-infected subjects. There was not a statistically significant difference between the groups. Carvalho KI Trabalho 3 As células NKT constituem uma população de linfócitos amplamente definida pela expressão de TCR e marcadores de células NK, que tem atraído bastante atenção devido a seu papel potencial de ligar a resposta imunológica inata à adaptativa. Células NKT na periferia apresentam fenótipo de memória e podem secretar altos níveis de citocinas após o estímulo com antígenos, incluindo IFN-γ, TNF-α, IL-4 e IL-13. Neste estudo, nós avaliamos as células NKT nos grupos de pacientes coinfectados pelo HIV e pelo M. leprae. Os voluntários foram divididos em quatro grupos: 27 controles saudáveis, 17 indivíduos infectados pelo HIV-1, 17 pacientes com hanseníase, e 23 pacientes coinfectados pelo HIV e pelo M. leprae. Foram realizados ensaios de citometria de fluxo e ELISPOT em células mononucleares do sangue periférico (CMSP) congeladas. Nós demonstramos que pacientes coinfectados têm redução de células NKT no sangue periférico quando comparados com indivíduos saudáveis e pacientes monoinfectados pelo M. lepare. Por outro lado, as células NKT de pacientes coinfectados secretam mais IFN-γ quando comparadas com pacientes monoinfectados pelo M. leprae. Estes resultados sugerem que as células NKT têm atividade aumentada em pacientes coinfectados, porém com frequência diminuída no sangue periférico. 46 Title: NKT cells profile in HIV and leprosy coinfected patients. Suggested list of authors: Karina I. Carvalho1, Fernanda R. Bruno1, Jennifer SnyderCappione2, Solange Maeda1, Jane Tomimori1, Marilia B. Xavier4, Patrick Hasllet5, Douglas Nixon2, Esper G. Kallas1,3 1 – Federal University of São Paulo, São Paulo, Brazil 2 – Division of Experimental Medicine, San Francisco General Hospital, Department of Medicine, University of California, San Francisco, USA 3 – Division of Clinical Immunology and Allergy, University of São Paulo, São Paulo, Brazil 4 – Federal University of Pará, Pará, Brazil 5 – University of Miami, Florida, USA Running title: NKT cells in HIV and Leprosy coinfection (40 characters) Word count: 2.230 Keywords: HIV, Mycobacterium leprae, coinfection, NKT cell, activation, CD4 Carvalho KI et al Footnote page: Corresponding author: Esper Georges Kallas, M.D., Ph.D. Universidade de São Paulo Laboratório de Investigação Médica 60 Av. Dr. Arnaldo 455, terceiro andar São Paulo – SP 01246-903 Phone: (+55-11) 3061-8395 Fax: (+55-11) 3061-8392 [email protected] Funding This work was partially supported by the National Institutes of Health, grant #R01-AI 52731 (Nixon) and The Fogarty International Center, grant #D43 TW00003; KIC’s Ph.D. scholarship has been provided by the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Brazilian Ministry of Science and Technology. We are also thankful for support from the Heiser Program for Research in Leprosy and Tuberculosis of The New York Community Trust. 2 Carvalho KI et al Abstract (180) NKT cells are a heterogeneous population of lymphocytes loosely defined as cells that express a TCR in addition to NK cell markers, which have attracted a great deal of attention due to their potential role linking innate and adaptive immune responses. Peripheral NKT cells display a memory activated phenotype and can rapidly secrete large amounts of cytokines including IFN-γ, TNF-α, IL-4, and IL-13 on antigenic activation. In this study, we evaluated NKT cells in the context of HIV and M. leprae coinfection. The volunteers were enrolled into 4 groups: 27 healthy controls, 17 HIV seropositive patients, 17 patients with leprosy, and 23 co-infected patients with leprosy and HIV-1 infection. Flow cytometric and ELISPOT assays were performed in stored PBMC. We demonstrated that coinfected patients have reduced NKT cells in the peripheral blood when compared to healthy subjects and leprosy monoinfected patients. On the other hand, NKT cells from coinfected patients secrete more IFN-γ when compared to leprosy monoinfected patients. These results suggest that NKT cells are highly active in coinfected patients, although occurring in decreased frequency in the peripheral blood. 3 Carvalho KI et al Introduction Natural killer T cells are a specialized T cell lineage with unique functional characteristics that distinguish them from conventional T lymphocytes [1]. Their regulatory role in immune responses that require opposite regulatory pathways has been attributed to an apparent flexibility of NKT cells with regard to their predominant cytokine profile [2]. Peripheral NKT cells display a memory activated phenotype and can rapidly secrete large amounts of cytokines including IFN-γ, TNFα, IL-4, and IL-13 on antigenic activation [3]. NKT cells are a heterogeneous population of lymphocytes loosely defined as cells that express a TCR in addition to NK cell markers [4], which have attracted a great deal of attention due to their potential to link the innate and adaptive arms of the immune system. Characteristically, they respond very rapidly to certain stimulus and are then able to activate a number of immune effectors [5]. Presentation of αgalactosylceramide (α-GalCer) by CD1d-expressing APC, such as dendritic cells (DC), results in rapid activation of NKT cells. It is clear that the capacity to participate in early immune responses and to modulate both innate and adaptative immunity confers NKT cells the potential to mediate important activities in the control of pathogens and subsequent clearance of infections [6]. Gansert et al., provided evidence that α-GalCer can activate antimicrobial pathways in a CD1d-restricted manner in humans [7]. The protection conferred by NKT cells could be a result of the fact that the cytokines they produce are not only critical in activating early innate immune responses, but also favor the development of the classical virus-specific T-cell responses that are ultimately responsible for clearing the infection [8]. 4 Carvalho KI et al Leprosy is a debilitating chronic, infectious disease caused by Mycobacterium leprae that involves skin and peripheral nerves [9]. Most individuals infected with M. leprae do not manifest leprosy, but a few manifest the disease depending on their immunological status [10]. Of major concern has been the prevalence of HIV is increasing in many countries where leprosy is endemic [11], and the possibility that HIV coinfection might shift the clinical spectrum of leprosy paucibacillary to multibacillary forms, enhancing the transmission of M. leprae in the community [12]. Frommel et al. confirmed the overall rise in HIV seropositivity and the increase of coinfection by M. leprae and HIV [13]. Since HIV-1 compromises the cell-mediated immune response, the HIV-1-positive individual infected with M. leprae might be expected to manifest the lepromatous form of the disease or, alternatively, develop rapid progression from tuberculoid to lepromatous form, as HIV-1 infection impairs the cellular immune response [14]. In this study we demonstrated that coinfected patients have reduced NKT cells in the peripheral blood when compared to healthy subjects and leprosy monoinfected patients. On the other hand, NKT cells from coinfected patients secrete more IFN-γ when compared to leprosy monoinfected patients. 5 Carvalho KI et al Materials and Methods Subjects and sample collection Volunteers were recruited at the Federal University of Sao Paulo and the Federal University of Pará, Brazil. Written, informed consent was obtained from all volunteers according to the guidelines of the Brazilian Ministry of Health, approved by the Institutional Review Board. The study subjects were divided into 4 groups: twenty-seven healthy controls and seventeen HIV seropositive patients, most of whom had CD4+ T cell counts of less than 400 cells/µL, were identified at the Federal University of Sao Paulo; seventeen patients with leprosy were enrolled and classified according to the bacillary load [15, 16], as well as twenty-three co-infected patients with leprosy and HIV-1 infection, all recruited at Leprosy Clinics in both sites. Leprosy patients were matched for bacillary load with the cases in the coinfected group. Flow cytometry PBMC were isolated from volunteers, the cells were cryopreserved and stored in liquid nitrogen until used in the assays. The following monoclonal antibodies were used in the FACS assays: anti-HLA-DR-peridin chlorophyll protein (PerCP) (clone L243), from BD Biosciences (San Jose, CA); CD4- phycoerythrin–cyanine (PE-Cy7) (clone SK3), CD3 allophycocyanin cyanine-7 (APC-Cy7) (clones SK7), and CD161APC (clone DX12), from BD PharMingen (San Jose, CA); Vα24 phycoerythrin (PE) (clone C15), Vβ11-Fluorescein isothiocyanate (FITC) (clone C21) from Immunotech 6 Carvalho KI et al (BC). All the antibodies were used for cell-surface staining. Fluoresce minus one (FMO) was used for gate strategy. After thawing, cells were centrifuged at 1,500 rpm for 5 min and transferred into 96 V bottom well plates (Nunc, Denmark) in 100 µL of staining buffer (PBS supplemented with 0.1% sodium azide [Sigma] and 1% FBS, pH 7.4-7.6) with the surface monoclonal antibodies panel. Cells were incubated at 4°C in darkness for 30 minutes, washed twice, and re-suspended in 100 µL of fixation buffer (1% paraformaldehyde [Polysciences, Warrington, PA] in PBS, pH 7.4-7.6). Samples were acquired on a FACSCanto, using FACSDiva software (BD Biosciences), and then analyzed with FlowJo software (Tree Star, San Carlo, CA). Fluorescence voltages were determined using matched unstained cells. Compensation was carried out with CompBeads (BD Biosciences) single-stained with CD3-PerCP, CD4-FITC, CD8-APC-Cy7, CD4-PE-Cy7, CD3-PE, and CD3-APC. Samples were acquired until at least 800,000 events in a live lymphocyte gate. Measurement of cytokine-producing cells by Elispot To determine the amount of IFNγ and IL-4 secreting cells, MAIP Elispot plates (Millipore) were coated with either anti-IFN-γ (10µg/ml) and anti-IL-4 (15µg/ml) (Mabtech), in PBS, 50 µl/well, either overnight at 4°C or for one hour at room temperature. After three washes with complete medium, PBMC (3x105) and the presence or absence of a synthetic glicolipid α-glactosyl-ceramide (α-GalCer) (AXXORA), at a final volume of 200 µl/well. Plates were incubated at 37 °C in 5% CO2 for 16-20 hours. After washing with phosphate-buffered saline (PBS) plus 0.1% 7 Carvalho KI et al Tween 20 (PBST), the following biotinylated antibodies were added to the appropriate wells: anti-IL-4 (1µg/ml) (Mabtech) and anti-IFN-γ (1µg/ml) (Mabtech), in PBS 0.1% tween 1% BSA (PBSTB) for 30 minutes at room temperature. The plates are washed again three times with PBST, and alkaline phosphatase-conjugated streptavidin (Jackson Immunoresearch) was added (50 µl of 1:1,000 dilution in PBSTB) and incubated for 30 min at room temperature. Plates were washed in PBST, incubated with blue substrate (Vector Labs, # SK-5300) until spots were clearly visible, then rinsed with tap water (submitted Snyder-Cappione). Colored spots were counted with an Immunospot S5 Analyser (CTL, LLC). Statistical analysis Groups were compared using non-parametric models; data are reported as median and interquartile range. Comparisons among groups were carried out using KruskalWallis non-parametric test. p values were considered significant if <0.05. Results are expressed in medians and interquartile ranges (IQR). 8 Carvalho KI et al Results Characteristics of the HIV-M. leprae co-infected patient The median age of all participants was 37 years (IQR, 35-48) and most were male (81%), although no difference in gender distribution was observed between groups. For the leprosy and co-infected groups, 77% of the patients had a multibacillary presentation at the time of diagnosis. Co-infected patients were treated with the appropriate multi drug therapy (MDT) for paucibacillary (PB) and multibacillary (MB) leprosy, when indicated. Our results demonstrated that healthy controls (Median: 916.5, IQR, 687-1170) have higher CD4+ T cell counts (cells/mm3) when compared with HIV patients (Median: 391, IQR, 272-536) and co-infected patients (Median: 285, IQR, 235-480]), p<0.001. Leprosy patients (Median: 733, IQR, 699-870]), show higher numbers of CD4+ T cell counts (cells/mm3) when compared with co-infected patients (p<0.001). For CD8+ T cell counts healthy controls (Median: 556, IQR, 735-376) have lower numbers when compared with coinfected patients (Median: 806, IQR, 1548-578), p<0,05 (Table 1). Measurement of NKT cell frequencies in peripheral blood NKT cells represent a subset of lymphocytes that is defined operationally as bearing both the TCR and the NK receptor, CD161 [17]. We defined NKT cells as those with the CD3+Vα24+Vβ11+ phenotype. Berzins et al. described that adults blood NKT cells frequency range from 0.006 to 0.78% [18]. Our results demonstrated that healthy controls (median: 0.0890 [IQR: 0.032 – 0,370]) and leprosy monoinfected patients (median: 0.060 [IQR: 0.034 – 0.125]) have in the periphery 9 Carvalho KI et al higher NKT cells when compared with coinfected patients (median: 0.017 [IQR: 0.004 – 0.032]), p<0.001 (Figure 1A). Regarding to M. tuberculosis, Snyder- Cappione et al. demonstrated that the percentages of circulating NKT cells are selectively and significantly lower in patients with active pulmonary tuberculosis than those in uninfected individuals were lower in frequency [19]. Subset of CD4+ NKT cells Expression of CD4 distinguishes two phenotypically and functionally distinct subsets of NKT cells. CD4+ NKT cells were found to produce both Th1 and Th2 cytokines, whereas CD4- NKT cells were found mainly to produce Th1 cytokines [20, 21]. In adult peripheral blood, close to 50% of NKT cells are CD4- with low expression of CD8+ [22]. We observed that leprosy patients have more CD4 NKT cells positive when compared with HIV positive patients (p< 0.05) (Figure 1B). Activation marker in NKT cells We used CD161 and HLA-DR as activation markers in NKT cells. Although 5 to 10% of human peripheral blood T cells express CD161 [5, 23], constitutive expression of CD161+NKT cells along with CD1b and CD1d expression on monocytes-macrofages confirms the presence of NKT cells in peripheral blood of leprosy patients [24]. Our results could not detect any significant difference in CD161 expression on NKT cells in all groups. NKT cells can became activated during a variety of infections and inflammatory responses [25]. These data indicate that activation marker HLA-DR of NKT cells in coinfected patients (median: 61.75 [IQR: 25.95 – 79.60]) were higher expressing when compared with leprosy patients 10 Carvalho KI et al (median: 8.16 [IQR: 0.91 – 30]) and healthy controls (median: 13 [IQR: 3.20 – 35.30]), p<0.005 (Figure 1C). NKT cells from coinfected patients produce IFN-γ in response to α-GalCer It is well established that NKT cells are activated in response to the marine sponge-derived glycolipid antigen α-GalCer and antigen presentation occurs through CD1d [7]. ELISPOT is a very sensitive method to detect the frequency of antigenreactive cells in a population of lymphocytes with multiple specificities [26]. Our results demonstrated that the NKT cells, when stimulated with specific antigen αGalCer, have higher secretion IFN-γ in coinfected patients (median: 51.80 [IQR: 18.60 – 67.40]) when compared to leprosy monoinfected patients (median: 38.30 [IQR: 22.90 – 51.35]), p<0.05 (Figure 2B). No difference in IL-4 secretion by NKT cells was detected comparing the different groups of participants (Figure 2A). 11 Carvalho KI et al Discussion The importance of NKT cells might depend on their ability to be activated early during viral infection and to produce cytokines such as IFN-γ quickly, thus initiating the activation of NK cells, which then exert the primary antiviral effects, either directly by cytolysis or indirectly through the further release of cytokines [8]. NKT cells participate in host defense against microbial infection [7]. Several groups demonstrated that NKT cells were lower in peripheral blood in Mycobacterium infections [19, 27]. We demonstrated that coinfected patients show lower NKT cells in peripheral blood when compared with healthy subjects and leprosy monoinfected patients. One important effector mechanism by which NKT cells may contribute to host defense against infection in humans is the production of cytokines [7]. Having originally been recognized for their ability to produce the Th2 cytokine IL-4, NKT cells take on a Th1 phenotype during development and produce significant amounts IFN-γ [28]. In leprosy patients we observed an increased percentage of NKT cells expressing IFN-γ, compared to a lower frequency expressing IL-4 [24]. The differential expression of IL-4 cytokine expression by NKT cells is critical for their function in many different disease states. The finding that NKT cells recognize αGalCer presented by dendritic cells in a CD1d-dependent manner represents a novel recognition mechanism in the immune system [29]. In this study, we observed that coinfected patients produced higher amount of IFN-γ when stimulated with specific antigen of NKT cells α-GalCer, but did not produce IL-4 in the same subjects. Mempel et al. described the presence of NKT cells in leprous granulomas, and the presence of this distinctive T-cell subset is clearly associated with T-cell forms of 12 Carvalho KI et al leprosy [30]. One hypothesis is that the NKT cells can be in the site of infection and in the peripheral blood is activated in these patients. Human NKT cells could be involved in the initial stages of HIV-1 infection and in the spread of the virus throughout the host. Although many studies have attributed beneficial antiviral responses to NKT cells have also been implicated in detrimental immune responses that lead to immunopathology and disease [8]. HIV entry into target cells requires concomitant expression of CD4 and chemokine receptors. CD4+ T cells are suitable targets for HIV-1 infection because they express CD4 as well as high levels of the chemokine receptor CCR5 [31]. Recent findings show that NKT cells in PBMCs of HIV-1 infected individuals are dramatically reduced compared with healthy donors [2, 32, 33]. Therefore, the loss of NKT cells in HIV+ individuals may lead to autoimmunity or autoimmune-like conditions. Diminished NKT cell-mediated anti-tumor responses could also contribute to increased incidence of tumors such as Kaposi’s sarcoma and non-Hodgkin’s lymphoma in AIDS patients [23]. In this study, we observed a trend to a decreased NKT cells percentage in the peripheral blood. We also found that CD4+ NKT cells were significantly lower in HIV+ subjects when compared with leprosy monoinfected patients. Thus, selective loss of the CD4+ subpopulation of NKT cells may have significant effects on the function of the NKT-cell compartment in HIV-infected individuals. In conclusion, we demonstrated, for the first time, a preferential depletion of the immunoregulatory Vα24+Vβ11+ during HIV/leprosy coinfection and a decreased in the CD4+ subset of NKT cell population in HIV+ subjects when compared to leprosy subjects. These findings also raise the possibility that mycobacterial infections are associated with depletion of CD4+ NKT cells. 13 Carvalho KI et al References 1 2 3 4 5 6 7 8 9 10 11 12 13 14 Crowe, N. Y., Uldrich, A. P., Kyparissoudis, K., Hammond, K. J., Hayakawa, Y., Sidobre, S., Keating, R., Kronenberg, M., Smyth, M. J. and Godfrey, D. I., Glycolipid antigen drives rapid expansion and sustained cytokine production by NK T cells. J Immunol 2003. 171: 4020-4027. van der Vliet, H. J., von Blomberg, B. M., Hazenberg, M. D., Nishi, N., Otto, S. A., van Benthem, B. H., Prins, M., Claessen, F. A., van den Eertwegh, A. J., Giaccone, G., Miedema, F., Scheper, R. J. and Pinedo, H. M., Selective decrease in circulating V alpha 24+V beta 11+ NKT cells during HIV type 1 infection. J Immunol 2002. 168: 1490-1495. Thedrez, A., de Lalla, C., Allain, S., Zaccagnino, L., Sidobre, S., Garavaglia, C., Borsellino, G., Dellabona, P., Bonneville, M., Scotet, E. and Casorati, G., CD4 engagement by CD1d potentiates activation of CD4+ invariant NKT cells. Blood 2007. 110: 251-258. Godfrey, D. I., Hammond, K. J., Poulton, L. D., Smyth, M. J. and Baxter, A. G., NKT cells: facts, functions and fallacies. Immunol Today 2000. 21: 573-583. Kronenberg, M., Toward an understanding of NKT cell biology: progress and paradoxes. Annu Rev Immunol 2005. 23: 877-900. McNab, F. W., Berzins, S. P., Pellicci, D. G., Kyparissoudis, K., Field, K., Smyth, M. J. and Godfrey, D. I., The influence of CD1d in postselection NKT cell maturation and homeostasis. J Immunol 2005. 175: 3762-3768. Gansert, J. L., Kiessler, V., Engele, M., Wittke, F., Rollinghoff, M., Krensky, A. M., Porcelli, S. A., Modlin, R. L. and Stenger, S., Human NKT cells express granulysin and exhibit antimycobacterial activity. J Immunol 2003. 170: 3154-3161. Van Dommelen, S. L. and Degli-Esposti, M. A., NKT cells and viral immunity. Immunol Cell Biol 2004. 82: 332-341. Murray, R. A., Siddiqui, M. R., Mendillo, M., Krahenbuhl, J. and Kaplan, G., Mycobacterium leprae inhibits dendritic cell activation and maturation. J Immunol 2007. 178: 338-344. Makino, M., Maeda, Y. and Ishii, N., Immunostimulatory activity of major membrane protein-II from Mycobacterium leprae. Cell Immunol 2005. 233: 53-60. Ustianowski, A. P., Lawn, S. D. and Lockwood, D. N., Interactions between HIV infection and leprosy: a paradox. Lancet Infect Dis 2006. 6: 350-360. Orege, P. A., Fine, P. E., Lucas, S. B., Obura, M., Okelo, C., Okuku, P. and Were, M., A case control study on human immunodeficiency virus-1 (HIV-1) infection as a risk factor for tuberculosis and leprosy in western Kenya. Tuber Lung Dis 1993. 74: 377-381. Frommel, D., Tekle-Haimanot, R., Verdier, M., Negesse, Y., Bulto, T. and Denis, F., HIV infection and leprosy: a four-year survey in Ethiopia. Lancet 1994. 344: 165-166. Sampaio, E. P., Caneshi, J. R., Nery, J. A., Duppre, N. C., Pereira, G. M., Vieira, L. M., Moreira, A. L., Kaplan, G. and Sarno, E. N., Cellular immune response to Mycobacterium leprae infection in human 14 Carvalho KI et al 15 16 17 18 19 20 21 22 23 24 25 26 27 28 immunodeficiency virus-infected individuals. Infect Immun 1995. 63: 18481854. Ridley, D. S. and Jopling, W. H., Classification of leprosy according to immunity. A five-group system. Int J Lepr Other Mycobact Dis 1966. 34: 255273. Saúde, M. d., Plano Nacional de Eliminação da Hanseníase em Nível Municipal 2006-2010 2006. Wilson, S. B. and Byrne, M. C., Gene expression in NKT cells: defining a functionally distinct CD1d-restricted T cell subset. Curr Opin Immunol 2001. 13: 555-561. Berzins, S. P., Cochrane, A. D., Pellicci, D. G., Smyth, M. J. and Godfrey, D. I., Limited correlation between human thymus and blood NKT cell content revealed by an ontogeny study of paired tissue samples. Eur J Immunol 2005. 35: 1399-1407. Snyder-Cappione, J. E., Nixon, D. F., Loo, C. P., Chapman, J. M., Meiklejohn, D. A., Melo, F. F., Costa, P. R., Sandberg, J. K., Rodrigues, D. S. and Kallas, E. G., Individuals with pulmonary tuberculosis have lower levels of circulating CD1d-restricted NKT cells. J Infect Dis 2007. 195: 13611364. Gumperz, J. E., Miyake, S., Yamamura, T. and Brenner, M. B., Functionally distinct subsets of CD1d-restricted natural killer T cells revealed by CD1d tetramer staining. J Exp Med 2002. 195: 625-636. Lee, P. T., Benlagha, K., Teyton, L. and Bendelac, A., Distinct functional lineages of human V(alpha)24 natural killer T cells. J Exp Med 2002. 195: 637-641. Sandberg, J. K., Stoddart, C. A., Brilot, F., Jordan, K. A. and Nixon, D. F., Development of innate CD4+ alpha-chain variable gene segment 24 (Valpha24) natural killer T cells in the early human fetal thymus is regulated by IL-7. Proc Natl Acad Sci U S A 2004. 101: 7058-7063. Unutmaz, D., NKT cells and HIV infection. Microbes Infect 2003. 5: 10411047. Chattree, V., Khanna, N., Bisht, V. and Rao, D. N., Inhibition of apoptosis, activation of NKT cell and upregulation of CD40 and CD40L mediated by M. leprae antigen(s) combined with Murabutide and Trat peptide in leprosy patients. Mol Cell Biochem 2008. 309: 87-97. Van Kaer, L., NKT cells: T lymphocytes with innate effector functions. Curr Opin Immunol 2007. 19: 354-364. Sieling, P. A., Torrelles, J. B., Stenger, S., Chung, W., Burdick, A. E., Rea, T. H., Brennan, P. J., Belisle, J. T., Porcelli, S. A. and Modlin, R. L., The human CD1-restricted T cell repertoire is limited to cross-reactive antigens: implications for host responses against immunologically related pathogens. J Immunol 2005. 174: 2637-2644. Montoya, C. J., Catano, J. C., Ramirez, Z., Rugeles, M. T., Wilson, S. B. and Landay, A. L., Invariant NKT cells from HIV-1 or Mycobacterium tuberculosis-infected patients express an activated phenotype. Clin Immunol 2008. 127: 1-6. Hammond, K. J., Pelikan, S. B., Crowe, N. Y., Randle-Barrett, E., Nakayama, T., Taniguchi, M., Smyth, M. J., van Driel, I. R., Scollay, R., Baxter, A. G. and Godfrey, D. I., NKT cells are phenotypically and functionally diverse. Eur J Immunol 1999. 29: 3768-3781. 15 Carvalho KI et al 29 30 31 32 33 Porcelli, S. A., Segelke, B. W., Sugita, M., Wilson, I. A. and Brenner, M. B., The CD1 family of lipid antigen-presenting molecules. Immunol Today 1998. 19: 362-368. Mempel, M., Flageul, B., Suarez, F., Ronet, C., Dubertret, L., Kourilsky, P., Gachelin, G. and Musette, P., Comparison of the T cell patterns in leprous and cutaneous sarcoid granulomas. Presence of Valpha24-invariant natural killer T cells in T-cell-reactive leprosy together with a highly biased T cell receptor Valpha repertoire. Am J Pathol 2000. 157: 509-523. Kinter, A., Arthos, J., Cicala, C. and Fauci, A. S., Chemokines, cytokines and HIV: a complex network of interactions that influence HIV pathogenesis. Immunol Rev 2000. 177: 88-98. Motsinger, A., Haas, D. W., Stanic, A. K., Van Kaer, L., Joyce, S. and Unutmaz, D., CD1d-restricted human natural killer T cells are highly susceptible to human immunodeficiency virus 1 infection. J Exp Med 2002. 195: 869-879. Sandberg, J. K., Fast, N. M., Palacios, E. H., Fennelly, G., Dobroszycki, J., Palumbo, P., Wiznia, A., Grant, R. M., Bhardwaj, N., Rosenberg, M. G. and Nixon, D. F., Selective loss of innate CD4(+) V alpha 24 natural killer T cells in human immunodeficiency virus infection. J Virol 2002. 76: 75287534. 16 Carvalho KI et al Table 1. Demographic, clinical, and laboratory characteristics of participants. Healthy Leprosy HIV HIVLeprosy Gender Age (years) mediam (n=26) Female 42% Male 58% (n=17) Female 12% Male 88% (n=17) (n=25) 33.54 (n=26) 972.92 (n=25) 556 (n=14) 35.43 (n=7) 672.5 (n=17) 40.59 (n=23) 39.87 Male 100% (n=23) Female 22% Male 78% CD4+ T CD8+ T cells/mm3 cells/mm3 Viral load (HIVRNA log10) ND Leprosy clinical presentation (n=5) 511 ND (n=17) 402.27 (n=16) 1028 (n=16) 2.58 (n=14) TT 7% LL 36% BT 21% BL 36% ND (n=22) 341.52 (n=23) 806 (n=21) 3.06 ND (n=23) TT 13% LL 0% BT 48% BL 39% ND: not done. 17 Carvalho KI et al Figure legends Figure 1. Distribution of NKT cells in the periphery in four groups. (A) Log10 expression of NKT cells (**p < 0.01). (B) The frequency of CD4+ NKT cells substes (*p < 0.05). (C) Activation marker anti-HLADR in NKT cells (**p < 0.01) Group comparisons were carried out using Kruskal-Wallis nonparametric test. Figure 2. Enumeration of cytokine producing cells following stimulation with antigen-loaded CD1d dimers. Human PBMC were added to cytokine Elispot assays directly ex vivo with αGalCer-specific cytokine producing IL4 (not significant) and INF-γ (*p < 0.05). 18 Carvalho KI et al Figure 1. A 100 ** ** 10 1 0.1 0.01 0.001 Healthy HIV Leprosy B Dual C ** * 100 100 ** 75 50 50 25 0 0 Healthy HIV Leprosy Dual Healthy HIV Leprosy Dual 19 Carvalho KI et al Figure 2 A 30 ns 20 10 0 Healthy HIV Leprosy B Dual * 30 20 10 0 Healthy HIV Leprosy Dual 20 Carvalho KI et al 21 Carvalho KI Trabalho 4 Neste estudo, foram examinados os fenótipos de ativação e a secreção de citocinas pelas células NKT em pacientes com CVID. Este é o primeiro estudo da frequência e função de células NKT nestes pacientes. Os resultados demonstraram que a frequência de células NKT no sangue periférico está diminuída nos que apresentam CVID (media: 0.02 [IQR: 0.01 – 0.05]) quando comparados com controles saudáveis (media: 0.28 [IQR: 0.13 – 0.48]); p < 0.001. Foi demonstrada uma correlação inversa entre a secreção de IL-4 pelas células NKT e níveis da expressão de CXCR6. Os resultados sugerem que talvez possamos auxiliar o tratamento dos pacientes CVID se fosse possível obter um aumento no número de células NKT através de uma terapia modulatória. 80 Title: Decreased frequency of circulating activated natural killer T cells in patients with common variable immunodeficiency disorders (CVID). Karina I. Carvalho1, Karina Melo1, Fernanda R. Bruno1, Jennifer E. SnyderCappione2, Douglas F. Nixon2, Beatriz T. Costa-Carvalho1, Esper G. Kallas1-3 1 Federal University of São Paulo, São Paulo, Brazil; 2Division of Experimental Medicine, San Francisco General Hospital, University of California, San Francisco, USA; 3Division of Clinical Immunology and Allergy, University of São Paulo, São Paulo, Brazil Running title: NKT cells in CVID Key words: NKT cells, common variable immunodeficiency disorder, CVID, CXCR6, CCR5, IL-4 Word count: 1196 words (excluding abstract, references, and figure legends). Carvalho et al. Abstract (113 words) In this study, we examined the phenotype, activation markers, and cytokine secretion from NKT cells in patients with CVID. To our knowledge, this is the first study of the function and frequency of NKT cells in such patients. Our results showed that the frequency of NKT cells in peripheral blood is markedly lower in CVID patients (median 0.02 [IQR: 0.01 - 0.05]) when compared to healthy controls (median 0.28 [IQR: 0.13 - 0.48]; Figure 1B), p < 0.001. We also showed an inverse correlation between IL-4 secretion by NKT cells and their level of CXCR6 expression. Boosting of NKT cell numbers through therapeutic modulation might be a valuable adjunctive treatment in CVID subjects. 2 Carvalho et al. Introduction Common variable immunodeficiency disorder (CVID) is comprised of 20-30 different immunodeficiencies with similar characteristics, including hypogammaglobulinemia and impaired B cell functions (1-3). CVID is the most common form of significant clinical primary antibody failure in adults and children (4). Although CVID is characterized as a hyporesponsive immune disorder, many subjects develop autoimmune diseases (5). Natural killer T (NKT) cells are lymphocytes that express a rearranged Vα24Jα18 semi-invariant TCR in humans, and recognize a glycolipid (for example the prototypic α-galactosyl ceramide (αGalCer)), presented in the context of the nonclassical MHC molecule, CD1d (6). Upon TCR stimulation, NKT cells are able to rapidly secrete both Th1 and Th2 cytokines (7), and appear to be an integral component of the suppression of autoreactive T cells (8). with αGalCer enhances T-dependent humoral Activation of NKT cells immune responses against coadministered T-dependent Ag, and this involves interaction with CD1d-expressing B cells (13). NKT cells can also help B lymphocyte responses, and mice immunized with proteins and αGalCer develop antibody titers 1-2 log10 higher than those induced by proteins alone (14). Because of the important interactions of B cells with NKT cells, we measured the frequencies, chemokine receptor patterns, and ex vivo effector functions of NKT cells in CVID patients compared with healthy controls. We hypothesized that prevalence of autoimmune symptoms/ diseases in CVID was due to a yet unknown defect in NKT cells. Our results show that NKT cells circulate at lower frequencies in the peripheral blood of CVID subjects compared to controls. However, these NKT 3 Carvalho et al. cells are highly activated with marked upregulation of the expression of CCR5 and CXCR6. Study Desing Subjects and sample collection This study was reviewed and approved by the local Institutional Review Board, and informed consent was obtained from all participants. Diagnosis of CVID was established according to the criteria by the Pan-American Group for Immunodeficiency (PAGID). Seven healthy controls and seventeen CVID subjects were identified at the Division of Pediatric Clinical Immunology located at the Federal University of São Paulo. PBMC were isolated from volunteers and the cells were cryopreserved until the day of the assay. Flow cytometry The following monoclonal antibodies were used: CD3-peridin chlorophyll protein (PerCP), CD8-allophycocyanin (APC) and, CD4-PE-Cy7, from BD Biosciences (San Jose, CA); CCR5- phycoerythrin–cyanine (PE-Cy7), and CD161APC, from BD PharMingen ; Vα24 phycoerythrin (PE), Vβ11-Fluorescein isothiocyanate (FITC) from Immunotech; CXCR6-APC, and CD69 allophycocyanin cyanine-7(APC-Cy7). Fluorescence minus one (FMO) was used to gate (15). Samples were acquired on a FACSCanto, using FACSDiva software (BD Biosciences), and analyzed with FlowJo software (Tree Star, San Carlo, CA). Elispot 4 Carvalho et al. To determine the NKT cell secretion of interferon γ (IFNγ) and interleukin 4 (IL-4), we used ELISPOT kits for detection of human IFNγ and IL-4 (Mabtech). PBMC cells (3 x 105/ well) were incubated for 18 hours or overnight in the presence or absence of an α-glactosyl-ceramide (α-GalCer) (AXXORA). Cells were removed and plates processed according to the to the manufacturer’s instructions. Colored spots were counted with an Immunospot S5 Analyser (CTL, LLC) (Snyder-Cappione. et al., submitted). Statistical analysis Groups were compared using non-parametric models; data are reported as median and interquartile ranges (IQR). Comparisons among groups used the MannWhitney non-parametric test. Correlations were performed using Spearman nonparametric test. p values were considered significant if <0.05. 5 Carvalho et al. Results and Discussion In this study, we examined the phenotype, activation markers, and cytokine secretion from NKT cells in patients with CVID. To our knowledge, this is the first study of the function and frequency of NKT cells in such patients. Our results showed that the frequency of NKT cells in peripheral blood is markedly lower in CVID patients (median: 0.02 [IQR: 0.01 - 0.05]) when compared to healthy controls (median: 0.28 [IQR: 0.13 - 0.48]) (Figure 1B), p < 0.001. We also showed an inverse correlation between IL-4 secretion by NKT cells and their level of CXCR6 expression. NKT cells also display a partially activated/memory phenotype reflected by the expression of molecules such as CD69 and CD44 found in human cord blood (16), and share several phenotypic features with NK cells, such as surface expression of CD161 (17). In this study CD69 expression on NKT cells was markedly elevated in CVID subjects (median: 32.90 [IQR: 19.30 - 71.40]), suggesting an increased activation state, or NKT cells at a late stage of differentiation. NKT cells from mice spleen express CD69 at different stages, indicating that after NKT cells exit the thymus they undergo further maturation by up-regulating CD69 (18). CXCR6 expression is associated with the function and fate of NKT cells by controlling their survival, cytokine production, and ability to induce tissue damage (19). Previous studies describe that mice NKT cells were able to express CXCR6 (11, 19). Interestingly, this chemokine receptor is expressed in humans on Th1 and Tc1 memory CD4+ and CD8+ T lymphocytes (20), and CXCR6 preferentially express double negative and CD8+ subsets in NKT cells (9, 21). It has been known that CXCR6 is expressed at a high level on NKT cells even under physiological conditions, as compared with other lymphocytes (22). Our results suggest that NKT 6 Carvalho et al. cells express higher chemokine receptors, such as CCR5 and CXCR6, in CVID subjects subjects (median: 70.80 [IQR: 63.30 – 95.30], and median: 18.70 [IQR: 14.20 – 27.20], respectively, p < 0.01), and this increased expression of the CXCR6 is negatively correlated with IL-4 expression in total PBMC stimulated with αGalCer. It is likely that the higher expression of these chemokines receptors by NKT cells demonstrates a homing potential to nonlymphoid tissues and is highly associated with inflammation. Together with the higher expression of CD69 on these NKT cells, the cumulative data suggests a model of low numbers of highly activated circulating NKT cells in CVID patients. A recent study has shown that dendritic cells (DCs) grown in the presence of low immunoglobulin levels preferentially present antigens to group I CD1-restricted T cells (CD1a, b, and c), known to play an important role in antimicrobial responses, whereas DCs grown with high immunoglobulin levels are superior in presenting glycolipids to NKT cells (23). From our results in the CVID patients presented here, who have low levels of circulating immunoglobulins, we can hypothesize that the reduced frequency of NKT cells is related to lower CD1d expression on DCs. As treatment with immunoglobulin is used for CVID patients, it will also be possible to monitor longitudinally the frequency of NKT cells and how it relates to CD1d expression on dendritic cells in future studies. There are some limitations to this study. It is a cross sectional study, and NKT cell frequencies may change over time, although we have previously shown a stability of NKT cell numbers in healthy individuals (24). CIVD represents a spectrum of diseases, and different genetic causes might lead to differences in NKT cell frequencies. Also, we sampled NKT cells only in peripheral blood. Nevertheless, we do not believe that these caveats would change the conclusions, based on the strong statistical differences. 7 Carvalho et al. In summary, CVID subjects have a lower frequency of activated homing NKT cells in peripheral blood, with a decreased ability to secrete IFNγ and IL-4. Boosting of NKT cell numbers through therapeutic modulation might be a valuable adjunctive treatment in CVID subjects. Acknowledgments This work was partially supported by the National Institutes of Health (grants #R37AI52731 and AI060379) (Nixon); KIC’s Ph.D. scholarship has been provided by the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Brazilian 8 Carvalho et al. Ministry of Science and Technology. We also thank Helena Tomiyama and Tania Maria da Silva for continued laboratory support. Contribution: K.I.C., designed the research, performed the experiments, analyzed the data, wrote the manuscript; K.M., evaluated the participants and collected the clinical samples, supported the experiments; F.R.B., performed the experiments, supported the data analyses; J.E.S-C., developed the NKT protocols, wrote the paper; D. F. N., obtained funds for the project, designed the research, wrote the paper; B.C-C., obtained funds for the project, supervised the clinical activities, revised the paper; E.G.K., obtained funds for the project, designed the research, supervised the data analyses, wrote the manuscript Conflict-of-interet disclosure: The authors declare no competing conflicts of interests. Corresponding author: Esper Georges Kallas, M.D., Ph.D., Universidade de São Paulo, Laboratório de Investigação Médica 60, Av. Dr. Arnaldo 455, terceiro andar, São Paulo – SP 01246-903, Phone: (+55-11) 3061-8395, Fax: (+55-11) 3061-8392 ; e-mail : [email protected] 9 Carvalho et al. References 1. Haymore BR, Mikita CP, Tsokos GC. Common variable immune deficiency (CVID) presenting as an autoimmune disease: role of memory B cells. Autoimmun Rev 2008;7(4):309-12. 2. Cunningham-Rundles C. Autoimmune Manifestations in Common Variable Immunodeficiency. J Clin Immunol 2008. 3. Lopes-da-Silva S, Rizzo LV. Autoimmunity in Common Variable Immunodeficiency. J Clin Immunol 2008. 4. Chapel H, Lucas M, Lee M, Bjorkander J, Webster D, Grimbacher B, et al. Common variable immunodeficiency disorders: division into distinct clinical phenotypes. Blood 2008. 5. Cunningham-Rundles C, Bodian C. Common variable immunodeficiency: clinical and immunological features of 248 patients. Clin Immunol 1999;92(1):34-48. 6. Kronenberg M. Toward an understanding of NKT cell biology: progress and paradoxes. Annu Rev Immunol 2005;23:877-900. 7. Au-Yeung BB, Fowell DJ. A key role for Itk in both IFN gamma and IL-4 production by NKT cells. J Immunol 2007;179(1):111-9. 8. Falcone M, Facciotti F, Ghidoli N, Monti P, Olivieri S, Zaccagnino L, et al. Up-regulation of CD1d expression restores the immunoregulatory function of NKT cells and prevents autoimmune diabetes in nonobese diabetic mice. J Immunol 2004;172(10):5908-16. 9. Lee PT, Benlagha K, Teyton L, Bendelac A. Distinct functional lineages of human V(alpha)24 natural killer T cells. J Exp Med 2002;195(5):637-41. 10 Carvalho et al. 10. Thomas SY, Hou R, Boyson JE, Means TK, Hess C, Olson DP, et al. CD1d- restricted NKT cells express a chemokine receptor profile indicative of Th1-type inflammatory homing cells. J Immunol 2003;171(5):2571-80. 11. Johnston B, Kim CH, Soler D, Emoto M, Butcher EC. Differential chemokine responses and homing patterns of murine TCR alpha beta NKT cell subsets. J Immunol 2003;171(6):2960-9. 12. Germanov E, Veinotte L, Cullen R, Chamberlain E, Butcher EC, Johnston B. Critical Role for the Chemokine Receptor CXCR6 in Homeostasis and Activation of CD1d-Restricted NKT Cells. J Immunol 2008;181(1):81-91. 13. Lang GA, Devera TS, Lang ML. Requirement for CD1d expression by B cells to stimulate NKT cell-enhanced antibody production. Blood 2008;111(4):2158-62. 14. Galli G, Pittoni P, Tonti E, Malzone C, Uematsu Y, Tortoli M, et al. Invariant NKT cells sustain specific B cell responses and memory. Proc Natl Acad Sci U S A 2007;104(10):3984-9. 15. Roederer M. Spectral compensation for flow cytometry: visualization artifacts, limitations, and caveats. Cytometry 2001;45(3):194-205. 16. McNab FW, Berzins SP, Pellicci DG, Kyparissoudis K, Field K, Smyth MJ, et al. The influence of CD1d in postselection NKT cell maturation and homeostasis. J Immunol 2005;175(6):3762-8. 17. Thedrez A, de Lalla C, Allain S, Zaccagnino L, Sidobre S, Garavaglia C, et al. CD4 engagement by CD1d potentiates activation of CD4+ invariant NKT cells. Blood 2007;110(1):251-8. 18. Kim PJ, Pai SY, Brigl M, Besra GS, Gumperz J, Ho IC. GATA-3 regulates the development and function of invariant NKT cells. J Immunol 2006;177(10):6650-9. 19. Seino K, Taniguchi M. Functionally distinct NKT cell subsets and subtypes. J Exp Med 2005;202(12):1623-6. 11 Carvalho et al. 20. Kim CH, Kunkel EJ, Boisvert J, Johnston B, Campbell JJ, Genovese MC, et al. Bonzo/CXCR6 expression defines type 1-polarized T-cell subsets with extralymphoid tissue homing potential. J Clin Invest 2001;107(5):595-601. 21. Kim CH, Johnston B, Butcher EC. Trafficking machinery of NKT cells: shared and differential chemokine receptor expression among V alpha 24(+)V beta 11(+) NKT cell subsets with distinct cytokine-producing capacity. Blood 2002;100(1):11-6. 22. Jiang X, Shimaoka T, Kojo S, Harada M, Watarai H, Wakao H, et al. Cutting edge: critical role of CXCL16/CXCR6 in NKT cell trafficking in allograft tolerance. J Immunol 2005;175(4):2051-5. 23. Smed-Sorensen A, Moll M, Cheng TY, Lore K, Norlin AC, Perbeck L, et al. IgG regulates the CD1 expression profile and lipid antigen-presenting function in human dendritic cells via FcgammaRIIa. Blood 2008;111(10):5037-46. 24. Sandberg JK, Bhardwaj N, Nixon DF. Dominant effector memory characteristics, capacity for dynamic adaptive expansion, and sex bias in the innate Valpha24 NKT cell compartment. Eur J Immunol 2003;33(3):588-96. 12 Carvalho et al. Figures legends Figure 1: Expression of NKT cells in peripheral blood. (A) Representative flow cytometric analyses on PBMC CD3+ T cells and Vα24+Vβ11+ for NKT cells in a health subject (left) and in a CVID patient (right). (B) Log10 expression of NKT cells in healthy subjects and CVID patients (**p < 0.001). Group comparisons were carried out using Mann-Whitney non-parametric test. Figure 2: Representative flow cytometric and percentage of activation, chemokine receptors in NKT cells. (A) Density plot showing expression of CXCR6, CCR5, and CD69 marker from NKT cells gate (Vα24+Vβ11) in healthy subject and (B) in a CVI patient. (C) Percentage of chemokine receptors CXCR6, CCR5, and CD69 expression on NKT cells (p<0.01). Group comparisons were carried out using Mann-Whitney non-parametric test. 13 Carvalho et al. Figure 1.A A Healthy control CVID patient 4000 4000 3000 3000 S S C 2000 2000 67.2% 77.8% 1000 1000 0 0 102 103 104 0 105 0 102 CD3 104 105 CD3 105 105 104 Vβ 11 103 104 103 0.35% 103 102 0.04% 102 0 0 0 102 103 104 105 0 Vα24 102 103 104 105 Vα24 14 Carvalho et al. Figure 1 B B 100 10 1 0.1 0.01 0.001 Control CVID 15 Carvalho et al. Figure 2 A Healthy control 400 0 400 0 400 0 300 0 300 0 300 0 200 0 200 0 200 0 100 0 100 0 100 0 7.1 0 0 1 0 2 1 0 3 1 0 4 1 0 2 0 5 0 1 0 2 1 0 3 1 0 4 1 0 24. 0 5 0 1 0 2 1 0 3 1 0 4 0 1 0 2 1 0 3 1 0 4 1 0 5 CVID patient 400 0 400 0 400 0 300 0 300 0 300 0 200 0 200 0 200 0 100 0 100 0 100 0 3 0 0 1 0 2 1 0 3 1 0 4 1 0 52. 0 5 0 1 0 2 CXCR6 1 0 3 1 0 4 1 0 5 46. 0 CCR5 1 0 CD69 B 100 75 100 75 50 50 50 25 25 0 0 Control CVID 0 Control CVID Control CVID 16 5 Carvalho KI Conclusões Destes trabalhos podemos concluir que: 1. A coinfecção pelo M. leprae e o HIV esta associada no sangue periférico a: a. Diminuição da razão de CD4:CD8; b. Diminuição da frequência de células dendríticas plasmocitóides; c. Aumento dos níveis de ativação das células T CD8+; d. Aumento da razão de células T Vδ1:Vδ2; e. A produção de IL-4 pelos células T CD4+ foi correlacionada positivamente com a porcentagem de subpopulações de memória efetora de células T CD4+. 2. Em pacientes infectados pelo HIV foi observado que: a. A frequência de células NKT secretam baixos níveis de IFN-γ e TNF-α quando comparadas com indivíduos saudáveis; b. Ocorreu uma diminuição na magnitude da resposta de citocinas Th1 pelas células NKT quando correlacionadas com a expressão de CD161. 3. O estudo de células NKT em pacientes coinfectados pelo M. leprae e o HIV mostrou que: a. Estão diminuídas no sangue periférico quando comparadas com indivíduos saudáveis e monoinfectados pelo M. leprae; b. Secretam mais IFN-γ quando comparados com indivíduos monoinfectados pelo M.leprae. 67 Carvalho KI Referências Bibliográficas REFERÊNCIAS BIBLIOGRÁFICAS Abel, L. and F. Demenais (1988). "Detection of major genes for susceptibility to leprosy and its subtypes in a Caribbean island: Desirade island." Am J Hum Genet 42(2): 256-66. Abel, L., D. L. Vu, et al. (1995). "Complex segregation analysis of leprosy in southern Vietnam." Genet Epidemiol 12(1): 63-82. Alter, A., A. Alcais, et al. (2008). "Leprosy as a genetic model for susceptibility to common infectious diseases." Hum Genet 123(3): 227-35. Andrade, V. L., J. C. Avelleira, et al. (1991). "Leprosy as cause of false-positive results in serological assays for the detection of antibodies to HIV-1." Int J Lepr Other Mycobact Dis 59(1): 125-6. Apostolou, I., Y. Takahama, et al. (1999). "Murine natural killer T(NKT) cells [correction of natural killer cells] contribute to the granulomatous reaction caused by mycobacterial cell walls." Proc Natl Acad Sci U S A 96(9): 5141-6. Asselin-Paturel, C., A. Boonstra, et al. (2001). "Mouse type I IFN-producing cells are immature APCs with plasmacytoid morphology." Nat Immunol 2(12): 114450. Au-Yeung, B. B. and D. J. Fowell (2007). "A key role for Itk in both IFN gamma and IL-4 production by NKT cells." J Immunol 179(1): 111-9. Balabanian, K., J. Harriague, et al. (2004). "CXCR4-tropic HIV-1 envelope glycoprotein functions as a viral chemokine in unstimulated primary CD4+ T lymphocytes." J Immunol 173(12): 7150-60. Barnes, P. F., A. B. Bloch, et al. (1991). "Tuberculosis in patients with human immunodeficiency virus infection." N Engl J Med 324(23): 1644-50. Barre-Sinoussi, F. (1996). "HIV as the cause of AIDS." Lancet 348(9019): 31-5. Barre-Sinoussi, F., J. C. Chermann, et al. (1983). "Isolation of a T-lymphotropic retrovirus from a patient at risk for acquired immune deficiency syndrome (AIDS)." Science 220(4599): 868-71. Batista, M., M. SM., et al. (2007). "Leprosy reversal reaction as immune reconstitution inflammatory syndrome in AIDS patients." Clin Infect Dis in press. Bendelac, A. (1995). "Mouse NK1+ T cells." Curr Opin Immunol 7(3): 367-74. 68 Carvalho KI Referências Bibliográficas Bendelac, A., O. Lantz, et al. (1995). "CD1 recognition by mouse NK1+ T lymphocytes." Science 268(5212): 863-5. Bendelac, A., M. N. Rivera, et al. (1997). "Mouse CD1-specific NK1 T cells: development, specificity, and function." Annu Rev Immunol 15: 535-62. Bendelac, A., P. B. Savage, et al. (2007). "The biology of NKT cells." Annu Rev Immunol 25: 297-336. Benlagha, K., A. Weiss, et al. (2000). "In vivo identification of glycolipid antigenspecific T cells using fluorescent CD1d tetramers." J Exp Med 191(11): 1895903. Bloom, B. R. (1986). "Learning from leprosy: a perspective on immunology and the Third World." J Immunol 137(1): i-x. Bochud, P. Y., T. R. Hawn, et al. (2003). "Cutting edge: a Toll-like receptor 2 polymorphism that is associated with lepromatous leprosy is unable to mediate mycobacterial signaling." J Immunol 170(7): 3451-4. Borgdorff, M. W., J. van den Broek, et al. (1993). "HIV-1 infection as a risk factor for leprosy; a case-control study in Tanzania." Int J Lepr Other Mycobact Dis 61(4): 556-62. Britton, W. J. and D. N. Lockwood (2004). "Leprosy." Lancet 363(9416): 1209-19. Chaudhury, S., S. K. Hazra, et al. (1994). "An eight-year field trial on antileprosy vaccines among high-risk household contacts in the Calcutta metropolis." Int J Lepr Other Mycobact Dis 62(3): 389-94. Chen, X., X. Wang, et al. (2007). "Modulation of CD1d-restricted NKT cell responses by CD4." J Leukoc Biol 82(6): 1455-65. Cicala, C., J. Arthos, et al. (2002). "HIV envelope induces a cascade of cell signals in non-proliferating target cells that favor virus replication." Proc Natl Acad Sci U S A 99(14): 9380-5. Cole, S. T., K. Eiglmeier, et al. (2001). "Massive gene decay in the leprosy bacillus." Nature 409(6823): 1007-11. Convit, J., C. Sampson, et al. (1992). "Immunoprophylactic trial with combined Mycobacterium leprae/BCG vaccine against leprosy: preliminary results." Lancet 339(8791): 446-50. Couppie, P., S. Abel, et al. (2004). "Immune reconstitution inflammatory syndrome associated with HIV and leprosy." Arch Dermatol 140(8): 997-1000. 69 Carvalho KI Referências Bibliográficas Crowe, N. Y., D. I. Godfrey, et al. (2003). "Natural killer T cells are targets for human immunodeficiency virus infection." Immunology 108(1): 1-2. Douek, D. C., L. J. Picker, et al. (2003). "T cell dynamics in HIV-1 infection." Annu Rev Immunol 21: 265-304. Eberl, G., R. Lees, et al. (1999). "Tissue-specific segregation of CD1d-dependent and CD1d-independent NK T cells." J Immunol 162(11): 6410-9. Eckert, D. M. and P. S. Kim (2001). "Mechanisms of viral membrane fusion and its inhibition." Annu Rev Biochem 70: 777-810. Eger, K. A., M. S. Sundrud, et al. (2006). "Human natural killer T cells are heterogeneous in their capacity to reprogram their effector functions." PLoS ONE 1: e50. Emerman, M. and M. H. Malim (1998). "HIV-1 regulatory/accessory genes: keys to unraveling viral and host cell biology." Science 280(5371): 1880-4. Emoto, M., Y. Emoto, et al. (1999). "Induction of IFN-gamma-producing CD4+ natural killer T cells by Mycobacterium bovis bacillus Calmette Guerin." Eur J Immunol 29(2): 650-9. Exley, M. A., Q. He, et al. (2002). "Cutting edge: Compartmentalization of Th1-like noninvariant CD1d-reactive T cells in hepatitis C virus-infected liver." J Immunol 168(4): 1519-23. Ferreira, F. R., L. R. Goulart, et al. (2004). "Susceptibility to leprosy may be conditioned by an interaction between the NRAMP1 promoter polymorphisms and the lepromin response." Int J Lepr Other Mycobact Dis 72(4): 457-67. Gadue, P. and P. L. Stein (2002). "NK T cell precursors exhibit differential cytokine regulation and require Itk for efficient maturation." J Immunol 169(5): 2397406. Gansert, J. L., V. Kiessler, et al. (2003). "Human NKT cells express granulysin and exhibit antimycobacterial activity." J Immunol 170(6): 3154-61. Gebre, S., P. Saunderson, et al. (2000). "The effect of HIV status on the clinical picture of leprosy: a prospective study in Ethiopia." Lepr Rev 71(3): 338-43. Giorgi, J. V., L. E. Hultin, et al. (1999). "Shorter survival in advanced human immunodeficiency virus type 1 infection is more closely associated with T lymphocyte activation than with plasma virus burden or virus chemokine coreceptor usage." J Infect Dis 179(4): 859-70. 70 Carvalho KI Referências Bibliográficas Godfrey, D. I., K. J. Hammond, et al. (2000). "NKT cells: facts, functions and fallacies." Immunol Today 21(11): 573-83. Godfrey, D. I. and M. Kronenberg (2004). "Going both ways: immune regulation via CD1d-dependent NKT cells." J Clin Invest 114(10): 1379-88. Goebel, F. D. (2005). "Immune reconstitution inflammatory syndrome (IRIS)-another new disease entity following treatment initiation of HIV infection." Infection 33(1): 43-5. Gumperz, J. E. and M. B. Brenner (2001). "CD1-specific T cells in microbial immunity." Curr Opin Immunol 13(4): 471-8. Gumperz, J. E., S. Miyake, et al. (2002). "Functionally distinct subsets of CD1drestricted natural killer T cells revealed by CD1d tetramer staining." J Exp Med 195(5): 625-36. Gupte, M. D., R. S. Vallishayee, et al. (1998). "Comparative leprosy vaccine trial in south India." Indian J Lepr 70(4): 369-88. Hammond, K. J., S. B. Pelikan, et al. (1999). "NKT cells are phenotypically and functionally diverse." Eur J Immunol 29(11): 3768-81. Hammond, K. J., D. G. Pellicci, et al. (2001). "CD1d-restricted NKT cells: an interstrain comparison." J Immunol 167(3): 1164-73. Hansen, D. S., M. A. Siomos, et al. (2003). "Regulation of murine cerebral malaria pathogenesis by CD1d-restricted NKT cells and the natural killer complex." Immunity 18(3): 391-402. Harboe, M. (1988). "Rheumatoid factors in leprosy and parasitic diseases." Scand J Rheumatol Suppl 75: 309-13. Hayakawa, Y., D. I. Godfrey, et al. (2004). "Alpha-galactosylceramide: potential immunomodulatory activity and future application." Curr Med Chem 11(2): 241-52. Heine, H. and E. Lien (2003). "Toll-like receptors and their function in innate and adaptive immunity." Int Arch Allergy Immunol 130(3): 180-92. Hirsch, H. H., G. Kaufmann, et al. (2004). "Immune reconstitution in HIV-infected patients." Clin Infect Dis 38(8): 1159-66. Hong, S., D. C. Scherer, et al. (1999). "Lipid antigen presentation in the immune system: lessons learned from CD1d knockout mice." Immunol Rev 169: 3144. 71 Carvalho KI Referências Bibliográficas Ishihara, S., M. Nieda, et al. (1999). "CD8(+)NKR-P1A (+)T cells preferentially accumulate in human liver." Eur J Immunol 29(8): 2406-13. Kang, T. J., S. B. Lee, et al. (2002). "A polymorphism in the toll-like receptor 2 is associated with IL-12 production from monocyte in lepromatous leprosy." Cytokine 20(2): 56-62. Kang, T. J., C. E. Yeum, et al. (2004). "Differential production of interleukin-10 and interleukin-12 in mononuclear cells from leprosy patients with a Toll-like receptor 2 mutation." Immunology 112(4): 674-80. Kashala, O., R. Marlink, et al. (1994). "Infection with human immunodeficiency virus type 1 (HIV-1) and human T cell lymphotropic viruses among leprosy patients and contacts: correlation between HIV-1 cross-reactivity and antibodies to lipoarabinomannan." J Infect Dis 169(2): 296-304. Kawano, T., T. Nakayama, et al. (1999). "Antitumor cytotoxicity mediated by ligandactivated human V alpha24 NKT cells." Cancer Res 59(20): 5102-5. Kenna, T., L. Golden-Mason, et al. (2003). "NKT cells from normal and tumorbearing human livers are phenotypically and functionally distinct from murine NKT cells." J Immunol 171(4): 1775-9. Kharkar, V., U. H. Bhor, et al. (2007). "Type I lepra reaction presenting as immune reconstitution inflammatory syndrome." Indian J Dermatol Venereol Leprol 73(4): 253-6. Kirchheimer, W. F. and E. E. Storrs (1971). "Attempts to establish the armadillo (Dasypus novemcinctus Linn.) as a model for the study of leprosy. I. Report of lepromatoid leprosy in an experimentally infected armadillo." Int J Lepr Other Mycobact Dis 39(3): 693-702. Klatser, P. R., S. van Beers, et al. (1993). "Detection of Mycobacterium leprae nasal carriers in populations for which leprosy is endemic." J Clin Microbiol 31(11): 2947-51. Korber, B., B. Gaschen, et al. (2001). "Evolutionary and immunological implications of contemporary HIV-1 variation." Br Med Bull 58: 19-42. Kronenberg, M. (2005). "Toward an understanding of NKT cell biology: progress and paradoxes." Annu Rev Immunol 23: 877-900. Kronenberg, M. and L. Gapin (2002). "The unconventional lifestyle of NKT cells." Nat Rev Immunol 2(8): 557-68. 72 Carvalho KI Referências Bibliográficas Krutzik, S. R., M. T. Ochoa, et al. (2003). "Activation and regulation of Toll-like receptors 2 and 1 in human leprosy." Nat Med 9(5): 525-32. Lockwood, D. N. and S. Suneetha (2005). "Leprosy: too complex a disease for a simple elimination paradigm." Bull World Health Organ 83(3): 230-5. Lucas, S. B., P. E. Fine, et al. (1995). "Infection with human immunodeficiency virus type 1 among leprosy patients in Zaire." J Infect Dis 171(2): 502-4. Matsuda, J. L., O. V. Naidenko, et al. (2000). "Tracking the response of natural killer T cells to a glycolipid antigen using CD1d tetramers." J Exp Med 192(5): 74154. Meeran, K. (1989). "Prevalence of HIV infection among patients with leprosy and tuberculosis in rural Zambia." Bmj 298(6670): 364-5. Meima, A., W. C. Smith, et al. (2004). "The future incidence of leprosy: a scenario analysis." Bull World Health Organ 82(5): 373-80. Mercer, J. C., M. J. Ragin, et al. (2005). "Natural killer T cells: rapid responders controlling immunity and disease." Int J Biochem Cell Biol 37(7): 1337-43. Metelitsa, L. S., O. V. Naidenko, et al. (2001). "Human NKT cells mediate antitumor cytotoxicity directly by recognizing target cell CD1d with bound ligand or indirectly by producing IL-2 to activate NK cells." J Immunol 167(6): 311422. Milanga, M., L. O. Kashala, et al. (1999). "Brief survey of leprosy situation in Congo: sero-epidemiologic profile in correlation with some emerging viral infections." Nihon Hansenbyo Gakkai Zasshi 68(2): 109-16. Mira, M. T., A. Alcais, et al. (2004). "Susceptibility to leprosy is associated with PARK2 and PACRG." Nature 427(6975): 636-40. Moraes, M. O., E. N. Sarno, et al. (1999). "Cytokine mRNA expression in leprosy: a possible role for interferon-gamma and interleukin-12 in reactions (RR and ENL)." Scand J Immunol 50(5): 541-9. Moses, A. E., K. A. Adelowo, et al. (2003). "Prevalence of HIV-1 infection among patients with leprosy and pulmonary tuberculosis in a semi-arid region, Nigeria." J R Soc Health 123(2): 117-9. Motsinger, A., D. W. Haas, et al. (2002). "CD1d-restricted human natural killer T cells are highly susceptible to human immunodeficiency virus 1 infection." J Exp Med 195(7): 869-79. 73 Carvalho KI Referências Bibliográficas Munyao, T. M., J. J. Bwayo, et al. (1994). "Human immunodeficiency virus- 1 in leprosy patients attending Kenyatta National Hospital, Nairobi." East Afr Med J 71(8): 490-2. Murdoch, D. M., W. D. Venter, et al. (2007). "Immune reconstitution inflammatory syndrome (IRIS): review of common infectious manifestations and treatment options." AIDS Res Ther 4: 9. Murray, K. A. (1982). "Syphilis in patients with Hansen's disease." Int J Lepr Other Mycobact Dis 50(2): 152-8. Murray, R. A., M. R. Siddiqui, et al. (2007). "Mycobacterium leprae inhibits dendritic cell activation and maturation." J Immunol 178(1): 338-44. Nicol, A., M. Nieda, et al. (2000). "Human invariant valpha24+ natural killer T cells activated by alpha-galactosylceramide (KRN7000) have cytotoxic anti-tumour activity through mechanisms distinct from T cells and natural killer cells." Immunology 99(2): 229-34. Nuti, S., D. Rosa, et al. (1998). "Dynamics of intra-hepatic lymphocytes in chronic hepatitis C: enrichment for Valpha24+ T cells and rapid elimination of effector cells by apoptosis." Eur J Immunol 28(11): 3448-55. Ohteki, T. and H. R. MacDonald (1994). "Major histocompatibility complex class I related molecules control the development of CD4+8- and CD4-8- subsets of natural killer 1.1+ T cell receptor-alpha/beta+ cells in the liver of mice." J Exp Med 180(2): 699-704. Organization, P. A. H. (2007). Situation Report: Leprosy in the Americas, Pan American Health Organization. Organizaton, W. H. (1982). "Chemotherapy of leprosy for control programme, report of WHO study group." WHO Tech.Rep.Ser. 675: 1-33. Ortaldo, J. R., H. A. Young, et al. (2004). "Dissociation of NKT stimulation, cytokine induction, and NK activation in vivo by the use of distinct TCR-binding ceramides." J Immunol 172(2): 943-53. Ottenhoff, T. H., P. J. Converse, et al. (1987). "HLA antigens and neural reversal reactions in Ethiopian borderline tuberculoid leprosy patients." Int J Lepr Other Mycobact Dis 55(2): 261-6. Ottenhoff, T. H. and R. R. de Vries (1987). "HLA class II immune response and suppression genes in leprosy." Int J Lepr Other Mycobact Dis 55(3): 521-34. 74 Carvalho KI Referências Bibliográficas Pereira, G. A., M. M. Stefani, et al. (2004). "Human immunodeficiency virus type 1 (HIV-1) and Mycobacterium leprae co-infection: HIV-1 subtypes and clinical, immunologic, and histopathologic profiles in a Brazilian cohort." Am J Trop Med Hyg 71(5): 679-84. Platt, E. J., D. M. Shea, et al. (2005). "Variants of human immunodeficiency virus type 1 that efficiently use CCR5 lacking the tyrosine-sulfated amino terminus have adaptive mutations in gp120, including loss of a functional N-glycan." J Virol 79(7): 4357-68. Prevention, C. f. D. C. a. (1983). "Immunodeficiency among female sexual partners of males with acquired immune deficiency syndrome (AIDS) - New York." MMWR Morb Mortal Wkly Rep 31(52): 697-8. Prussin, C. and B. Foster (1997). "TCR V alpha 24 and V beta 11 coexpression defines a human NK1 T cell analog containing a unique Th0 subpopulation." J Immunol 159(12): 5862-70. Quiroga, M. F., G. J. Martinez, et al. (2004). "Activation of signaling lymphocytic activation molecule triggers a signaling cascade that enhances Th1 responses in human intracellular infection." J Immunol 173(6): 4120-9. Ramratnam, B., S. Bonhoeffer, et al. (1999). "Rapid production and clearance of HIV-1 and hepatitis C virus assessed by large volume plasma apheresis." Lancet 354(9192): 1782-5. Rauch, J., J. Gumperz, et al. (2003). "Structural features of the acyl chain determine self-phospholipid antigen recognition by a CD1d-restricted invariant NKT (iNKT) cell." J Biol Chem 278(48): 47508-15. Ray, N. and R. W. Doms (2006). "HIV-1 coreceptors and their inhibitors." Curr Top Microbiol Immunol 303: 97-120. Ridley, D. S. and W. H. Jopling (1966). "Classification of leprosy according to immunity. A five-group system." Int J Lepr Other Mycobact Dis 34(3): 25573. Rolf, J., E. Berntman, et al. (2008). "Molecular profiling reveals distinct functional attributes of CD1d-restricted natural killer (NK) T cell subsets." Mol Immunol 45(9): 2607-20. Roy, S., W. McGuire, et al. (1997). "Tumor necrosis factor promoter polymorphism and susceptibility to lepromatous leprosy." J Infect Dis 176(2): 530-2. 75 Carvalho KI Referências Bibliográficas Sampaio, E. P., J. R. Caneshi, et al. (1995). "Cellular immune response to Mycobacterium leprae infection in human immunodeficiency virus-infected individuals." Infect Immun 63(5): 1848-54. Sandberg, J. K., N. M. Fast, et al. (2002). "Selective loss of innate CD4(+) V alpha 24 natural killer T cells in human immunodeficiency virus infection." J Virol 76(15): 7528-34. Sandberg, J. K., C. A. Stoddart, et al. (2004). "Development of innate CD4+ alphachain variable gene segment 24 (Valpha24) natural killer T cells in the early human fetal thymus is regulated by IL-7." Proc Natl Acad Sci U S A 101(18): 7058-63. Saúde, M. d. (2006). Recomendações para Terapia Anti-Retroviral em Adultos e Adolescentes Infectados pelo HIV, Secretaria de Vigilância em Saúde, Programa Nacional de DST e Aids: 1 - 85. Saúde, M. d. (2007). Boletim Epidemiológico AIDS/DST, Ministério da Saúde: 1 48. Schofield, L., M. J. McConville, et al. (1999). "CD1d-restricted immunoglobulin G formation to GPI-anchored antigens mediated by NKT cells." Science 283(5399): 225-9. Scollard, D. M., L. B. Adams, et al. (2006). "The continuing challenges of leprosy." Clin Microbiol Rev 19(2): 338-81. Seino, K., S. Motohashi, et al. (2006). "Natural killer T cell-mediated antitumor immune responses and their clinical applications." Cancer Sci 97(9): 807-12. Shields, E. D., D. A. Russell, et al. (1987). "Genetic epidemiology of the susceptibility to leprosy." J Clin Invest 79(4): 1139-43. ShivRaj, L., S. A. Patil, et al. (1988). "Antibodies to HIV-1 in sera from patients with mycobacterial infections." Int J Lepr Other Mycobact Dis 56(4): 546-51. Sidobre, S., O. V. Naidenko, et al. (2002). "The V alpha 14 NKT cell TCR exhibits high-affinity binding to a glycolipid/CD1d complex." J Immunol 169(3): 1340-8. Simon, V. and D. D. Ho (2003). "HIV-1 dynamics in vivo: implications for therapy." Nat Rev Microbiol 1(3): 181-90. Simon, V., D. D. Ho, et al. (2006). "HIV/AIDS epidemiology, pathogenesis, prevention, and treatment." Lancet 368(9534): 489-504. 76 Carvalho KI Referências Bibliográficas Smith, C. and J. H. Richardus (2008). "Leprosy strategy is about control, not eradication." Lancet 371(9617): 969-70. Smyth, M. J. and D. I. Godfrey (2000). "NKT cells and tumor immunity--a doubleedged sword." Nat Immunol 1(6): 459-60. Sridevi, K., K. Neena, et al. (2004). "Expression of costimulatory molecules (CD80, CD86, CD28, CD152), accessory molecules (TCR alphabeta, TCR gammadelta) and T cell lineage molecules (CD4+, CD8+) in PBMC of leprosy patients using Mycobacterium leprae antigen (MLCWA) with murabutide and T cell peptide of Trat protein." Int Immunopharmacol 4(1): 1-14. Sterne, J. A., A. C. Turner, et al. (1995). "Testing for antibody to human immunodeficiency virus type 1 in a population in which mycobacterial diseases are endemic." J Infect Dis 172(2): 543-6. Stevenson, M. (2003). "HIV-1 pathogenesis." Nat Med 9(7): 853-60. Taniguchi, M., M. Harada, et al. (2003). "The regulatory role of Valpha14 NKT cells in innate and acquired immune response." Annu Rev Immunol 21: 483-513. Thomson, M. M. and R. Najera (2005). "Molecular epidemiology of HIV-1 variants in the global AIDS pandemic: an update." AIDS Rev 7(4): 210-24. Tomura, M., W. G. Yu, et al. (1999). "A novel function of Valpha14+CD4+NKT cells: stimulation of IL-12 production by antigen-presenting cells in the innate immune system." J Immunol 163(1): 93-101. Turk, J. L. and R. J. Rees (1988). "AIDS and leprosy." Lepr Rev 59(3): 193-4. Unutmaz, D. (2003). "NKT cells and HIV infection." Microbes Infect 5(11): 1041-7. Ustianowski, A. P., S. D. Lawn, et al. (2006). "Interactions between HIV infection and leprosy: a paradox." Lancet Infect Dis 6(6): 350-60. van den Broek, J., H. J. Chum, et al. (1997). "Association between leprosy and HIV infection in Tanzania." Int J Lepr Other Mycobact Dis 65(2): 203-10. van der Vliet, H. J., B. M. von Blomberg, et al. (2002). "Selective decrease in circulating V alpha 24+V beta 11+ NKT cells during HIV type 1 infection." J Immunol 168(3): 1490-5. Wang, J. H., R. Meijers, et al. (2001). "Crystal structure of the human CD4 Nterminal two-domain fragment complexed to a class II MHC molecule." Proc Natl Acad Sci U S A 98(19): 10799-804. Wang, J. H. and E. L. Reinherz (2002). "Structural basis of T cell recognition of peptides bound to MHC molecules." Mol Immunol 38(14): 1039-49. 77 Carvalho KI Referências Bibliográficas Wilson, M. T., C. Johansson, et al. (2003). "The response of natural killer T cells to glycolipid antigens is characterized by surface receptor down-modulation and expansion." Proc Natl Acad Sci U S A 100(19): 10913-8. Wu, D. Y., N. H. Segal, et al. (2003). "Cross-presentation of disialoganglioside GD3 to natural killer T cells." J Exp Med 198(1): 173-81. 78