TC1 – REVISÃO ENEM – MATEMÁTICA – ALEXANDRINO 1.Considere o seguinte jogo de apostas: Numa cartela com 60 números disponíveis, um apostador escolhe de 6 a 10 números. Dentre os números disponíveis, serão sorteados apenas 6. O apostador será premiado caso os 6 números sorteados estejam entre os números escolhidos por ele numa mesma cartela. O quadro apresenta o preço de cada cartela, de acordo com a quantidade de números escolhidos. Quantidade de números escolhidos em uma cartela 6 7 8 9 10 Preço da cartela (R$) 2,00 12,00 40,00 125,00 250,00 Cinco apostadores, cada um com R$500,00 para apostar, fizeram as seguintes opções: - Arthur: 250 cartelas com 6 números escolhidos; - Bruno: 41 cartelas com 7 números escolhidos e 4 cartelas com 6 números escolhidos; - Caio: 12 cartelas com 8 números escolhidos e 10 cartelas com 6 números escolhidos; - Douglas: 4 cartelas com 9 números escolhidos; - Eduardo: 2 cartelas com 10 números escolhidos. Os dois apostadores com maiores probabilidades de serem premiados são a) Caio e Eduardo. b) Arthur e Eduardo. c) Bruno e Caio. d) Arthur e Bruno. e) Douglas e Eduardo. Resposta: [A] Supondo que duas cartelas de um mesmo jogador não possuem 6 dezenas iguais, segue-se que Arthur, Bruno, Caio, Douglas e Eduardo possuem, respectivamente, as seguintes possibilidades de serem premiados: 7 8 9 10 250; 41 4 291; 12 10 346; 4 336 e 2 420. 6 6 6 6 Portanto, como o número de casos possíveis para o resultado do sorteio é o mesmo para todos, podemos concluir que Caio e Eduardo são os que têm as maiores probabilidades de serem premiados. 2. Um banco solicitou aos seus clientes a criação de uma senha pessoal de seis dígitos, formada somente por algarismos de 0 a 9, para acesso à conta-corrente pela internet. Entretanto, um especialista em sistemas de segurança eletrônica recomendou à direção do banco recadastrar seus usuários, solicitando, para cada um deles, a criação de uma nova senha com seis dígitos, permitindo agora o uso das 26 letras do alfabeto, além dos algarismos de 0 a 9. Nesse novo sistema, cada letra maiúscula era considerada distinta de sua versão minúscula. Além disso, era proibido o uso de outros tipos de caracteres. Uma forma de avaliar uma alteração no sistema de senhas é a verificação do coeficiente de melhora, que é a razão do novo número de possibilidades de senhas em relação ao antigo. O coeficiente de melhora da alteração recomendada é a) 626 106 62! b) 10! 62! 4! c) 10! 56! d) 62! 10! e) 626 106 Resposta: [A] Sabendo que cada letra maiúscula difere da sua correspondente minúscula, há 2 26 10 62 possibilidades para cada dígito da senha. Logo, pelo Princípio Fundamental da Contagem, segue-se que existem 626 senhas possíveis de seis dígitos. Analogamente, no sistema antigo existiam 106 senhas possíveis de seis dígitos. Em consequência, a razão pedida é 626 106 . 3. A figura abaixo exibe, em porcentagem, a previsão da oferta de energia no Brasil em 2030, segundo o Plano Nacional de Energia. Segundo o plano, em 2030, a oferta total de energia do país irá atingir 557 milhões de tep (toneladas equivalentes de petróleo). Nesse caso, podemos prever que a parcela oriunda de fontes renováveis, indicada em cinza na figura, equivalerá a a) 178,240 milhões de tep. b) 297,995 milhões de tep. c) 353,138 milhões de tep. d) 259,562 milhões de tep. Resposta: [D] Somando os percentuais indicados em cinza: 9,1% + 13,5% + 18,5% + 5,5% = 46,6%. 557 milhões 100% 46,6% x milhões x 557 46,6 100 x 259,562 milhões. 4. . Um avião voava a uma altitude e velocidade constantes. Num certo instante, quando estava a 8 km de distância de um ponto P, no solo, ele podia ser visto sob um ângulo de elevação de 60° e, dois minutos mais tarde, esse ângulo passou a valer 30°, conforme mostra a figura abaixo. A velocidade desse avião era de: a) 180 km/h b) 240 km/h c) 120 km/h d) 150 km/h e) 200 km/h Resposta: [B] Seja P' o pé da perpendicular baixada de P sobre a reta AA '. É fácil ver que P' AP 60. Daí, como P' AP é ângulo externo do triângulo AA 'P segue-se que AA 'P 30, o que implica em AA ' AP 8km. Portanto, a velocidade do avião no trecho AA ' era de 8 240km h. 2 60 5. De acordo com o gráfico, a diferença entre a altura mediana e a média das alturas desses seis jogadores, em cm, é aproximadamente igual a a) 0,93 b) 1,01 c) 1,09 d) 1,17 e) 1,25 Resposta: [D] Rol: 1,73; 1,78; 1,81; 1,82; 1,83; 1,85. 1,81 1,82 1,815m 181,5cm 2 1,73 1,78 1,81 1,82 1,83 1,85 Média 1,80333333333.... m 180,333333... cm 6 Logo, a diferença pedida é: (1,16666666666...)cm (aproximadamente 1,17cm). mediana 6. Nos últimos anos, a frota de veículos no Brasil tem crescido de forma acentuada. Observando o gráfico, é possível verificar a variação do número de veículos (carros, motocicletas e caminhões), no período de 2000 a 2010. Projeta-se que a taxa de crescimento relativo no período de 2000 a 2010 mantenha-se para década seguinte. Qual será o número de veículos no ano de 2020? a) 79,2 milhões b) 102,0 milhões c) 132,0 milhões d) 138,0 milhões e) 145,2 milhões Resposta: [E] A taxa de crescimento relativo no período de 2000 a 2010 foi de 66 30 36 1,2. 30 10 Portanto, mantida esta taxa para a próxima década, em 2020 o número de veículos será, em milhões, igual a 66 (1 1,2) 145,2. 7. . Uma dona de casa vai ao supermercado fazer a compra mensal. Ao concluir a compra, observa que ainda lhe restaram R$ 88,00. Seus gastos foram distribuídos conforme mostra o gráfico. As porcentagens apresentadas no gráfico são referentes ao valor total, em reais, reservado para a compra mensal. Qual o valor total, em reais, reservado por essa dona de casa para a compra mensal? a) 106,80 b) 170,40 c) 412,00 d) 500,00 e) 588,00 Resposta: [D] Seja x o valor total reservado pela dona de casa para a compra mensal. Do gráfico, segue-se que ela gastou 30,2% 17,5% 12,4% 22,3% 82,4% de x. Portanto, o resultado pedido é (100% 82,4%) x 88 x 88 R$ 500,00. 0,176 TEXTO PARA A PRÓXIMA QUESTÃO: Para estimular sua equipe comercial, uma empresa define metas de negócios de acordo com a região que cada vendedor atende. Na tabela estão apresentadas as metas mensais dos vendedores de três regiões e, respectivamente, o valor que falta para cada um vender na última semana de um determinado mês para atingir a meta. vendedor Edu Fred Gil meta mensal R$ 12.000,00 R$ 20.000,00 R$ 15.000,00 valor que falta para atingir a meta R$ 3.000,00 R$ 2.000,00 R$ 6.000,00 8. Comparando os totais já vendidos nas três regiões, o gráfico que melhor compara os três vendedores é a) b) c) d) e) Resposta: [C] Edu vendeu 12000 3000 R$ 9.000,00, Fred 20000 2000 R$ 18.000,00 e Gil 15000 6000 R$ 9.000,00. As vendas de Edu representam e as de Gil 9000 18000 100% 25% do total, as de Fred 100% 50% 36000 36000 9000 100% 25%. 36000 Portanto, como 0,25 360 90 e 0,5 360 180, segue que o gráfico que melhor compara os três vendedores é o da alternativa [C]. 9. Um satélite de telecomunicações, t minutos após ter atingido sua órbita, está a r quilômetros de distância do centro da Terra. Quando r assume seus valores máximo e mínimo, diz-se que o satélite atingiu o apogeu e o perigeu, respectivamente. Suponha que, para esse satélite, o valor de r em função de t seja dado por r t 5865 1 0,15.cos 0,06t Um cientista monitora o movimento desse satélite para controlar o seu afastamento do centro da Terra. Para isso, ele precisa calcular a soma dos valores de r, no apogeu e no perigeu, representada por S. O cientista deveria concluir que, periodicamente, S atinge o valor de a) 12 765 km. b) 12 000 km. c) 11 730 km. d) 10 965 km. e) 5 865 km. Resposta: [B] 5865 6900 1 0,15.( 1) 5865 5100 Menor valor(cos(0,06t) = 1) r(t) 1 0,15.(1) Somando, temos: 6900 + 5100 = 12000 Maior valor (cos (0,06t) = -1) r(t)