DQ UFSCar LABORATÓRIO DE ANALÍTICA •BIOANALÍTICA •BIOSSENSORES •ELETROANALÍTICA & •SENSORES Detecção Amperométrica/Voltamétrica em Sistemas FIA e Cromatográficos Empregando Eletrodo de Diamante Dopado com Boro Orlando Fatibello Filho Departamento de Química, Universidade Federal de São Carlos, Caixa Postal 676, 13560-970 São Carlos – SP [email protected]; www.ufscar.br/labbes 1 Financial Support and Acknowledgements Prof. Dr. Romeu C. Rocha-Filho (DQ-UFSCar) Prof. Dr. Leonardo S. Andrade (DQ-UFG-Catalão) Dr. Roberta Antigo Medeiros (DQ-UFSCar) M.Sc. Bruna Cláudia Lourenção (DQ-UFSCar) Prof. Dr. Quezia B. Cass (DQ-UFSCar) Prof. Dr. Adriana Evaristo de Carvalho (DQ-UFMS) Prof. Dr. Élen R. Sartori (DQ-UEL) Prof. Dr. Giancarlo Richard Salazar-Banda (ITP-Un. Tiradentes) Prof. Dr. Luis A. Avaca (Guarujá, SP) 2 Boron-doped diamond electrode corrosion stable in very aggressive media very low and stable background current very low adsorption of organic/inorganic species extreme electrochemical stability in both alkaline and acid media high response sensitivity very wide working potential window (3.5 V) K. Pecková et al. Critical Reviews in Analytical Chemistry. 39 (2009) 148 3 Approximate potential ranges for platinum, mercury, carbon and boron-doped diamond (BDD) electrodes 4 Experimental Working electrode: Boron-doped diamond film (8000 ppm) on a silicon wafer from Centre Suisse de Electronique et de Microtechnique SA (CSEM), Neuchatêl, Switzerland Electrochemical pre-treatments Cathodic pretreatment: –1.0 A cm–2 for 180 s in a 0.5 M H2SO4 solution Anodic pretreatment: +1.0 A cm-2 for 180 s in a 0.5 M H2SO4 solution Counter electrode: Pt wire Reference electrode: Ag/AgCl (3.0 M KCl) Potentiostat/galvanostat: Autolab PGSTAT-30 (Ecochemie) controlled with the GPES 4.0 software L.S. Andrade, G. R. Salazar-Banda, R. C. Rocha-Filho, O. Fatibello-Filho, Cathodic Pretreatment of Boron-Doped Diamond Electrodes and Their Use in Electroanalysis, In: Synthetic Diamond Films: Preparation, Electrochemistry, Characterization, and Applications, 5 (Eds. E. Brillas and C. A. Martínez-Huitle), John Wiley & Sons, Inc., Hoboken, NJ, USA, 2011. Electrochemical pre-treatments Characteristics of the procedure: simple and rapid low cost good intra- and inter-day repeatabilities Cathodic pre-treatment Anodic pre-treatment Hydrogen-terminated BDD (HT-BDD) Oxygen-terminated BDD (OT-BDD) G.R. Salazar-Banda, L.S. Andrade, P.A.P. Nascente, P.S. Pizani, R.C. Rocha-Filho, L.A. Avaca. Electrochimica Acta, 51 (2006) 4612. 6 Potentiostat/galvanostat: Autolab PGSTAT-30 (Ecochemie) Flow Injection analysis system 7 Flow electrochemical cell Working electrode : BDD 8000 ppm; 0.33 cm2 Counter electrode : stainless steel tube Reference electrode Ag/AgCl (3.0 mol L–1 KCl) E. M. Richter et al. Quim. Nova, 26(6) (2003) 839. L. Andrade et al. Anal. Chim. Acta 654 (2009) 127. 8 Results and discussion Simultaneous Square-Wave Voltammetric Determination of Phenolic Antioxidants (BHA and BHT) in Food Using a Boron-Doped Diamond Electrode OH O C (C H 3 ) 3 O C (C H 3 ) 3 H 2O OCH3 H 3O C (C H 3 ) 3 + 2 e- 2H 2 O C H 3O H OCH3 O BHA OH O C (C H 3 ) 3 (C H 3 ) 3 C H 2O CH3 C (C H 3 ) 3 (C H 3 ) 3 C + H 3O + 2 e- CH3 BHT BHA = butylated hydroxyanisole; BHT = butylated hydroxytoluene R.A. Medeiros, R.C. Rocha-Filho, O. Fatibello-Filho, Food Chemistry, 123 (2010) 886. 10 H 3O + 1.6 I / 1.2 0.8 0.4 0.0 0.4 0.6 0.8 1.0 1.2 E / V vs. Ag/AgCl (3.0 M KCl) SWV curves obtained on an anodically (dashed line) and a cathodically (solid line) pre-treated BDD electrode, using a mixture of 10 µM BHA and 10 µM BHT. Supporting electrolyte: aqueous-ethanolic (30 % ethanol, v/v) 10 mM KNO3 solution (pHcond. = 1.5 adjusted with conc. HNO3). 11 OH BHA C (CH 3 ) 3 OCH3 OH BHT C (CH 3 ) 3 (C H 3 ) 3 C CH3 BHA: 0.60 – 10 M; LOD = 0.14 M BHT: 0.60 – 10 M; LOD = 0.25 M Highlight: LODs lower than those previously reported 12 Flow injection simultaneous determination of BHA and BHT with multiple pulse amperometric detection at a BDD electrode 2,5 1,6 (A) - BHA 2,0 (B) - BHT 1,2 I/ 1,5 I/ 1,0 0,5 0,4 0,0 0,3 0,8 0,0 0,4 0,5 0,6 0,7 0,8 0,9 -1 E/V vs. Ag/AgCl (KCl 3,0 mol L ) 1,0 0,7 0,8 0,9 1,0 1,1 1,2 1,3 -1 E/V vs. Ag/AgCl (KCl 3,0 mol L ) Voltamogramas hidrodinâmicos obtidos para o BHA 0,10 mmol L-1 (A) e BHT 0,10 mmol L-1 (B), utilizando o eletrodo de BDD; vazão 2,4 mL min-1 e Vamostra = 350 µL R.A. Medeiros; B.C. Lourenção; R.C. Rocha-Filho, O. Fatibello-Filho; Anal. Chem., 82 (2010) 8658. 13 14 (A) MPA waveform applied to the cathodically pretreated BDD working electrode as a function of time. (B) Flow-injection pulse amperometric responses in triplicate for solutions containing 50 μmol L-1 BHA or BHT or both analytes simultaneously at this concentration. Supporting electrolyte: aqueous ethanolic (30% ethanol, v/v) 10 mmol L-1 KNO3 solution (pHcond =1.5) adjusted with concentrated HNO3); flow rate 2.4 mL min-1; 15 injected volume 250 μL. FIA-MPA amperograms obtained after injections of solutions containing BHA (0.050-3.0 μmol L-1) and BHT (0.70-70 μmol L-1) simultaneously or different samples of mayonnaise (A-D). Supporting electrolyte: aqueous ethanolic (30% ethanol, v/v) 10 mmol L-1 KNO3 solution (pHcond =1.5) adjusted with concentrated HNO3); flow rate 2.4 mL min-1; 16 injected volume 250 μL. Faixa linear: BHA - 0,050 a 3,0 µmol L–1 BHT - 0,70 a 70,0 µmol L–1 (I = IEdet.1, para o BHA) I/µA= 0,00619 + 0,0559 [c/(µmol L–1)]; r = 0,998 (I = IEdet.2 – IEdet.1, para o BHT) I/µA= 0,144 + 0,0503 [c/(µmol L−1)]; r = 0,999 Limites de Detecção: BHA: 3,0 10-8 mol L-1 BHT: 4,0 10-7 mol L-1 Tabela-Resultados obtidos para o estudo de repetibilidade intra e entre-dias intra-dias RSDa (%) BHA (mol L-1) 7,0 × 10-8 5,0 × 10-7 3,0 × 10-6 BHT (mol L-1) 7,0 × 10-7 6,0 × 10-6 7,0 × 10-5 entre-dias RSDb (%) 3,8 2,5 2,9 5,1 3,9 4,2 8,9 2,0 1,8 8,5 5,3 3,6 17 Tabela- Resultados obtidos na determinação simultânea de BHA e BHT em produtos alimentícios empregando-se HPLC e MPA-FIA a b BHA BHT Erro (%)b Erro (%)b 2,1 ±0,2 1,1±0,1 1,2±0,3 5,0 9,1 1,7±0,2 1,6±0,1 1,3±0,2 1,3±0,2 -5,9 0,0 3 2,3±0,2 2,2±0,2 1,8±0,2 1,8±0,3 -4,3 0,0 4 2,3±0,1 2,1±0,3 1,4±0,2 1,3±0,1 -8,7 -7,1 Amostras BHA (mg/100 g) BHT (mg/100 g) Maionese HPLCa HPLCa MPAa 1 2,0±0,1 2 MPAa n=3 Erro (%) = 100 × (valor amperométrico - valor HPLC) / valor HPLC teste t-pareado BHA: texp = 1,54 e BHT: texp = 1,66 tcrítico = 3,18 R.A. Medeiros; B.C. Lourenção; R.C. Rocha-Filho, O. Fatibello-Filho; Anal. Chem., 82 (2010) 8658. 18 Paracetamol (A) and caffeine (B) in pharmaceuticals Differential pulse voltammetry Paracetamol: 0.50 – 83 M LOD = 0.049 M Caffeine: 0.50 – 83 M LOD = 0.035 M Highlight: LODs lower than those reported; higher sensitivity and larger linear concentration range of the AC 17 M 38 M B.C. Lourenção, R.A. Medeiros, R.C. Rocha-Filho, L.H. Mazo, O. Fatibello-Filho. Talanta, 78 (2009) 748. 19 A Simple Strategy for Simultaneous Determination of Paracetamol and Caffeine Using Flow Injection Analysis with Multiple Pulse Amperometric Detection W. C. Silva, F.P. Pereira, M.C. Marra, D. T. Gimenes, R.R. Cunha, R.A.B. da Silva, 20 R. A.A. Munoz, E. M. Richter, Electroanalysis, 23 (2011) 2764. 21 Simultaneous differential pulse voltammetric determination of ascorbic acid and caffeine in pharmaceutical formulations using a boron-doped diamond electrode DPV responses for 0.029 M AA and 0.79 M caffeine in 0.1 M H2SO4 on (1) cathodically pretreated BDD electrode and (2) glassy-carbon electrode. B.C. Lourenção, R.A. Medeiros, R.C. Rocha-Filho, O. Fatibello-Filho. Electroanalysis, 22, 1717 (2010) 22 Repeatability study 50 45 GC 60 35 50 30 40 I/A I/A 40 70 25 20 BDD 30 20 15 10 10 0.4 0.6 0.8 1.0 1.2 E/V vs Ag/AgCl 1.4 1.6 0 0.4 0.6 0.8 1.0 1.2 1.4 1.6 E/V vs Ag/AgCl Repeatability study for 0.029 M Ascorbic acid (n = 10) + 0.79 M caffeine in 0.1 M H2SO4 Highlight: higher repeatability of the BDD RSD = 8.7 % for glassy-carbon (GC) electrode electrode RSD = 1.0 % for boron-doped diamond (BDD) electrode B.C. Lourenção; R.A. Medeiros; R.C. Rocha-Filho; O. Fatibello-Filho; Electroanalysis, 22 (2010) 1717 23 Sampling Rate = 30 h-1 (A) Diagram of the multicommutated stop-flow system: V1 and V2: solenoid valves; A: sample or standard solution; C: carrier solution (BR buffer pH 7.0). (B) Transient DPV signals in triplicate for sulfamethoxazole (1.0 – 8.0 mg L–1) and trimethoprim (0.2 – 1.6 mg L–1) determination in pharmaceuticals. 24 25 26 27 Conclusions HT-BDD electrodes present an improved electrochemical activity towards many analytes Background current for HT-BDD electrodes is one order of magnitude lower than that for glassy-carbon electrodes, leading to an improved signal-to-background ratio HT-BDD electrodes present higher sensitivity, precision, and accuracy, and lower LOD and response time than glassy-carbon electrodes No deactivation of the BDD electrode was observed in the flow injection system / HPLC coupled with amperometric/voltammetric detection 28 Profs. Romeu Dr. Adriana Leonardo Dr. Élen Quezia M.Sc. Bruna Giancarlo 29 M.Sc. Roberta 30 31 32 33