UNIVERSITY OF PORTO MAP-FIS PHD RESEARCH CONFERENCE H E M AT I T E N A N O W I R E S F O R S O L A R WAT E R S P L I T T I N G : DEVELOPMENT AND STRUCTURE O P T I M I Z AT I O N J. Azevedo1,2, C.T. Sousa1, M.P. Fernandez-García1, A. Apolinário1, J. M. Teixeira1, A.M. Mendes2 and J.P. Araújo1 1IN-IFIMUP and Dep. Física, Rua do Campo Alegre 687, 4169-007 Porto, Portugal LEPAE – Dep. de Engenharia Quıímica, Faculdade de Engenharia, Universidade do Porto, R. Dr. Roberto Frias, 4200-465 Porto, Portugal. 2 Porto, January 20, 2011 Outline • Introduction • Fabrication Methods • Results • Conclusions and Future work 2 Hydrogen Economy powered by Solar cells only photoelectrochemical generate cells Covering 0.16% of electricity the surface of the during daytime; earth with 10% Solar energy is efficient solar cells the most would satisfy our available present energy renewable requirements; energy source; Fossil fuels are rapidly being 3 depleted; 2) Electrons (majority carriers) are conducted to a metal electrode (typically Pt) where they combine with H+ ions in the electrolyte solution to make H2 : 1) Absorption of light near the surface of the semiconductor creates electron-hole pairs. h e h 1.23 eV 4OH 4h 2 H 2O O2 http:/newenergyandfuel/com/2011/05/11/ 3) Holes (minority carriers) drift to the surface of the semiconductor (the photo anode) where they react with water to produce oxygen: 4 H 2O 4e 4OH 2 H 2 4) Transport of H+ from the anode to the cathode through the electrolyte completes the electrochemical circuit. 1 2h H 2O(l ) H 2 ( g ) O2 ( g ) 2 H2 O2 4 H 2O 4e 4OH 2 H 2 4OH 4h 2 H 2O O2 h + + + + + Photoanode h e h OHOH- Counterelectrode H 2O OH- Photoelectrochemical Cell 4 Hematite (α-Fe2O3) as photoanode Advantages High chemical stability Low cost Adequate band-gap of 2.2 eV Disadvantages Nanowires Low absorption coefficient Red shifted band-gap Rapid electronhole recombination Nano structuring • Larger diffusion coefficients • More efficient charge collection • Bang gap blue shift • Independence on light absorption coefficient High theoretical efficiencies 5 Objectives Create a highly oriented alumina template Fill the template with Iron nanowires Anneal the iron into hematite 6 ELECTRODEPOSITION 7 Pulsed Electrodeposition Pulsed Mode Alumina Pulsed deposition Barrier layer thinning Aluminium 8 I, II a) III IV V VI VII I, II III IV V VI b) VII VI V IV III I, II c) Perfis de Deposição 9 Filled Percentage (%) 100 80 60 40 20 0 0.0 0.2 0.4 0.6 0.8 1.0 Concentration (M) 120 I) Low j(t) regime II) High j(t) regime Filled percentage (%) 100 80 60 40 20 10 0 0 100 200 300 400 -2 Current Density (mAcm ) 500 Pore modulation 11 10 µm 12 1 µm OXIDATION 13 Atmosphere dependence on oxidation Comparison of oxidation state between different atmospheres: a) left in ambient conditions for 2 months, b) and c) annealing for 6 h at 600oC in air and oxygen, respectively. The α-Fe2O3 Bragg reflections are shown with their respective Miller indices. 14 Temperature dependence on oxidation Annealing temperature study on samples with 60 μm thickness. Between 400oC - 600oC the samples were annealed together with the Al substrate. For annealing’s above 600oC, the substrate was removed prior to oxidation, due to the Al melting point 15 1.6 FeO(OH) -Fe2O3 1.4 -Fe2O3 1.2 Fe3O4 norm 1.0 0.8 0.6 XANES EXAFS chemical composition cristaline struture 0.4 0.2 0.0 7000 7100 7200 7300 7400 7500 E (eV) Reference samples X-ray absorption spectroscopy measurements at the Fe k-edge in transmission 16 1.6 1.4 1.2 norm 1.0 0.8 Fe FeO(OH) -Fe2O3 Higher Oxidation -Fe2O3 > Temperature Fe3O4 > Time o 650 C for 6h in O2 O2 atmosphere o 600 C for 19h in O2 0.6 < Temperature 0.4 < Time 0.2 Air atmosphere 0.0 -0.2 7105 Lower Oxidation 7110 7115 7120 7125 7130 7135 7140 E (eV) Comparison with prepared samples 17 18 (a), (c) and (d) SEM images of annealed NWs; (b) EDS profile of annealed NWs. Conclusions Fabrication of highly organized alumina templates; 120 nanowires deposition method; II) High j(t) regime 100 Filled percentage (%) Optimization of an industrially viable Fe I) Low j(t) regime 80 60 40 20 0 0 100 200 300 400 500 -2 Current Density (mAcm ) Fabrication of Fe nanowires with high degree of organization with lengths from 1 μm to 10 μm up to 99 % of pore filling; 19 Conclusions Enlarged nanowire surface area through pore modulation; 1 µm Oxidation studies indicate the presence of hematite after an annealing. 20 Future Work Expose only a fraction of the nanowires by a partial removal of the alumina template; Test solar water splitting efficiencies; Reproduce results in TiO2 templates. 21 Acknowledgments 22 Thank you for your attention João Carlos Azevedo [email protected] https://sites.google.com/site/azevedojcam/ 23 INTRODUCTION SUPPORT 24 O2 H2 Potentiostat 1 2h H 2O(l ) O2 ( g ) 2 H 2 + + + + H+ H+ H+ Photoelectrochemical Scheme Counterelectrode h + Photoanode h e h 2e 2H H 2 ( g ) 25 1) Absorption of light near the surface of the semiconductor creates electron-hole pairs. h e h 2) Holes (minority carriers) drift to the surface of the semiconductor (the photo anode) where they react with water to produce oxygen: 1 2h H 2O(l ) O2 ( g ) 2 H 2 3) Electrons (majority carriers) are conducted to a metal electrode (typically Pt) where they combine with H+ ions in the electrolyte solution to make H2 : 2e 2H H 2 ( g ) 4) Transport of H+ from the anode to the cathode through the electrolyte completes the electrochemical circuit. The overall reaction : 1 2h H 2O(l ) H 2 ( g ) O2 ( g ) 2 26 Photoelectrolysis Electrolysis Electric Current Photoelectrolysis Solar Cell Electric Current 27 Nernst Equation For an oxidation/reduction reaction we have: Where F is the Faraday constant and n is the number of necessary electrons (in this case two). Energy losses 28 Theoretical efficiencies The overall solar energy conversion efficiency can be written as the product of the efficiencies of the cell in performing these processes: 29 Quais as dificuldades? Óxidos Quimicamente estáveis mas baixa eficiência (baixa condutividade) Não óxidos Boa condutividade mas fraca estabilidade química Adapted from M. Grätzel, Nature 414, 388 (2001) 30 Maximum efficiency possible Depending upon semiconductor bandgap, under xenon arc lamp and AM1.5 solar illuminations. 31 Armazenamento de Hidrogénio http://en.wikipedia.org/wiki/File:XASEdges.svg • Compressed hydrogen • Liquid hydrogen • Chemical storage • Physical storage • Carbon nanotubes 32 PAA SUPPORT 33 First Anodization 1) 2) 3) 4) Al The four major stages of nanoporous alumina template formation: 1) oxide barrier formation; 2) pore initial nucleation; 3) pore initial growth; 4) pore continuous growth; 34 Two Step Anodization Dissolution of Oxide Layer 2nd Anodization Alumina 1st Anodization Aluminium No organization 1 µm SEM surface Pattern formed 1 µm Better organization! 1 µm 35 Ordered triangular lattices 36 Ordered triangular lattices 37 ELECTRODEPOSITON SUPPORT 38 Experimental parameters 2º Anodization 240min at 40V Dendrite Formation 8V Electrodeposition P.andodization (8V; 2ms) P.deposition (70mA/cm2; 8ms) P.rest (700ms) 39 General Concepts 40 Different methods Electrodeposition different methods 41 Simulação numérica da influência do pulso de repouso na deposição 42 Influência do tamanho de poro na qualidade da deposição Amostras de 10μm de espessura, preparadas a 20oC, 0.43M e 14mA/cm2 43 CHARACTERIZATION SUPPORT 44 Estrutura Cristalina • Os eletrões emitidos pelo cátodo de uma ampola onde foi previamente realizado vácuo são acelerados por um potencial elevado aplicado ao longo dela, dirigindo-se a alta velocidade em direção a uma placa metálica (alvo) utilizada como ânodo. Quando os eletrões chocam com o alvo dá-se a emissão de raios-X. • O espectro emitido é composto por radiação-X cujo comprimento de onda varia continuamente, ao qual se sobrepõe uma série de riscas muito estreitas e em posições discretas. 45 Estrutura Cristalina Fatores que contribuem para o alargamento dos picos medidos experimentalmente: • tensões mecânicas não homogéneas • variações de composição ao longo da amostra • a sua espessura • as larguras e alturas das fendas de colimação do feixe (instrumento) • falta de monocromatismo do feixe incidente (instrumento) o o tamanho médio das cristalites que compõem a amostra (policristalina) A relação entre o tamanho L e o alargamento é dada pela fórmula de Scherrer, que se escreve do seguinte modo: 46 Taxamento da deposição 47 // // Magnetic Characterization Coercive field: Saturation field: • HC// (~ 1550 Oe) >> HC (~ 385 Oe) • HS// (~ 4 kOe) << HS (~ 15 kOe) 48 OXIDATION SUPPORT 49 FC and ZFC measurements ZFC and FC measurements in a 100 Oe field. The annealing temperature was 800oC. (C. H. Kim et al, “Magnetic anisotropy of vertically aligned alpha-fe2o3 nanowire array”, Ap. Phys. Let., vol. 89.) 50 51 Spectra of loose Fe oxide NWs, annealed at 800oC. The α-Fe2O3 Bragg reflections are identified. Synchrotron radiation Synchrotron radiation is produced from the electromagnetic radiation emitted when charged particles are accelerated radially. 52 Synchrotron radiation Properties of synchrotron radiation: • Broad Spectrum (which covers from microwaves to hard X-rays); • High Flux of energy; • High Brilliance (highly collimated photon beam); • High Stability (submicron source stability); • Polarization (both linear and circular); • Pulsed Time Structure (pulsed length down to tens of picoseconds allows the resolution of process on the same time scale). 53 X-ray absorption spectroscopy • X-ray absorption spectroscopy (XAS) is a widely-used technique for determining the local geometric and/or electronic structure of matter. • XAS data are obtained by tuning the photon energy using a crystalline monochromator to a range where core electrons can be excited. 54 http://en.wikipedia.org/wiki/File:XASEdges.svg X-ray absorption spectroscopy • There are two main regions found on a spectrum generated by XAS data 55 http://en.wikipedia.org/wiki/File:XASEdges.svg XANES • X-ray Absorption Near Edge Structure (XANES), also known as Near edge X-ray absorption fine structure (NEXAFS) is the absorption of an x-ray photon by a core level of an atom in a solid and the consequent emission of a photoelectron. • The resulting core hole is filled either via an Auger process or by capture of an electron from another shell followed by emission of a fluorescent photon. 56 http://en.wikipedia.org/wiki/File:XASEdges.svg XANES • The great power of XANES derives from its elemental specificity. Because the various elements have different core level energies, XANES permits extraction of the signal from a surface monolayer or even a single buried layer in the presence of a huge background signal. 1.6 • NEXAFS also 1.4 determine the chemical 1.2 state of elements which 1.0 are present in bulk in minute quantities norm can 0.8 Fe FeO(OH) -Fe2O3 -Fe2O3 Fe3O4 o 650 C for 6h in O2 o 600 C for 19h in O2 0.6 0.4 0.2 0.0 -0.2 7105 57 7110 7115 7120 7125 E (eV) 7130 7135 7140