APOSTILA Cálculo Numérico Universidade Tecnológica Federal do Paraná UTFPR Lauro César Galvão, Dr. e Luiz Fernando Nunes, Dr. ii Índices 1 NOÇÕES BÁSICAS SOBRE ERROS ...................................................................................1-1 1.1 1.2 1.2.1 1.2.2 1.3 1.3.1 1.3.2 1.4 1.5 1.5.1 1.5.2 1.5.3 1.6 1.6.1 1.6.2 1.6.3 2 ERROS...............................................................................................................................................1-1 ERROS A BSOLUTOS E RELATIVOS ................................................................................................1-1 Erro Absoluto..................................................................................................................................1-1 Erro Relativo ou Taxa de Erro ....................................................................................................1-2 ERROS DE A RREDONDAMENTO E TRUNCAMENTO.....................................................................1-2 Erro de Arredondamento..............................................................................................................1-2 Erro de Truncamento ....................................................................................................................1-2 A RITMÉTICA DE PONTO FLUTUANTE ...........................................................................................1-3 CONVERSÃO DE BASES ..................................................................................................................1-3 Conversão da Base β para a Decimal (β⇒10) ........................................................................1-3 Conversão da Base Decimal para a β (10⇒β) ........................................................................1-4 Exercícios: Conversão de Bases..................................................................................................1-5 OPERAÇÕES DE PONTOS FLUTUANTES ........................................................................................1-7 Representações...............................................................................................................................1-7 Exercícios........................................................................................................................................1-7 Exercícios complementares..........................................................................................................1-8 ZEROS REAIS DE FUNÇÕES REAIS .............................................................................. 2-11 2.1 2.2 2.3 2.3.1 2.3.2 2.3.3 2.3.4 3 INTRODUÇÃO .................................................................................................................................2-11 FASE I: ISOLAMENTO DAS RAÍZES...............................................................................................2-11 FASE II: REFINAMENTO - CRITÉRIOS DE PARADA ....................................................................2-15 Método da Bissecção (ou Método da Dicotomia) ................................................................. 2-15 Método do Ponto Fixo (ou Método da Iteração Linear ou Método das Aproximações sucessivas).................................................................................................................................... 2-19 Método de Newton, Newton-Raphson (ou Método das Tangentes).................................... 2-27 Comparação entre os métodos.................................................................................................. 2-30 RESOLUÇÃO DE SISTEMAS DE EQUAÇÕES LINEARES .................................... 3-32 3.1 3.1.1 3.1.2 3.1.3 3.1.4 3.1.5 3.1.6 3.2 3.2.1 3.2.2 3.2.3 3.3 3.3.1 3.3.2 3.3.3 3.3.4 3.3.5 4 INTRODUÇÃO .................................................................................................................................3-32 Forma Algébrica de S n ............................................................................................................... 3-32 Forma Matricial de Sn............................................................................................................... 3-32 Matriz Aumentada ou Matriz Completa do Sistema ............................................................. 3-32 Solução do Sistema ..................................................................................................................... 3-32 Classificação de um Sistema Linear........................................................................................ 3-33 Classificação quanto ao Determinante de A.......................................................................... 3-33 M ÉTODOS DIRETOS.......................................................................................................................3-33 Método de Eliminação de Gauss.............................................................................................. 3-33 Estratégia de Pivoteamento Completo .................................................................................... 3-36 Refinamento de Soluções........................................................................................................... 3-37 M ÉTODOS ITERATIVOS .................................................................................................................3-39 Testes de parada.......................................................................................................................... 3-39 Método de Gauss-Jacobi........................................................................................................... 3-39 Método de Gauss-Seidel............................................................................................................ 3-42 Comparação entre os métodos.................................................................................................. 3-43 Critério de Sassenfeld................................................................................................................ 3-44 INTERPOLAÇÃO.................................................................................................................... 4-47 4.1 4.1.1 4.1.2 4.1.3 4.2 4.2.1 4.3 4.3.1 4.3.2 4.4 INTERPOLAÇÃO POLINOMIAL ......................................................................................................4-47 Existência e Unicidade do Polinômio Interpolador Pn(x).................................................... 4-47 Forma de Lagrange.................................................................................................................... 4-48 Forma de Newton........................................................................................................................ 4-50 ESTUDO DE ERRO NA INTERPOLAÇÃO ........................................................................................4-52 Estimativa para o Erro............................................................................................................... 4-52 INTERPOLAÇÃO INVERSA : CASOS EXISTENTES..........................................................................4-54 Encontrar x tal que Pn ( x ) .................................................................................................. 4-54 Interpolação inversa................................................................................................................... 4-54 FUNÇÕES SPLINE EM INTERPOLAÇÃO.........................................................................................4-56 iii 4.4.1 4.4.2 4.4.3 5 Função Spline .............................................................................................................................. 4-56 Spline linear interpolante.......................................................................................................... 4-57 Spline cúbica interpolante......................................................................................................... 4-58 AJUSTE DE CURVAS PELO MÉTODO DOS MÍNIMOS QUADRADOS ........... 5-64 5.1 5.2 5.3 5.4 6 INTRODUÇÃO .................................................................................................................................5-64 CASO DISCRETO............................................................................................................................5-65 CASO CONTÍNUO ...........................................................................................................................5-70 FAMÍLIA DE FUNÇÕES NÃO LINEARES NOS PARÂMETROS .....................................................5-72 INTEGRAÇÃO NUMÉRICA ............................................................................................... 6-74 6.1 6.1.1 6.1.2 6.1.3 6.1.4 7 FÓRMULAS DE NEWTON -COTES .................................................................................................6-74 Regra dos Trapézios................................................................................................................... 6-74 Regra dos Trapézios repetida ................................................................................................... 6-76 Regra 1/3 de Simpson................................................................................................................. 6-77 Regra 1/3 de Simpson repetida................................................................................................. 6-80 SOLUÇÃO NUMÉRICA DE EQUAÇÕES DIFERENCIAIS ORDINÁRIAS ....... 7-83 7.1 7.2 7.2.1 7.2.2 7.2.3 7.2.4 7.2.5 INTRODUÇÃO .................................................................................................................................7-83 PROBLEMA DE VALOR INICIAL (PVI) .........................................................................................7-84 Solução numérica de um PVI de primeira ordem ................................................................. 7-84 Método de Euler.......................................................................................................................... 7-84 Métodos de Runge-Kutta............................................................................................................ 7-87 Método de Euler Aprimorado (Método de Runge-Kutta de Segunda Ordem) ................. 7-88 Fórmulas de Runge-Kutta de Quarta Ordem......................................................................... 7-89 iv Índices de Figuras [FIG. 1]: [FIG. 2]: M ODELAGEM E RESOLUÇÃO DE PROBLEMAS..............................................................................1-1 O GRÁFICO DE UMA FUNÇÃO y = f ( x ) E SEUS ZEROS.........................................................2-11 [FIG. 3]: EXEMPLO DE UMA FUNÇÃO ESTRITAMENTE CRESCENTE NUM INTERVALO DE a ATÉ b ..2-12 [FIG. 4]: O GRÁFICO DE [FIG. 5]: O S GRÁFICOS DE [FIG. 6]: O GRÁFICO DE f ( x ) = x 3 − 9 x + 3 .......................................................................................2-12 g ( x ) = x 3 E h( x ) = 9 x − 3 . ....................................................................2-13 [FIG. 9]: f ' ( x ) = 3 x 2 − 9 . ...........................................................................................2-13 GRÁFICO DA FUNÇÃO f ( x ) = x ln x − 3,2 ..........................................................................2-14 GRÁFICO DA FUNÇÃO f ' ( x ) = 1 + ln x .................................................................................2-14 O S GRÁFICOS DE g ( x ) = 5 log x E h( x ) = 2 − 0,4 x . ......................................................2-15 [FIG. 10]: [FIG. 11]: [FIG. 12]: [FIG. 13]: O S GRÁFICOS DE g ( x ) = x E h( x ) = 5e . ................................................................2-15 O MÉTODO DA BISSECÇÃO OU DICOTOMIA ................................................................................2-16 O TANQUE DE COMPRIMENTO L . ..............................................................................................2-17 UM EXEMPLO DE UMA FUNÇÃO DE PONTO FIXO.......................................................................2-19 [FIG. 14]: O S GRÁFICOS DAS FUNÇÕES y =x E φ 2 ( x ) = 6 − x ......................................................2-20 [FIG. 15]: O S GRÁFICOS DAS FUNÇÕES y =x E φ1 ( x ) = 6 − x 2 . ........................................................2-21 [FIG. 16]: A SEQÜÊNCIA [FIG. 7]: [FIG. 8]: −x [FIG. 19]: {x k } CONVERGE PARA O ZERO α (CONVERGÊNCIA DO TIPO ESCADA).......2-22 A SEQÜÊNCIA {x k } CONVERGE PARA O ZERO α (CONVERGÊNCIA DO TIPO CARACOL)....2-22 A SEQÜÊNCIA {x k } NÃO CONVERGE PARA O ZERO α.............................................................2-22 A SEQÜÊNCIA {x k } NÃO CONVERGE PARA O ZERO α.............................................................2-23 [FIG. 20]: CASOS EM QUE B É O EXTREMO MAIS PRÓXIMO DE α..............................................................2-24 [FIG. 21]: O S GRÁFICOS DE [FIG. 22]: [FIG. 23]: INTERPRETAÇÃO GEOMÉTRICA DO MÉTODO DE NEWTON.....................................................2-28 O S GRÁFICOS DAS FUNÇÕES g (x ) = X E h (x) = cos x . .......................................................2-30 [FIG. 24]: INTERPOLAÇÃO DE [FIG. 25]: [FIG. 26]: INTERPOLAÇÃO POR LAGRANGE .................................................................................................4-50 GRÁFICO DO POLINÔMIO P10 ( x ) INTERPOLANDO f ( x ) .....................................................4-56 [FIG. 27]: [FIG. 28]: [FIG. 29]: [FIG. 30]: [FIG. 31]: [FIG. 32]: [FIG. 33]: [FIG. 34]: [FIG. 35]: [FIG. 36]: [FIG. 37]: SPLINE LINEAR INTERPOLANDO 4 PONTOS. ...............................................................................4-57 DOMÍNIO DISCRETO......................................................................................................................5-64 DOMÍNIO CONTÍNUO.....................................................................................................................5-64 O MÉTODO DO MÍNIMOS QUADRADOS........................................................................................5-65 DIAGRAMA DE DISPERSÃO...........................................................................................................5-68 REGRA DOS TRAPÉZIO ..................................................................................................................6-74 REGRA DOS TRAPÉZIOS REPETIDA ..............................................................................................6-76 REGRA 1/3 DE SIMPSON...............................................................................................................6-78 REGRA 1/3 DE SIMPSON REPETIDA .............................................................................................6-80 GRÁFICO DA SOLUÇÃO NUMÉRICA DE UM PVI.........................................................................7-84 GRÁFICO DO MÉTODO DE EULER................................................................................................7-85 [FIG. 17]: [FIG. 18]: h (x ) = e x E g ( x ) = x 2 − 4 . ...................................................................2-26 f ( x ) PELO POLINÔMIO P ( x ). .............................................................4-47 Cálculo Numérico Noções básicas sobre erros 1-1 1 Noções básicas sobre Erros Fenômenos da natureza podem ser descritos através do uso de modelos matemáticos. MODELAGEM PROBLEMA MODELO MATEMÁTICO RESOLUÇÃO SOLUÇÃO [Fig. 1]: Modelagem e resolução de problemas. • MODELAGEM: é a fase de obtenção de um modelo matemático que descreve o comportamento do problema que se quer estudar. • RESOLUÇÃO: é a fase de obtenção da solução do modelo matemático através da aplicação de métodos numéricos. 1.1 Erros Para se obter a solução do problema através do modelo matemático, erros são cometidos nas fases: MODELAGEM e RESOLUÇÃO. Exercício 1 Calcular a área da superfície terrestre usando a formulação A =4π r 2 . Aproximações (ERROS): MODELAGEM: Resolução: RESOLUÇÃO: OBS. 1: Características do planeta Terra. • Características Físicas: Diâmetro Eq uatorial: 12756Km; Diâmetro Polar: 12713Km; Massa: 5,98× 1024 Kg; Perímetro de Rotação Sideral: 23h 56min 04seg; Inclinação do Equador Sobre a Órbita: 23o 27’. • Características Orbitais: Raio da Órbita, isto é, 1U.A. (unidade astronômica): 149897570Km; Distância Máxima do Sol: 152100000Km; Distância Mínima do Sol: 147100000Km; Período de Revolução Sideral: 365dias 6h 9min 9,5seg; Velocidade Orbital Média: 29,79Km/seg. 1.2 Erros Absolutos e Relativos 1.2.1 Erro Absoluto É o módulo da diferença entre um valor exato x de um número e seu valor aproximado x . EAx = x − x , onde x é o valor exato e x é o valor aproximado. (Eq.1) Universidade Tecnológica Federal do Paraná (UTFPR) LAURO / NUNES 1-2 Cálculo Numérico Noções básicas sobre erros Geralmente não se conhece o valor exato x . Assim, o que se faz é obter um limitante superior ( k1 majorante) ou uma estimativa para o módulo do erro absoluto. EAx ≤ k1 . (Eq.2) 1.2.2 Erro Relativo ou Taxa de Erro Erro relativo de x é o módulo do quociente entre o erro absoluto EAx e o valor exato x ou o valor aproximado x , se x ou x ≠ 0. (Eq.3) ERx = EAx x−x EAx x − x = ou ERx = = . x x x x Calcular os erros absoluto e relativo, nos itens a) e b). a) x =1,5 e x =1,49; b) y =5,4 e y =5,39. Exercício 2 Resolução: 1.3 Erros de Arredondamento e Truncamento 1.3.1 Erro de Arredondamento Arredondar um número na casa d i é desconsiderar as casas d i + j ( j =1,…,∞) de tal forma que: d i seja a última casa se d i +1 <5; d i +1 seja a última casa se d i +1 ≥5. Exercício 3 Arredondar π na quarta casa decimal, sendo que π=3,1415926535… Resolução: 1.3.2 Erro de Truncamento Truncar um número na casa d i é desconsiderar as casas d i + j ( j =1,…,∞). Exercício 4 Aproximar π truncando na quarta casa decimal, sendo que π=3,1415926535… Resolução: Exercício 5 ∞ xi Sabendo-se que e pode ser escrito como e = ∑ , faça a aproximação de i =0 i! x x e 2 através de um truncamento após quatro termos da somatória. Resolução: Universidade Tecnológica Federal do Paraná (UTFPR) LAURO / NUNES Cálculo Numérico Noções básicas sobre erros 1-3 1.4 Aritmética de Ponto Flutuante Um número é representado, internamente, na máquina de calcular ou no computador através de uma seqüência de impulsos elétricos que indicam dois estados: 0 ou 1, ou seja, os números são representados na base 2 ou binária. De maneira geral, um número x é representado na base β por: (Eq.4) d d d d x =± 1 + 22 + 33 +…+ tt ∗ βexp . β β β β Onde: • d i ⇒ são números inteiros contidos no intervalo 0≤ d i <β; i =1, 2, …, t ; • exp ⇒ representa o expoente de β e assume valores entre I ≤ exp ≤ S ; • I , S ⇒ limite inferior e limite superior, respectivamente, para a variação do expoente; d d d d • 1 + 22 + 33 +…+ tt ⇒ é chamada de mantissa e é a parte do número que representa β β β β seus dígitos significativos; • t ⇒ número de dígitos do sistema de representação. Considerando no sistema de base 10, β=10, represente os seguintes números, em aritmética de ponto flutuante: a) 0,34510 ; b) 31,41510 . Exercício 6 Resolução: Os números assim representados estão NORMALIZADOS, isto é, a mantissa é um número entre 0 e 1. OBS. 2: Considerando no sistema binário, β=2, represente o número 1012 em aritmética de ponto flutuante. Exercício 7 Resolução: 1.5 Conversão de Bases 1.5.1 Conversão da Base β para a Decimal (β⇒10) Um número na base β pode ser escrito, na base decimal, como: m (Eq.5) ∑ aiβi = am βm + am −1β m−1 +…+ a2β2 + a1 β+ a0 + a−1β−1 + a− 2β−2 +…+ an +1βn +1 + anβn . i=n Onde: • ai ⇒ 0≤ ai <β; Universidade Tecnológica Federal do Paraná (UTFPR) LAURO / NUNES Cálculo Numérico • n , m ⇒ números inteiros, com n ≤0 e m ≥0. Noções básicas sobre erros 1-4 Para a conversão, faz-se a operação entre a mantissa do número normalizado e a base β exp . Nos exercícios a seguir, faça a conversão da base indicada para a decimal, determinando o valor da variável x . Exercício 8 10112 = x10 . Resolução: Exercício 9 11,012 = x10 . Resolução: Exercício 10 403,125 = x10 . Resolução: 1.5.2 Conversão da Base Decimal para a β (10⇒β) Aplica-se um processo para a parte inteira e um outro para a parte fracionária. • a) PARTE INTEIRA ( N ): • a.1) N <β ⇒ N10 = Nβ . • a.2) N ≥β N r1 β q1 r2 β q2 O O O qn −1 rn β qn ⇒ Exercício 11 Até que q n <β N10 =( q n rn rn −1 … r3 r2 r1 ) β Converta 5910 para a base 2. Resolução: Universidade Tecnológica Federal do Paraná (UTFPR) LAURO / NUNES Cálculo Numérico Exercício 12 Noções básicas sobre erros 1-5 Converta 5910 para a base 3. Resolução: • b) PARTE FRACIONÁRIA ( F ): Multiplica-se F por β e toma-se a parte inteira do produto como o primeiro dígito do número na base β. Repete-se o processo com a parte fracionária do produto tomando sua parte inteira. Continua-se até que a parte fracionária seja igual a zero. Nos exercícios a seguir, determinar o valor de x : Exercício 13 0,187510 = x2 . Resolução: Exercício 14 0,610 = x2 . Resolução: Exercício 15 13,2510 = x2 . Resolução: 1.5.3 Exercícios: Conversão de Bases Transforme para a base que se pede (determine o valor de x ). Universidade Tecnológica Federal do Paraná (UTFPR) LAURO / NUNES Cálculo Numérico Exercício 16 100101,10012 = x10 . Noções básicas sobre erros Resolução: Exercício 17 19,3867187510 = x4 . Resolução: Transforme a medida 35 h 48 min 18 seg para minutos. DICA: 35:48,1860 = x10 min . Exercício 18 Resolução: Transforme 35,805 horas para horas, minutos e segundos. DICA: 35,80510 = x60 . Exercício 19 Resolução: Universidade Tecnológica Federal do Paraná (UTFPR) LAURO / NUNES 1-6 Cálculo Numérico Noções básicas sobre erros 1-7 1.6 Operações de Pontos Flutuantes 1.6.1 Representações • Precisão dupla: “dobra” a mantissa (2∗ t ); • O zero em ponto flutuante é em geral representado com o menor expoente (exp = I ) possível na máquina; • Ao converter um número para determinada aritmética de ponto flutuante, emprega-se sempre o arredondamento; • Não é possível representar todos os números reais em determinada aritmética de ponto flutuante (reta furada). Um exemplo da reta furada é: Considere a aritmética de pontos flutuantes com parâme tros β=10 e t =3. Tome os números consecutivos 3,57 e 3,58. Existem infinitos números reais entre 3,57 e 3,58 que não podem ser representados nesta aritmética de pontos flutuantes. Por exemplo: 3,571 ou 3,57437. OBS. 3: 1.6.2 Exercícios Exercício 20 Preencher a tabela a seguir, com base nos parâmetros: t =3, β=10, I =−5, S =5 e −5≤ exp ≤5. Número −6,48 0,0002175 3498,3 −0,00000001452 2379441,5 Truncamento Arredondamento Deve-se converter os valores para a aritmética de ponto flutuante com 3 algarismos significativos. OBS. 4: Nos exercícios seguintes, calcular o valor das expressões utilizando aritmética de ponto flutuante com 3 algarismos significativos. Exercício 21 (4,26 + 9,24) + 5,04 Resolução: Exercício 22 4,26 + (9,24 + 5,04) Resolução: Exercício 23 (4210 − 4,99) − 0,02 Resolução: Exercício 24 4210 − (4,99 + 0,02) Resolução: Exercício 25 2 ∗(4,0237 − 6,106) 7 Resolução: Universidade Tecnológica Federal do Paraná (UTFPR) LAURO / NUNES Cálculo Numérico 2 ∗ ( 4,0237 − 6,106) Exercício 26 7 Noções básicas sobre erros 1-8 Resolução: OBS. 5: Em aritmética de ponto flutuante não valem as propriedades associativas nem distributivas. Exercício 27 a) 42450 + Sendo β=10, t =4 e exp ∈[−5,5], calcule: 10 ∑3; i =1 10 b) ∑ 3 + 42450. i =1 Resolução: 1.6.3 Exercícios complementares Nos exercícios seguintes, converter os números para a base decimal, determinando o valor da variável x : Exercício 28 11000112 = x10 . Resolução: Exercício 29 11111112 = x10 . Resolução: Exercício 30 10101012 = x10 . Resolução: . Exercício 31 101,00112 = x10 . Resolução: Universidade Tecnológica Federal do Paraná (UTFPR) LAURO / NUNES Cálculo Numérico Exercício 32 Noções básicas sobre erros 1-9 0,01111112 = x10 . Resolução: Exercício 33 1,0100112 = x10 . Resolução: Nos exercícios seguintes, converter os números para a base binária, determinando o valor da variável x : Exercício 34 3710 = x2 . Resolução: Exercício 35 234510 = x2 . Resolução: Universidade Tecnológica Federal do Paraná (UTFPR) LAURO / NUNES Cálculo Numérico Noções básicas sobre erros Exercício 36 Determine x com 36 dígitos: 0,121710 = x2 . Resolução: Exercício 37 Determine x com 8 dígitos: 2,4710 = x2 . Resolução: • Logo: 2,4710 = 210 + 0, 4710 = 102 + 0,011110002 = 10, 011110002 . Universidade Tecnológica Federal do Paraná (UTFPR) LAURO / NUNES 1-10 Cálculo Numérico Zeros reais de funções reais 2-11 2 Zeros reais de funções reais 2.1 Introdução Dada uma função real f definida e contínua em um intervalo aberto I , chama-se de zero desta função em I , a todo x ∈ I , tal que f( x ) = 0. Neste capítulo são apresentados alguns processos iterativos para calcular de forma aproximada os zeros reais de uma função real f dada. Por um processo iterativo entende-se um processo que calcula uma seqüência de aproximações x1 , x 2 , x3 ,… da solução desejada. O cálculo de uma nova aproximação é feito utilizando aproximações anteriores. Dizemos que a seqüência x1 , x 2 , x3 ,… converge para x , se dado ε>0, ∃ N ∈ ( números naturais), tal que qualquer que seja n > N , xn − x <ε. Neste caso tem-se que lim xn = x , o que também n →∞ poderá ser indicado por xn → x . Nos processos iterativos que serão apresentados, a determinação dos zeros de uma função real de variável real será feita em duas etapas: • Fase I: Isolar cada zero que se deseja determinar da função f em um intervalo [ a , b ], sendo que cada intervalo deverá conter um e somente um zero da função f . • Fase II: Cálculo dos zeros aproximados utilizando um método iterativo, com precisão prefixada ou não. 2.2 Fase I: Isolamento das raízes Seja f ( x ) uma função contínua num intervalo [a , b ]. Se f ( a )⋅ f ( b )<0, então existe pelo menos um zero de f ( x ) entre a e b . y y = f (x) Teorema 1 x a b [Fig. 2]: O gráfico de uma função y = f ( x ) e seus zeros. Sob as hipóteses do teorema 1, o zero x =α será definido e único em [ a , b ] se a derivada f ' ( x ) existir e preservar o sinal dentro do intervalo ] a , b [, isto é se f ' ( x )>0, ∀x ∈] a , b [ ou f ' ( x )<0, ∀x ∈] a , b [. Isto significa dizer que a função f ( x ) é estritamente crescente ou estritamente decrescente, respectivamente, no intervalo ] a , b [. OBS. 6: Universidade Tecnológica Federal do Paraná (UTFPR) LAURO / NUNES Cálculo Numérico 2-12 Zeros reais de funções reais y y = f (x) x a b [Fig. 3]: Exemplo de uma função estritamente crescente num intervalo de a até b. Na pesquisa dos zeros reais de funções reais é muito útil o uso do Teorema 1Erro! A origem da referência não foi encontrada. (que fornece condições de existência de zeros em um intervalo), bem como da OBS 6. (que garante a unicidade, isto é, garante que no intervalo considerado existe um e somente um zero da função f ). Outro recurso bastante empregado é: a partir da equação f ( x )=0, obter a equação equivalente g ( x )= h ( x ) e esboçar os gráficos destas funções obtendo os pontos onde as mesmas se intersectam, pois f (α)=0 ⇔ g (α)= h (α). Exercício 38 Resolução: x f (x) Isolar os zeros da função f ( x )= x 3 −9 x +3. Pode-se construir uma tabela de valores para f ( x ) e analisar os sinais: 0 1 2 −4 −3 −2 −1 3 y y = f (x) α1 -4 -3 -2 -1 [Fig. 4]: O gráfico de α3 α2 1 2 x 3 4 f ( x) = x3 − 9x + 3 . Universidade Tecnológica Federal do Paraná (UTFPR) LAURO / NUNES Cálculo Numérico Zeros reais de funções reais y α1 h(x ) x -4 -3 -2 -1 [Fig. 5]: Os gráficos de g(x) α2 1 2 α3 3 4 g ( x ) = x 3 e h( x ) = 9 x − 3 . y y = f ’( x) - 3 -4 -3 -2 -1 [Fig. 6]: O gráfico de Exercício 39 Resolução: x 3 1 2 3 4 f '( x ) = 3 x 2 − 9 . Isolar os zeros da função f ( x ) = x ln x − 3,2 . Pode-se construir uma tabela de valores para f ( x ) e analisar os sinais: x 1 2 3 4 f ( x) Universidade Tecnológica Federal do Paraná (UTFPR) LAURO / NUNES 2-13 Cálculo Numérico Zeros reais de funções reais y y = f(x) 0,3 0,2 0,1 0 -0,1 2,6 2,8 3,0 3,2 x 3,4 -0,2 -0,3 -0,4 -0,5 -0,6 -0,7 -0,8 -0,9 -1,0 [Fig. 7]: Gráfico da função f ( x ) = x ln x − 3,2 . y f’ (x ) 1 1 [Fig. 8]: Gráfico da função Exercício 40 Resolução: x f ' ( x ) = 1 + ln x . Isolar os zeros da função f ( x ) = 5 log x − 2 + 0,4 x . Pode-se construir uma tabela de valores para f ( x ) e analisar os sinais: x 1 2 3 f ( x) Universidade Tecnológica Federal do Paraná (UTFPR) LAURO / NUNES 2-14 Cálculo Numérico Zeros reais de funções reais y 2-15 g (x) 2 1 h(x) α2 1 [Fig. 9]: Os gráficos de Exercício 41 Resolução: 3 x g ( x ) = 5 log x e h( x ) = 2 − 0,4 x . Isolar os zeros da função f ( x ) = x − 5e − x . Pode-se construir uma tabela de valores para f ( x ) e analisar os sinais: x 0 1 2 3 f ( x) y 2 g (x) 1 h(x) 1 [Fig. 10]: Os gráficos de α g ( x ) = x e h( x ) = 5e− x 2 3 x . 2.3 Fase II: Refinamento - Critérios de Parada 2.3.1Método da Bissecção (ou Método da Dicotomia) Este método é normalmente utilizado para diminuir o intervalo que contém o zero da função, para a aplicação de outro método, pois o esforço computacional cresce demasiadame nte quando se aumenta a precisão exigida. Universidade Tecnológica Federal do Paraná (UTFPR) LAURO / NUNES Cálculo Numérico Zeros reais de funções reais 2-16 O processo consiste em dividir o intervalo que contém o zero ao meio e por aplicação do Teorema 1, aplicado aos subintervalos resultantes, determinar qual deles contém o zero. a + b a + b a, 2 , 2 , b O processo é repetido para o novo subintervalo até que se obtenha uma precisão prefixada. Desta forma, em cada iteração o zero da função é aproximado pelo ponto médio de cada subintervalo que a contém. y f (x) m3 a m2 m1 b x α [Fig. 11]: O método da bissecção ou dicotomia. Assim, na figura anterior tem-se: m1 = a +b a + m1 m + m1 , m2 = , m3 = 2 ,… 2 2 2 Desta forma, o maior erro que se pode cometer na: • 1a iteração ( n =1): é (b − a ) 2 • 2a iteração ( n =2): é (b − a ) 22 • 3a iteração ( n =3): é (b − a ) 23 M M • n a iteração: é (b − a ) 2n Se o problema exige que o erro cometido seja inferior a um parâmetro ε, determina-se (b − a ) a quantidade n de iterações encontrando o maior inteiro que satisfaz a inequação: ≤ε 2n que se resolve da seguinte maneira: (b − a ) (b − a ) ≤ε ⇒ log ≤ log ε ⇒ log( b − a ) − log 2 n ≤ log ε ⇒ log( b − a ) − n log 2 ≤ log ε n n 2 2 log( b − a ) − log ε ⇒n ≥ log 2 Exercício 42 Determinar um valor aproximado para Universidade Tecnológica Federal do Paraná (UTFPR) 5 , com erro inferior a 10−2 . LAURO / NUNES Cálculo Numérico Resolução: n 1 2 3 4 5 6 7 Portanto Determinar a Zeros reais de funções reais 2-17 5 é equivalente a obter o zero positivo da função f ( x ) = x 2 −5. x b f (a ) f (x) f (b ) ( b − a )/2 5≅ Um tanque de comprimento L tem uma secção transversal no formato de um semicírculo com raio r (veja a figura). Quando cheio de água até uma distância h do topo, o h volume V da água é: V= L ⋅ 0,5 ⋅ π ⋅ r 2 − r 2arcsen − h ( r 2 − h 2 ) . Supondo que L =10 ft , r 3 r=1 ft e V=12,4 ft , encontre a profundidade da água no tanque com precisão de 0,01 ft . Exercício 43 r h [Fig. 12]: O tanque de comprimento θ h L. Resolução: Pode-se construir uma tabela de valores para f ( x ) e analisar os sinais: h 0 1 −1 f (h ) Universidade Tecnológica Federal do Paraná (UTFPR) LAURO / NUNES Cálculo Numérico Zeros reais de funções reais 2-18 Para se confirmar a unicidade deste zero neste intervalo, pode-se utilizar a OBS. 6: , isto é, calcula-se a derivada f , ( h) de f (h ) para verificar que a mesma preserva o sinal no intervalo ]0,1[. n a 1 2 3 4 5 6 7 Assim, h = h b f (a ) f (h ) f (b) (b−a)/2 2.3.1.1 Algoritmo do Método da Bissecção Seja f (x ) uma função contínua em um intervalo [a,b], com f (a ) . f (b) <0 e a raiz de f (x ) isolada em [ a , b ]. • Dados de Entrada : Pontos extremos a e b do intervalo; precisão ou tolerância (ε) e o número máximo de iterações (ITMAX). • Saída: Solução aproximada x ou mensagem de "solução não encontrada" com a precisão desejada no número máximo de iterações. PASSO 1 Faça i =1 FA= f (a ) PASSO 2 Enquanto i ≤ ITMAX execute os passos de 3 a 6 PASSO 3 Faça x = ( a + b) e FX = f ( x ) 2 PASSO 4 Se FX = 0 ou (b − a ) < ε, então 2 Saída ( x ) (Procedimento executado com sucesso) Universidade Tecnológica Federal do Paraná (UTFPR) LAURO / NUNES Cálculo Numérico FIM Zeros reais de funções reais 2-19 PASSO 5 Faça i = i +1 PASSO 6 Se FA·FX > 0 então faça a = x e FA = FX Caso contrário faça b = x PASSO 7 Saída (Solução não encontrada com a precisão exigida) FIM 2.3.2Método do Ponto Fixo (ou Método da Iteração Linear ou Método das Aproximações sucessivas) Neste método a seqüência de aproximações do zero α de uma função f (x ) ( f (α) = 0 ) é obtida através de uma relação de recorrência da forma: (Eq.6) x n+1 = φ ( x n ) , n = 0, 1, 2, … O ponto x 0 será considerado uma aproximação inicial do zero α da função f (x ) e φ( x) é uma função que tem α como ponto fixo, isto é, α= φ (α ) . A primeira pergunta a ser respondida é: dada uma função f (x ) com zero α, como encontrar uma função φ( x) que tenha α como ponto fixo ? Isto pode ser feito através de uma série de manipulações algébricas sobre a equação f (x ) =0, transformando-a em uma equação equivalente da forma x = φ( x) . Nestas transformações deve-se tomar os devidos cuidados para que φ( x) esteja definida em α e para que α pertença à imagem de φ . Como o zero α é desconhecido, é necessário determinar um intervalo I que contenha α e que esteja contido tanto no domínio quanto na imagem de φ . É necessário que o zero α de f (x ) seja único no intervalo I, caso contrário não será possível discernir qual o zero determinado. y y= x φ (x) Ponto fixo de φ (x) (Zero de f (x) ) α x [Fig. 13]: Um exemplo de uma função de ponto fixo. Universidade Tecnológica Federal do Paraná (UTFPR) LAURO / NUNES Cálculo Numérico Zeros reais de funções reais 2-20 Exercício 44 Obter algumas funções de ponto fixo para a função f (x ) = x 2 + x − 6 . Resolução: Efetuando diferentes manipulações algébricas sobre a equação f (x ) =0 ou x 2 + x − 6 =0, pode-se obter diferentes funções de ponto fixo, como por exemplo: No próximo passo algumas destas funções serão utilizadas na tentativa de gerar seqüências aproximadoras dos zeros α de f (x ) . Exercício 45 Aproximar o maior zero da função f (x ) = x 2 + x − 6 , utilizando a função φ 2 ( x ) = 6 − x , e x 0 =1,5. Resolução: Neste caso a fórmula de recorrência x n+1 = φ ( x n ) , n = 0, 1, 2, … será: x n+1 = φ 2 ( x n ) = 6 − x n , e pode-se construir a seguinte tabela: n xn x 0 1 2 3 4 M n +1 = φ 2 (x n ) = 6 − x n M y M y= x 6 φ 2 (x) x0 [Fig. 14]: Os gráficos das funções x2 x3 x1 α =2 6 x y = x e φ2 ( x) = 6 − x . Universidade Tecnológica Federal do Paraná (UTFPR) LAURO / NUNES Cálculo Numérico Exercício 46 Zeros reais de funções reais 2-21 Aproximar o maior zero da função f (x ) = x 2 + x − 6 , utilizando a função φ1 ( x) = 6 − x 2 , e x 0 =1,5. Resolução: Neste caso a fórmula de recorrência x n+1 = φ ( x n ) , n =0, 1, 2, … será: x n+1 = φ1( x n ) = 6 − xn2 , e pode-se construir a seguinte tabela: n xn 0 1 2 3 M x n+1 = φ1 ( x n ) = 6 − x 2 M M y y= x 6 x2 x0 α =2 x1 x φ1 (x ) [Fig. 15]: Os gráficos das funções y = x e φ1 ( x ) = 6 − x 2 . Assim, os dois exercícios anteriores mostram que dependendo da transformação x = φ( x) escolhida, a relação de recorrência x n+1 = φ ( x n ) pode ou não fornecer uma seqüência {x n } convergente. Desta forma, como determinar a priori, quais transformações fornecerão seqüências convergentes? As figuras que seguem ilustram alguns casos onde ocorrem convergência e alguns casos onde não ocorrem convergência. Universidade Tecnológica Federal do Paraná (UTFPR) LAURO / NUNES Cálculo Numérico Zeros reais de funções reais y y= x φ (x) α x3 x2 [Fig. 16]: A seqüência x1 x0 x {x k } converge para o zero α (Convergência do tipo escada). y y= x φ(x) x1 [Fig. 17]: A seqüência x3 α x 4 x 2 x0 {x k } converge para o zero α (Convergência do tipo caracol). y y= x φ (x) α x0 [Fig. 18]: A seqüência x x1 x2 x3 x {x k } não converge para o zero α. Universidade Tecnológica Federal do Paraná (UTFPR) LAURO / NUNES 2-22 Cálculo Numérico Zeros reais de funções reais φ (x) y x3 [Fig. 19]: A seqüência x1 α x0 2-23 y= x x2 x {x k } não converge para o zero α. O Teorema que segue estabelece condições suficientes para garantir a convergência do processo iterativo. Como as condições que o teorema que segue são apenas suficientes, dada uma função φ que não satisfaça estas condições, não se pode garantir que a seqüência gerada x1 , x 2 , x3 , … diverge. OBS. 7: 2.3.2.1 Convergência do Método das Aproximações Sucessivas Seja α um zero de uma função f, isolada em um intervalo I=[a,b], e seja φ uma função tal que φ(α ) = α . Se: Teorema 2 i) φ e φ ' são funções contínuas em I; ii) k = max φ' (x ) < 1 iii) x 0 ∈ I e x n+1 = φ ( x n ) ∈ I , para n = 0, 1, 2, … x∈I Então a seqüência {x n } converge para o zero α . Para se resolver um problema com o método das aproximações sucessivas, utiliza-se o teorema anterior da seguinte forma: inicialmente determina-se um intervalo I onde o zero α de f (x ) esteja isolado, e uma função φ que tenha α como ponto fixo. Analisando φ e φ' , pode-se verificar se as condições i) e ii) do Teorema 2 estão satisfeitas. Estas condições podem não estar satisfeitas pelo fato do intervalo I ter sido superdimensionado. Neste caso procura-se por um intervalo I ’ satisfazendo as condições do teorema. Na demonstração do Teorema 2 , que pode ser vista em HUMES, Ana Flora C., et al. Noções de Cálculo Numérico. São Paulo: McGraw-Hill, p. 16, 1984, tem-se que as condições i) e ii) garantem que se x n−1 ∈ I então α − x n < α − xn −1 . Entretanto, isto não OBS. 8: implica que x n ∈ I . Uma maneira simples para garantir que x n ∈ I = [a, b] ∀n ≥ 0 é tomar como valor inicial x0 o extremo de I mais próximo do zero α. Na seqüência, será mostrado que neste caso x1 = φ( x 0 ) ∈ I : Supondo que a seja o extremo de I mais próximo de α, temse: x1 − α < x0 − α = a − α ≤ b − α , logo x1 ∈ I . A demonstração é análoga para o caso em que b o extremo de I mais próximo de α. A condição iii) do Teorema 2 pode ser substituída por: iii’) o zero α é o ponto médio do intervalo I . Na verdade, se para o intervalo I = [a, b ] , estão satisfeitas as condições OBS. 9: Universidade Tecnológica Federal do Paraná (UTFPR) LAURO / NUNES Cálculo Numérico Zeros reais de funções reais 2-24 i) e ii) do Teorema 2, e se a estiver mais próximo de α do que de b então, denotando a − α por r, tem-se que para qualquer x0 ∈ [a, α + r ] a hipótese iii) do teorema é verificada. Mais ainda, para todo I = [a, b ] nas condições do teorema 2, existe I ’⊂ I tal que qualquer que seja x0 ∈ I ’ tem-se que x n ∈ I ’, n ≥1. A determinação do extremo de I = [a, b] mais próximo do zero α pode ser feito da seguinte maneira: Suponhamos satisfeitas as hipóteses i) e ii) do Teorema 2. Nestas (a + b ) condições, seja x̂ = (ponto médio do intervalo I ). Sabe-se que φ( xˆ ) está mais 2 próximo de α do que x̂ . Se x̂ < φ( xˆ ) , então α está entre x̂ e b , ou seja, b é o extremo de I mais próximo de α . Analogamente, se x̂ > φ( xˆ ) , então a é o extremo de I mais próximo de α. Se x̂ = φ( xˆ ) , então x̂ é o zero procurado. OBS. 10: a x b φ (x) a x α x b α φ (x) x [Fig. 20]: Casos em que b é o extremo mais próximo de α. Sejam dados φ( x ), α e k = max φ' ( x ) satisfazendo as hipóteses do teorema OBS. 11: x∈I k anterior. Se xn =φ( xn−1 ), então α − xn ≤ xn − xn−1 . Desta forma, obtém-se um limitante 1− k superior para o erro cometido na n -ésima iteração ( xn ). Verificar as condições i) e ii) do teorema anterior quando do uso da função φ 2 ( x ) = 6 − x no exercício anterior. Exercício 47 Resolução: Verificação da condição i): Verificação da condição ii): Logo, Verificar as condições i) e ii) do teorema anterior quando do uso da função φ1 ( x) = 6 − x . Exercício 48 2 Resolução: Verificação da condição i): Universidade Tecnológica Federal do Paraná (UTFPR) LAURO / NUNES Cálculo Numérico Verificação da condição ii): Zeros reais de funções reais 2-25 Logo, 2.3.2.2 Algoritmo do Método das aproximações sucessivas Para encontrar uma solução para p = φ( p ) dada um aproximação inicial p 0 . • Dados de Entrada : Aproximação inicial p 0 , precisão ou tolerância (ε) e o número máximo de iterações (ITMAX). • Saída: Solução aproximada p ou mensagem de “solução não encontrada”. PASSO 1 Faça i = 1 PASSO 2 Enquanto i ≤ ITMAX, execute os passos 3 – 6 PASSO 3 Faça p = φ( p ) (calcular pi ) PASSO 4 Se p − p 0 < ε então Saída ( p ) (procedimento efetuado com sucesso) FIM PASSO 5 Faça i = i + 1 PASSO 6 Faça p 0 = p (atualize p 0 ) PASSO 7 Saída (solução não encontrada após ITMAX iterações) FIM OBS. 12: Outros critérios de parada podem ser utilizados: • pn − pn −1 < ε • pn − p n−1 <ε pn • f ( pn ) < ε Encontrar o zero de f (x ) = e x − x 2 + 4 com precisão ε = 10 −6 , utilizando o método do ponto fixo. Exercício 49 Universidade Tecnológica Federal do Paraná (UTFPR) LAURO / NUNES Cálculo Numérico Zeros reais de funções reais Resolução: Pode-se construir uma tabela de valores para f ( x ) e analisar os sinais: x −3 −2 −1 f (x ) 5 h(x ) = e x g (x) = x 2 - 4 y 4 3 2 1 -3 α -2 -1 -1 1 2 3 x -2 -3 -4 [Fig. 21]: Os gráficos de h (x ) = e x e g ( x ) = x 2 − 4 . Procurando uma função de ponto fixo adequada pode-se fazer: Verificando as hipóteses i) e ii) do Teorema 2: Universidade Tecnológica Federal do Paraná (UTFPR) LAURO / NUNES 2-26 Cálculo Numérico Zeros reais de funções reais n xn x n+1 2-27 xn+1 − x n 0 1 2 3 Portanto, x = 2.3.3Método de Newton, Newton-Raphson (ou Método das Tangentes) Este método é uma particularidade do método das aproximações sucessivas. A idéia é construir uma função φ( x) para a qual exista um intervalo contendo o zero α , onde φ ' ( x) < 1 . Esta construção é feita impondo φ' (α ) = 0 . Como φ' ( x) deve ser uma função contínua, existe sempre uma vizinhança I de α onde max φ' ( α) <1. x∈I Obtenção da função φ( x) : A forma mais geral de x = φ( x) equivalente a f (x ) =0 é dada por: (Eq.7) x = x + A( x) f ( x) = φ( x) onde A( x) é uma função contínua tal que A( α) ≠ 0 . Escolhe-se A( x) de forma que φ' (α ) = 0 . Derivando-se a (Eq.7), obtém-se φ' ( x) =1+ A( x) f ' ( x ) + A' ( x) f ( x) . Calculando esta derivada no ponto α , obtém-se: φ ' (α ) =1+ A( α) f ' (α ) . Supondo que f ' (α)?0, para que 1 φ' (α ) = 0 , deve-se ter A(α) = − . Assim, uma escolha satisfatória para A( x) será f ' ( α) portanto: (Eq.8) A( x) = − 1 , uma vez que x ≅ α . f '( x) Substituindo (Eq.8) em (Eq.7), tem-se: (Eq.9) φ( x ) = x − f ( x) f '( x ) Assim, o processo iterativo de Newton é definido por: (Eq.10) xn+1 = x n − f ( xn ) , n = 0, 1, 2, … f '( x n ) Universidade Tecnológica Federal do Paraná (UTFPR) LAURO / NUNES Cálculo Numérico Zeros reais de funções reais OBS. 13: A (Eq. 10) é válida mesmo que f ' ( α ) = 0, uma vez que x n ≠ α . 2-28 2.3.3.1 Interpretação Geométrica do Método de Newton O ponto xn+1 é obtido traçando-se a tangente ao gráfico da função f (x ) no ponto ( xn , f ( x n )) . A intersecção da reta tangente com o eixo das abscissas fornece a nova aproximação xn+1 . Esta interpretação justifica o nome de método das tangentes. y f (xn) θ xn +1 α f (x) x2 xn x1 x0 x [Fig. 22]: Interpretação Geométrica do Método de Newton. tgθ = f ' ( xn ) = f (x n ) f ( xn ) ⇒ x n+1 = x n − x n − x n+1 f ' (x n ) 2.3.3.2 Convergência do Método de Newton Teorema 3 que: i) ii) iii) Seja f : [a , b] → ℜ , duas vezes diferenciável, com f " (x ) contínua. Suponha f (a ) ⋅ f (b ) < 0 f ' ( x ) ≠ 0, ∀x ∈ [ a, b] f ' ' ( x) não troca de sinal em [a, b] Então, a seqüência gerada pelas iterações do método de Newton-Raphson utilizando a f ( xn ) f (x ) função φ( x ) = x − que equivale a x n+1 = xn − converge para o único zero α de f ' ( xn ) f '( x ) f , isolado em [a, b] , se x0 ∈ [a , b] for escolhido convenientemente. OBS. 14: Para se escolher o ponto inicial x 0 , pode-se, por exemplo, fazer x 0 = a se φ(a ) ∈ [a , b] ou x0 = b caso contrário. 2.3.3.3 Algoritmo do Método de Newton Para encontrar uma solução para aproximação inicial p 0 . f (x ) =0, dada a derivada de f (x ) e uma • Dados de Entrada : Aproximação inicial p 0 , precisão ou tolerância (ε) e o número máximo de iterações (ITMAX). • Saída: Solução aproximada p ou mensagem de “solução não encontrada”. PASSO 1 Faça i =1 Universidade Tecnológica Federal do Paraná (UTFPR) LAURO / NUNES Cálculo Numérico PASSO 2: Zeros reais de funções reais Enquanto i ≤ ITMAX, execute os passos 3 – 6 PASSO 3 Faça p = p0 − f ( p 0 ) / f ' ( p0 ) (calcular pi ) PASSO 4 Se p − p 0 < ε então Saída (p) (procedimento efetuado com sucesso) FIM PASSO 5 Faça i = i + 1 PASSO 5 Faça p 0 =p (atualize p 0 ) Passo 7: Saída (solução não encontrada após ITMAX iterações) FIM OBS. 15: • • • Outros critérios de parada podem ser utilizados: pn − pn −1 < ε p n − p n−1 pn <ε f ( pn ) < ε OBS. 16: O Método de Newton irá falhar se para algum n, f ' ( p n−1 ) = 0. Exercício 50 Encontrar a solução para a equação x = cos x com precisão ε = 10 −6 . Resolução: Pode-se construir uma tabela de valores para f ( x ) e analisar os sinais: π x 0 2 f ( x) Universidade Tecnológica Federal do Paraná (UTFPR) LAURO / NUNES 2-29 Cálculo Numérico Zeros reais de funções reais y 2-30 g (x) = x 1 π α 3π 2 h(x )= cos x π 2 2π x -1 [Fig. 23]: Os gráficos das funções n g (x ) = x e h (x) = cos x . xn xn+1 − xn xn +1 0 1 2 Portanto, x = 2.3.4 Comparação entre os métodos Nos exercícios seguintes, considerando cada método especificado, determine uma aproximação para o zero da função. Pelo método da Bissecção, determine uma aproximação para x ∈(1,2) da Exercício 51 função f ( x )= e − x − cos x com aproximação ε1 = 10 −4 tal que ( b − a )/2< ε1 . 2 Resolução: n 1 2 3 4 5 6 7 8 9 a x b f (a ) f ( x ) f (b ) Universidade Tecnológica Federal do Paraná (UTFPR) ( b − a )/2 LAURO / NUNES Cálculo Numérico 10 11 12 13 14 Logo, x = Zeros reais de funções reais 2-31 Pelo método da Ponto Fixo ou Aproximações Sucessivas, determine uma Exercício 52 aproximação para x ∈(1,2) da função f ( x )= e − x − cos x com aproximação ε1 = ε 2 =10 −4 tal que | f ( x n )|< ε1 ou | xn+1 − x n |< ε 2 . Utilize x 0 =1,5. 2 Resolução: xn n 0 1 2 3 4 5 xn+1 | xn+1 − x n | | f ( xn+1 )| Parada Logo, x = Pelo método de Newton-Raphson, determine uma aproximação para x ∈(1,2) Exercício 53 da função f ( x )= e − x − cos x com aproximação ε1 = ε 2 = 10 −4 tal que | f ( x n )|< ε1 ou | xn+1 − x n |< ε 2 . Utilize x 0 =1,5. 2 Resolução: n 0 1 xn xn+1 | xn+1 − x n | | f ( x n )| Parada Logo, x = Universidade Tecnológica Federal do Paraná (UTFPR) LAURO / NUNES Cálculo Numérico Resolução de sistemas de equações lineares 3-32 3 Resolução de sistemas de equações lineares 3.1 Introdução Vários problemas, como cálculo de estruturas de redes elétricas e solução de equações diferenciais, recorrem a resolução numérica de um sistema linear S n de n equações com n incógnitas. 3.1.1 Forma Algébrica de Sn (Eq.11) a11x1 a x S n = 21 1 M an1 x1 + a12 x2 + a 22 x2 M + an 2 x2 + L + + L + + L + a1n xn a2n xn M ann x n = b1 = b2 M = bn ou n (Eq.12) S n = ∑ aij x j = bi , i =1, 2, …, n . j =1 3.1.2 Forma Matricial de Sn (Eq.13) A⋅ x=b a11 a12 L a1n x1 b1 a 21 a22 L a2n ⋅ x2 = b2 . M M M M M an1 an2 L ann xn bn Onde: • A ⇒ matriz dos coeficientes; • x ⇒ vetor das incógnitas (ou vetor solução); • b ⇒ vetor dos termos independentes. 3.1.3 Matriz Aumentada ou Matriz Completa do Sistema a11 a12 L a1n b1 a 21 a22 L a2 n b2 B =[ A : b ]= . M M M M an1 an2 L ann bn 3.1.4 Solução do Sistema x =( x1 , x2 , …, xn ) T . Universidade Tecnológica Federal do Paraná (UTFPR) LAURO / NUNES Cálculo Numérico Resolução de sistemas de equações lineares 3-33 3.1.5 Classificação de um Sistema Linear • COMPATÍVEL: apresenta soluções; • INCOMPATÍVEL: caso contrário. 3.1.6 Classificação quanto ao Determinante de A • det A ≠0 (SPD) ⇒ sistema linear possível e determinado (SOLUÇÃO ÚNICA); • det A =0 (SPI) ou (SI): a matriz A é SINGULAR. (SPI) ⇒ Sistema possível e indeterminado, (SI) ⇒ Sistema impossível. Se bi =0, i =1, 2, …, n , isto é, se b =0, o sistema é dito HOMOGÊNEO. Todo sistema homogêneo é compatível, pois admite sempre a solução x =0. A solução é chamada TRIVIAL. OBS. 17: 3.2 Métodos diretos São métodos que determinam a solução de um sistema linear com um número finito de operações. Definição: Dois sistemas lineares são equivalentes quando possuem a mesma solução. 3.2.1 Método de Eliminação de Gauss Com ( n −1) passos, o sistema linear A ⋅ x = b é transformado num sistema triangular superior equivalente. Tome det A ≠0 como hipótese. A ⋅ x = b ≈ U ⋅ x = c , o que se resolve por substituição. [ A : b ] ≈ [U : c ] a11 a12 L a1n b1 u11 u12 L u1n a 21 a22 L a2n b2 ≈ 0 u22 L u 2n M M M M M M M 0 L unn an1 an2 L ann bn 0 Exercício 54 c1 c2 . M cn 2 x1 + 3x2 Resolver o sistema S3 , com S3 = 4 x1 + 4 x2 2 x − 3x 1 2 − x3 = 5 − 3 x3 = 3 . + x3 = − 1 Resolução: Universidade Tecnológica Federal do Paraná (UTFPR) LAURO / NUNES Cálculo Numérico Resolução de sistemas de equações lineares 3-34 (0 ) • Etapa 1: em B0 , tome L(i 0) , com i =1,2,3, como as linhas de B0 e a11 como pivô e calculam-se os multiplicadores m(i10) ( i =2,3). • Etapa 2: Repete-se o processo para o próximo pivô, situado na diagonal da matriz B1 . ) Em B1 , tome L(1i ) , com i =2,3 e a (1 22 como pivô. • Método compacto para a TRIANGULAÇÃO U ⋅ x = c : Linha Multiplicador m Matriz Aumentada B0 ⇒ (1) 2 3 -1 5 (0 ) (2) m21 = 4 4 -3 3 (3) (0 ) m31 (2) (3) (1) m32 = 2 -3 1 Transformação -1 B1 ⇒ = (3) B2 ⇒ As linhas contendo os pivôs formam o sistema U ⋅ x = c . Exercício 55 Resolver o sistema S4 com arredondamento em duas casas decimais, na matriz aumentada. Universidade Tecnológica Federal do Paraná (UTFPR) LAURO / NUNES Cálculo Numérico 8,7 x1 24,5 x 1 S4 ⇒ A ⋅ x = b ⇒ 52 , 3 x 1 21,0 x1 + 3,0 x 2 − 8,8 x 2 − 84,0 x 2 − 81,0 x 2 + + − − Resolução de sistemas de equações lineares 9,3x 3 + 11,0 x4 = 16,4 11,5 x 3 − 45,1x4 = − 49,7 . 23,5x 3 + 11, 4 x 4 = − 80,8 13,2 x3 + 21,5 x 4 = − 106,3 Resolução: Linha (1) (2) (3) (4) Multiplicador B0 ⇒ (0 ) m21 (0 ) m31 (0 ) m41 m Matriz Aumentada 8,70 3,00 9,30 11,00 16,40 = 24,50 -8,80 11,50 -45,10 -49,70 = 52,30 -84,00 -23,50 11,40 -80,80 = 21,00 -81,00 -13,20 21,50 -106,30 B1 ⇒ (2) (3) (1) m32 = (4) (1) = m42 (3) (4) (2 ) m43 B2 ⇒ = B3 ⇒ (4) Então A ⋅ x = b ≈ U ⋅ x = c ⇒ [ A : b ] ≈ [ U : c ]. U ⋅ x=c ⇒ Logo: x = 3.2.1.1 Cálculo do Resíduo Uma medida para avaliar a precisão dos cálculos é o resíduo, que é dado por: (Eq.14) r = b − Ax . Exercício 56 Com base no exercício anterior, calcular o resíduo r do sistema A ⋅ x = b . Resolução: r = b − Ax . r= 3.2.1.2 Algoritmo de Eliminação de Gauss Seja o sistema A ⋅ x = b , com An×n , xn×1 e bn×1 . Sempre supor que akk ≠0 na etapa k . TRIANGULARIZAÇÃO: A ⋅ x = b ≈ U ⋅ x = c . Universidade Tecnológica Federal do Paraná (UTFPR) LAURO / NUNES 3-35 Cálculo Numérico Resolução de sistemas de equações lineares 3-36 Para k =1, 2, …, ( n −1) Para i =( k +1), …, n m= aik akk aik =0 Para j =( k +1), …, n aij = aij − m ∗ akj bi = bi − m ∗ bk FIM FIM FIM RESOLUÇÃO DO SISTEMA U ⋅ x = c . xn = bn ann Para k =( n −1), …, 2, 1 s =0 Para j =( k +1), …, n s = s + akj ∗ x j FIM xk = bk − s akk FIM 3.2.2 Estratégia de Pivoteamento Completo No momento de se calcular o multiplicador mik , se o pivô estiver próximo de zero, o método pode ampliar os erros de arredondamento. Para se contornar estes problemas, escolhese como pivô MAX aij , com i , j =1, 2, …, n . Dado A ⋅ x = b , tome B =[ A : b ]. a11 a12 a21 a22 M M B= a p1 a p 2 M M an1 an2 L a1q L L a2 q L a2 n M a1n M L a pq M L a pn M L anq L ann b1 b2 M . bp M bn Universidade Tecnológica Federal do Paraná (UTFPR) LAURO / NUNES Cálculo Numérico Resolução de sistemas de equações lineares 3-37 Seja a pq = MAX aij , (i , j =1, 2, …, n ) o pivô da linha p . Então, calcula-se o multiplicador m(iq0) = − aiq( 0) a(pq0) , em cada linha, ∀i ≠ p com i =1, 2, …, n . Assim, anulam-se os elementos aij da coluna q através da operação: L(1i ) ← m(iq0) ∗ L(p0) + L(i 0) . Eliminando-se a linha pivotal p , repete-se o processo até que se obtenha L(i k ) com k conjuntos de operações elementares aplicadas sobre B , onde k =1, 2, …, ( n −1). Resolva S4 com arredondamento em duas casas decimais, utilizando eliminação de Gauss com pivoteamento completo. Exercício 57 8,7 x1 24,5 x 1 S4 ⇒ A ⋅ x = b ⇒ 52,3 x1 21,0 x1 + 3,0 x 2 − 8,8 x 2 − 84,0 x 2 − 81,0 x 2 + 9,3x 3 + 11,5 x 3 − 23,5x 3 − 13,2 x3 + 11,0 x4 − 45,1x4 + 11, 4 x 4 + 21,5 x 4 = 16,4 = − 49,7 . = − 80,8 = − 106,3 Resolução: Linha (0 ) (1) m12 = (2) (0 ) m22 = B0 ⇒ (3) (4) (1) (2) Multiplicador (0 ) m42 (1) m14 = m 8,70 Matriz Aumentada 3,00 9,30 11,00 16,40 24,50 -8,80 11,50 -45,10 -49,70 52,30 -84,00 -23,50 11,40 -80,80 21,00 -81,00 -13,20 21,50 -106,30 = (4) (1) = m44 (1) (4) (2 ) m11 = B1 ⇒ B2 ⇒ B3 ⇒ (1) Então A ⋅ x = b ≈ U ⋅ x = c ⇒ [ A : b ] ≈ [ U : c ]. U ⋅ x=c ⇒ 3.2.3 Refinamento de Soluções Seja x (0) a solução aproximada para A ⋅ x = b . Obtém-se a solução melhorada x (1) aplicando-se a correção δ( 0) em x (0) . Universidade Tecnológica Federal do Paraná (UTFPR) LAURO / NUNES Cálculo Numérico Resolução de sistemas de equações lineares 3-38 x (1) = x (0) + δ( 0) Se A ⋅ x (1) = b , então A ⋅( x (0) + δ( 0) )= b A ⋅ x (0) + A ⋅ δ( 0) = b ⇒ A ⋅ δ( 0) = b − A ⋅ x (0) ⇒ A ⋅ δ( 0) = r (0 ) . Assim, δ( 0) vem de [ A : r (0 ) ]. Obtido o δ( 0) , calcula-se x (1) = x (0) + δ( 0) . Repete-se o processo para se obter x (2) , x (3) , …, x ( k ) , até que se tenha a precisão desejada. Logo, obtém-se o refinamento de forma iterativa pela seguinte equação: x (i ) = x ( i −1) + δ(i −1) , com i =1, 2, … k . (Eq.15) Considerando a resposta x do Exercício 55 , faça o refinamento de x até que se obtenha o resíduo r (k ) =0, considerando precisão dupla ( 10−4 =0,0001), quatro casas decimais. Exercício 58 8,7 x1 24,5 x 1 A⋅ x=b⇒ 52,3 x1 21,0 x1 + 3,0 x 2 − 8,8 x 2 − 84,0 x 2 − 81,0 x 2 + 9,3x 3 + 11,5 x 3 − 23,5x 3 − 13,2 x3 + 11,0 x4 − 45,1x4 + 11, 4 x 4 + 21,5 x 4 = 16,4 = − 49,7 = − 80,8 = − 106,3 x (0) = [1,01 2,01 − 1,01 1,00 ]T r (0 ) = b − A ⋅ x (0) ⇒ r (0 ) = [− 0,024 − 0,042 0,082 0,468] REFINAMENTO: x ( k ) = x (k −1) + δ( k −1) A ⋅ δ( k −1) = r (k −1) ⇒ [ A : r (k −1) ] ⇒ δ( k −1) T Resolução: [ A : r (0 ) ] ⇒ δ( 0) ⇒ x (1) = x (0) + δ( 0) • k =1 Linha Multiplicador (1) B0 ⇒ m Matriz Aumentada 8,7000 3,0000 9,3000 11,0000 -0,0240 (2) (0 ) = m21 24,5000 -8,8000 11,5000 -45,1000 -0,0420 (3) (0 ) = m31 52,3000 -84,0000 -23,5000 11,4000 0,0820 (4) (0 ) = m41 21,0000 -81,0000 -13,2000 21,5000 0,4680 B1 ⇒ (2) (3) (4) ) m(1 32 ) m(1 42 = = B2 ⇒ (3) (4) (2 ) m43 = B3 ⇒ Considerando 4 casas decimais: (4) Universidade Tecnológica Federal do Paraná (UTFPR) LAURO / NUNES Cálculo Numérico Resolução de sistemas de equações lineares 3-39 [ A : r (0 ) ] ≈ Então: [ A : r (0 ) ] ⇒ δ( 0) ⇒ Como: x (1) = x (0) + δ( 0) ⇒ r (1 ) = b − A ⋅ x (1) ⇒ • Logo, 3.3 Métodos iterativos A solução x de um sistema de equações lineares A⋅ x = b pode ser obtido resolvendo, de forma iterativa, o sistema equivalente da forma x = F ⋅ x + d , onde F é uma matriz n × n , x e d vetores n × 1 . Isto pode ser feito tomando φ( x ) = F ⋅ x + d , x ( k +1) = φ( x ( k ) ) = F ⋅ x ( k ) + d , onde k =0, 1, …, M , e M é o número máximo de iterações e x ( 0) é o vetor inicial. 3.3.1 Testes de parada O processo iterativo x ( k +1) gera aproximações até que: • máx x (i k +1) − xi( k ) ≤ ε , sendo ε a tolerância; ou 1≤i≤ n • k > M , sendo M o número máximo de iterações. 3.3.2 Método de Gauss-Jacobi. Adaptação de A⋅ x = b para x = F ⋅ x + d : a11x1 a x A⋅ x = b ⇒ 21 1 M an1 x1 x1 x x = F ⋅ x +d ⇒ 2 M xn + a12 x2 + a 22 x2 M + an 2 x2 = = = + L + + L + + L + a1n xn a2n xn M ann x n = b1 = b2 M = bn b1 − ( a12 x 2 + a13x3 + a14 x4 + L + a1n xn ) a11 b2 − ( a21x1 + a 23x3 + a24 x 4 + L + a 2n x n ) a22 M bn − ( an1x1 + an 2 x2 + a n3 x3 + L + an( n−1) x(n−1) ) ann Universidade Tecnológica Federal do Paraná (UTFPR) LAURO / NUNES Cálculo Numérico Resolução de sistemas de equações lineares 3-40 OBS. 18: Para o sistema x = F ⋅ x + d , é necessário que a ii ≠ 0, ∀i . Caso isto não ocorra, o sistema A⋅ x = b deve ser reagrupado. Assim, a fórmula recursiva x = F ⋅ x + d é dada na forma matricial por: 0 x1 a x − 21 2 a22 x 3 = a31 − M a33 xn M a − n1 ann − a12 a11 0 a32 a 33 M an 2 − a nn − a13 a11 a − 23 a 22 − 0 M a n3 − a nn a1n b1 a a11 11 a2n x1 b2 L − a22 x 2 a22 a ∗ x + b L − 3n 3 3 a33 M a33 M x M n bn L 0 ann L − ou ainda x ( k +1) = F ⋅ x ( k ) + d o que é equivalente a: ( k +1) x1 ( k +1) x2 M ( k +1) xn b1 − ( a12 x 2 + a13 x3 + a14 x4 + L + a1n x (nk ) ) a11 (k) (k) b2 − ( a21x1 + a 23x3 + a24 x (4k ) + L + a2n xn(k ) ) (k) = = = (k) (k ) a22 M (k ) (k ) (k ) (k) bn − ( an1 x1 + an2 x2 + a n3 x3 + L + a n(n−1) x( n−1) ) ann Resolva o sistema a seguir, utilizando o método de Gauss-Jacobi, com = 0n×1 e ε = 10− 2 =0,01. = 7 10 x1 + 2 x2 + x3 A⋅ x = b ⇒ x1 + 5 x2 + x3 = − 8 ⇒ x = F ⋅ x + d 2 x + 3x + 10 x = 6 1 2 3 Exercício 59 x (0 ) Resolução: F= e d= Neste caso a fórmula de recorrência fica: x ( k +1) = F ⋅ x ( k ) + d ⇒ Universidade Tecnológica Federal do Paraná (UTFPR) LAURO / NUNES Cálculo Numérico Resolução de sistemas de equações lineares k x1( k ) x (2k ) x3( k ) max xi(k ) − xi(k −1) 0 1 2 3 4 5 6 0 0 0 - 3-41 1≤i ≤3 Com x ( 0) = [0 0 0]T e ε=0,01, o processo convergiu com ........... iterações para: x= 3.3.2.1 Critério das linhas Uma condição suficiente (mas não necessária) para garantir a convergência do método de Gauss-Jacobi aplicado ao sistema A⋅ x = b , com a ii ≠ 0, ∀i , é n (Eq.16) ∑ aij j =1 j ≠i < aii , i = 1, 2, 3, … , n . Neste caso, a matriz dos coeficientes das incógnitas A é dita estritamente diagonal dominante. Verificar se o 10 x1 que segue: A⋅ x = b ⇒ x1 2x 1 Exercício 60 critério das linhas é satisfeito no sistema de equações A⋅ x = b , + 2 x2 + x3 = 7 + 5 x2 + 3x 2 + x3 + 10 x3 = −8 = 6 10 2 1 Resolução: A= 1 5 1 ⇒ 2 3 10 Logo, a matriz dos coeficientes A é estritamente diagonal dominante, o que garante a convergência do método de Gauss-Jacobi aplicado a este sistema com esta ordem de equações e incógnitas. Verificar se o critério x1 + 3x 2 que segue: A⋅ x = b ⇒ 5 x1 + 2 x2 6 x2 Exercício 61 das linhas é satisfeito no sistema de equações A⋅ x = b , + x3 = − 2 + 2 x3 + 8 x3 = 3 = −6 1 3 1 Resolução: A = 5 2 2 ⇒ 0 6 8 Logo a matriz dos coeficientes A não é estritamente diagonal dominante. Isto significa que não é garantida a convergência do método de Gauss-Jacobi aplicado a este sistema com esta ordem de equações e incógnitas. Mas permutando adequadamente as equações do sistema, obtém-se o sistema equivalente: Universidade Tecnológica Federal do Paraná (UTFPR) LAURO / NUNES Cálculo Numérico Resolução de sistemas de equações lineares 3-42 A= Logo, esta nova matriz dos coeficientes A é estritamente diagonal dominante, o que garante a convergência do método de Gauss-Jacobi aplicado a este sistema com esta nova ordem de equações e incógnitas. 3.3.3 Método de Gauss-Seidel. É semelhante ao método de Gauss-Jacobi, com a diferença de utilizar xi( k +1) , 1 ≤ i < p , para o cálculo de x (pk +1) . Desta forma, as equações recursivas ficam: ( k +1) x1 ( k +1) x2 ( k +1) x3 M x (nk +1) Exercício 62 x (0 ) = 0n×1 = = = = b1 − ( a12 x (2k ) + a13 x3(k ) + a14 x4(k ) + L + a1n x (nk ) ) a11 ( k +1) (k) b2 − ( a21x1 + a 23x3 + a 24x (4k ) + L + a2 n xn( k ) ) a22 ( k +1) ( k +1) b3 − ( a31x1 + a32 x 2 + a34 x (4k ) + L + a3n x (nk ) ) a33 M (k +1) (k +1) bn − ( an1 x1 + an 2 x2 + an3 x3( k +1) + L + a n(n−1) x((kn−+11)) ) ann Resolva o sistema a seguir, utilizando o método de Gauss-Seidel, com e ε = 10− 2 =0,01. 10 x1 A⋅ x = b ⇒ x1 2x 1 + 2 x2 + + 5 x2 + 3x 2 + x3 + 10 x3 x3 = 7 = −8 = 6 Resolução: Neste caso a fórmula de recorrência fica: ( k +1) = x1 ( k +1) = x2 ( k +1) = x3 Universidade Tecnológica Federal do Paraná (UTFPR) LAURO / NUNES Cálculo Numérico Resolução de sistemas de equações lineares k x1( k ) x (2k ) x3( k ) max xi(k ) − xi(k −1) 0 1 2 3 4 0 0 0 - 3-43 1≤i ≤3 Com x ( 0) = [0 0 0]T e ε=0,01, o processo convergiu com ......... iterações para: x= 3.3.4 Comparação entre os métodos Exercício 63 x (0 ) = 0n×1 Resolva o sistema A⋅ x = b , utilizando o método de Gauss-Jacobi, com e ε=0,05. 5 x1 A⋅ x = b ⇒ 3 x1 3 x 1 + + x2 + 4 x2 + 3x 2 x3 = 5 + x3 + 6 x3 = 6 = 0 Resolução: F= e d= Neste caso a fórmula de recorrência fica: ( k +1) x1 ( k +1) (k) x = F ⋅ x + d ⇒ x (2k +1) ( k +1) x3 = = = k x1( k ) x (2k ) x3( k ) max xi(k ) − xi(k −1) 0 1 2 3 4 5 6 7 8 9 10 11 0 0 0 - Universidade Tecnológica Federal do Paraná (UTFPR) 1≤i ≤3 LAURO / NUNES Cálculo Numérico Resolução de sistemas de equações lineares 3-44 Com x ( 0) = [0 0 0]T e ε=0,05, o processo convergiu com ......... iterações para: x= Resolva o sistema = 0n×1 e ε=0,05. 5 x1 + x2 + A⋅ x = b ⇒ 3 x1 + 4 x2 + 3 x + 3x + 1 2 Exercício 64 x (0 ) A⋅ x = b , utilizando o método de Gauss-Seidel, com x3 = 5 x3 6 x3 = 6 = 0 Resolução: Neste caso a fórmula de recorrência fica: ( k +1) = x1 ( k +1) = x2 ( k +1) = x3 k x1( k ) x (2k ) x3( k ) max xi(k ) − xi(k −1) 0 1 2 3 0 0 0 - 1≤i ≤3 Com x ( 0) = [0 0 0]T e ε=0,05, o processo convergiu com ......... iterações para: x= 3.3.5 Critério de Sassenfeld Uma condição suficiente para garantir a convergência do método de Gauss-Seidel aplicado ao sistema A⋅ x = b , com a ii ≠ 0, ∀i , é M <1, sendo M = max βi , onde: 1≤i≤ n β1 = n 1 ⋅ ∑ a1 j a11 j= 2 βi = 1 aii OBS. 19: i −1 ⋅ ∑ aij ⋅ β j + j =1 n j =i +1 ∑ aij , i = 2, 3, … , n . Se o critério das linhas é satisfeito, então o critério de Sassenfeld também será satisfeito. Verificar se o critério de Sassenfeld é + 0,5 x2 − x1 0, 2 x + x2 − 1 A⋅ x = b , que segue: A⋅ x = b ⇒ − 0,1x1 − 0,7 x 2 + 0,1x1 + 0,3 x2 + Exercício 65 Universidade Tecnológica Federal do Paraná (UTFPR) satisfeito 0,1x3 + 0,2 x 3 − x3 + 0,2 x 3 + no sistema 0,1x4 = 0,1x4 = 0,2 x4 = x4 = de equações 0, 2 − 2,6 1,0 − 2,5 LAURO / NUNES Cálculo Numérico Resolução de sistemas de equações lineares 1 0,5 − 0,1 0,1 0, 2 1 − 0,2 − 0,1 A= − 0,1 − 0,7 1 0,2 0,3 0,2 1 0,1 Resolução: β1 = 1 ⋅ [ a12 + a13 + a14 ] = a11 β2 = 1 ⋅ [ a 21 ⋅ β1 + a23 + a 24 ] = a 22 β3 = 1 ⋅ [ a 31 ⋅ β1 + a 32 ⋅ β 2 + a 34 ] = a33 β4 = 1 ⋅ [ a 41 ⋅ β1 + a42 ⋅ β2 + a 43 ⋅ β3 ] = a44 3-45 Então, M = max βi = max { ........ ; ........ ; ........ ; ........ } = .................... Logo o critério de 1≤i ≤4 Sassenfeld está satisfeito, o que garante a convergência do método de Gauss-Seidel aplicado a este sistema. Verificar se o critério de Sassenfeld é satisfeito no sistema de equações 2 x1 + x2 + 3 x3 = 9 A⋅ x = b , que segue: A⋅ x = b ⇒ − x2 + x3 = 1 x + 3 x3 = 3 1 Exercício 66 Resolução: Com esta disposição de linhas e colunas, tem-se que: β1 = 1 ⋅ [ a12 + a13 ] = a11 β1 = 1 ⋅ [ a12 + a13 ] = a11 β2 = 1 ⋅ [ a 21 ⋅ β1 + a 23 ] = a 22 β3 = 1 ⋅ [ a31 ⋅ β1 + a32 ⋅ β 2 ] = a33 Universidade Tecnológica Federal do Paraná (UTFPR) LAURO / NUNES Cálculo Numérico Resolução de sistemas de equações lineares Então, M = max βi = 1≤i ≤3 Universidade Tecnológica Federal do Paraná (UTFPR) LAURO / NUNES 3-46 Cálculo Numérico Interpolação 4-47 4 Interpolação 4.1 Interpolação polinomial Uma função f ( x ) pode ser conhecida por um conjunto finito e discreto de n +1 pontos. y ( x4 , y4 ) ( x0 , y0 ) ( x1 , y1 ) ( x3 , y3 ) ( x2 , y2 ) x0 x1 [Fig. 24]: Interpolação de xi yi x0 y0 x1 x2 x3 x4 x5 y1 y2 y3 y4 y5 x2 x3 f (x) ( x5 , y5 ) P(x ) x4 x5 x f ( x ) pelo polinômio P ( x ). Para se INTERPOLAR os n +1 pontos obtidos da tabela, é utilizado um polinômio Pn ( x ) de tal forma que: Pn ( xi )= f ( xi ) para i =0, 1, …, n . (Eq.17) 4.1.1 Existência e Unicidade do Polinômio Interpolador Pn(x) Existe um único polinômio Pn ( x ), de grau ≤ n , tal que: Pn ( xi )= f ( xi ), com Teorema 4 i =0,1,…, n , desde que xi ≠ x j , i ≠ j . n Tome Pn ( xi )= ∑ ak xik = f ( xi ) para i =0,1,…, n . Desenvolvendo o sistema k =0 n f ( xi )= ∑ ak xik ( i =0,1,…, n ), obtém-se: k =0 a0 a0 M a 0 + + a1x0 a1x1 + a2 x0 + a2 x12 2 M + a1xn + L + + L + M + a2 xn2 n an x0 an x1n = = M + L + an xnn f ( x0 ) f ( x1 ) (i = 0 ) ( i = 1) M = f ( xn ) Universidade Tecnológica Federal do Paraná (UTFPR) (i = n ) LAURO / NUNES Cálculo Numérico Interpolação 4-48 Daí, retira-se a matriz dos coeficientes A para se calcular as incógnitas a0 , a1 ,…, a n . 1 x0 1 x1 A= M M 1 xn 2 n x0 L x0 x12 L x1n . M M xn2 L xnn A é uma matriz de VANDERMONDE e, sendo xi com i =0,1,…, n , pontos distintos, o det A ≠0. Assim o sistema admite solução única. OBS. 20: det A =( xn − xn−1 )∗( xn − xn −2 )∗…∗( xn − x0 )∗( xn−1 − xn −2 )∗( xn−1 − xn −3 )∗…∗( xn−1 − x0 ) ∗…∗ ∗( x3 − x2 )∗( x3 − x1 )∗( x3 − x0 )∗( x2 − x1 )∗( x2 − x0 )∗( x1 − x0 ) ⇒ det A = ∏ (xi − x j ) . i> j ENTÃO: O polinômio Pn ( x ) existe e é único. 4.1.2 Forma de Lagrange Seja f uma função tabelada em ( n +1) pontos distintos x0 , x1 ,…, xn e seja Li ( x ) polinômios de Lagrange de grau n , onde Li é dado por: (x − xj) 1 , se i = k de tal forma que Li ( xk )= 0 , se i ≠ k j = 0 ( xi − x j ) n Li ( x )= ∏ j≠i Exercício 67 Determine Li ( xk ) para i =0,1,2, k =0,1,2 e n =2. Resolução: • i =0 ⇒ L0 ( x )= ( x − x1 )( x − x2 ) ( x0 − x1 )( x0 − x2 ) k =0 ⇒ L0 ( x0 )= .......... . k =1 ⇒ L0 ( x1 )= .......... . k =2 ⇒ L0 ( x2 )= .......... . • i =1 ⇒ L1 ( x )= ( x − x0 )( x − x2 ) ( x1 − x0 )( x1 − x2 ) k =0 ⇒ L1 ( x0 )= .......... . k =1 ⇒ L1 ( x1 )= .......... . k =2 ⇒ L1 ( x2 )= .......... . • i =2 ⇒ L2 ( x )= ( x − x0 )( x − x1) ( x2 − x0 )( x2 − x1 ) k =0 ⇒ L2 ( x0 )= .......... . k =1 ⇒ L2 ( x1 )= .......... . k =2 ⇒ L2 ( x2 )= .......... . Para x = xk , com k =0,1,2,…, n , temos: Universidade Tecnológica Federal do Paraná (UTFPR) LAURO / NUNES Cálculo Numérico Interpolação 4-49 n Pn ( xk )= ∑ yi Li ( xk ) i =0 ⇒ i ≠ k ⇒ yi Li ( xk ) =0 123 =0 ⇒ i = k ⇒ yi Li ( xi ) = yi 123 =1 A forma de Lagrange para o polinômio interpolador é: n (Eq.18) Pn ( x )= ∑ yi Li ( x ) ou i =0 n Pn ( x )= ∑ yi i =0 n (x − xj) ∏ (x j=0 j≠i i − xj) Interpolar o ponto x =1,5 na tabela abaixo, empregando o polinômio interpolador de Lagrange. i 0 1 2 3 xi −1 0 1 2 Exercício 68 yi 1 3 1 1 n =3 é o grau máximo de P3 ( x ). Resolução: 3 P3 ( x )= ∑ yi Li ( x ) ⇒ P3 ( x )= .......... ⋅ L0 ( x )+ .......... ⋅ L1 ( x )+ .......... ⋅ L2 ( x )+ .......... ⋅ L3 ( x ) i =0 3 Li ( x )= ∏ (x − x j ) j = 0 ( xi j≠i L0 ( x )= − xj) ( x − x1)( x − x2 )( x − x3 ) = ( x0 − x1 )( x0 − x2 )( x0 − x3 ) ( x − x0 )( x − x2 )( x − x3 ) = ( x1 − x0 )( x1 − x2 )( x1 − x3 ) ( x − x0 )( x − x1 )( x − x3 ) L2 ( x )= = ( x2 − x0 )( x2 − x1 )( x2 − x3 ) ( x − x0 )( x − x1 )( x − x2 ) L3 ( x )= = ( x3 − x0 )( x3 − x1 )( x3 − x2 ) L1 ( x )= Logo: P3 ( x )= ⇒ P3 ( x )= P3 (1,5)= P3 ( 32 )= P3 (1,5)= P3 (1,5)= Universidade Tecnológica Federal do Paraná (UTFPR) LAURO / NUNES Cálculo Numérico 4-50 Interpolação y 3 P3 (x ) 2 1 3 8 -1 0 1 3 2 2 x [Fig. 25]: Interpolação por Lagrange. 4.1.3 Forma de Newton A forma de Newton para o polinômio Pn ( x ) que interpola f ( x ) em x0 , x1 ,…, xn , ( n +1) pontos distintos é a seguinte: Pn ( x )= f [ x0 ]+( x − x0 )⋅ f [ x0 , x1 ]+( x − x0 )⋅( x − x1 )⋅ f [ x0 , x1 , x2 ]+… …+( x − x0 )⋅( x − x1 )⋅…⋅( x − xn−1 )⋅ f [ x0 , x1 ,…, xn ]. Onde (Eq.19) ORDEM f [ x0 ]= f ( x0 )= y0 f [ x0 , x1 ]= 0 f [ x1 ] − f [ x0 ] f ( x1 ) − f ( x0 ) y1 − y0 = = x1 − x0 x1 − x0 x1 − x0 f [ x0 , x1 , x2 ]= f [ x1, x2 ] − f [ x0 , x1] x2 − x0 f [ x0 , x1 , x2 , x3 ]= 2 f [ x1 , x2 , x3 ] − f [ x0 , x1, x2 ] x3 − x0 M f [ x0 , x1 ,…, xn ]= 1 f [ x1, x2 ,L , xn ] − f [ x0 , x1,L, xn−1] xn − x0 3 M n f [ x0 , x1 ,…, xn ] é a DIFERENÇA DIVIDIDA de ordem n da função f ( x ) sobre os n +1 pontos x0 , x1 ,…, xn . Universidade Tecnológica Federal do Paraná (UTFPR) LAURO / NUNES Cálculo Numérico Interpolação 4-51 4.1.3.1 Tabela Prática (DIFERENÇAS DIVIDIDAS) x ordem 0 x0 f [ x0 ] ordem 1 ordem 2 … ordem n ordem 3 f [ x0 , x1 ] x1 f [ x1 ] f [ x0 , x1 , x2 ] f [ x1 , x2 ] x2 f [ x0 , x1 , x2 , x3 ] f [ x2 ] f [ x1 , x2 , x3 ] f [ x2 , x3 ] x3 f [ x1 , x2 , x3 , x4 ] f [ x2 , x3 , x4 ] f [ x3 ] f [ x3 , x4 ] x4 O f [ x0 ,…, xn ] M f [ x4 ] M N f [ xn −3 , xn −2 , xn−1 , xn ] M M O f [ xn −2 , xn−1 , xn ] M f [ xn−1 , xn ] xn f [ xn ] i 0 Interpolar o ponto x =1,5 na tabela abaixo, empregando a forma de Newton. 1 2 3 xi −1 1 0 3 Exercício 69 yi Resolução: x 1 1 2 1 n =3 é o grau máximo de P3 ( x ). Tabela de diferenças divididas: ordem 0 ordem 1 ordem 2 ordem 3 −1 0 1 2 Universidade Tecnológica Federal do Paraná (UTFPR) LAURO / NUNES Cálculo Numérico 4-52 Interpolação P3 ( x )= f [ x0 ]+( x − x0 )⋅ f [ x0 , x1 ]+( x − x0 )⋅( x − x1 )⋅ f [ x0 , x1 , x2 ]+ +( x − x0 )⋅( x − x1 )⋅( x − x 2 )⋅ f [ x0 , x1 , x2 , x3 ] P3 ( x )= P3 ( x )= P3 ( x )= 4.2 Estudo de erro na interpolação Sejam x 0 < x1 < x 2 <…< x n , ( n +1) pontos. Seja f ( x ) com derivadas até ordem ( n +1) para x pertencente ao intervalo [ x 0 , x n ]. Seja Pn ( x ) o polinômio interpolador de f ( x ) nos pontos x 0 , x1 , x 2 ,…, x n . Então, em qualquer ponto x pertencente ao intervalo [ x 0 , x n ], o erro é dado por: En ( x )= f ( x )− Pn ( x ) En ( x )=( x − x0 )⋅( x − x1 )⋅…⋅( x − x n )⋅ (Eq.20) f ( n+1) ( ξ x ) ( n + 1)! onde ξ x ∈( x 0 , x n ). Esta fórmula tem uso limitado, pois são raras as situações em que conhecida e o ponto ξ x nunca é conhecido. f ( n+1) ( x ) é 4.2.1 Estimativa para o Erro Utilizando a (Eq.20), sendo f ( n+1) ( x ) contínua em I =[ x 0 , x n ], pode-se escrever: | En ( x )|=| f ( x )− Pn ( x )| n | En ( x )|≤ ∏ ( x − xi ) ⋅ i =0 M n+1 , onde M n+1 = max f (n+1) ( x ) . x∈I ( n + 1)! Ao se construir a tabela de diferenças divididas até ordem n +1, pode-se usar o maior M n+1 valor em módulo desta ordem como aproximação para no intervalo I =[ x 0 , x n ]. ( n + 1)! Então: | En ( x )|≈ ∏ ( x − xi ) ⋅ max ( Dd ) n (Eq.21) i =0 sendo Dd os valores da tabela de diferenças divididas de ordem ( n +1). Exercício 70 Seja f ( x ) dada em forma de tabela de valores, como segue: x 0,2 0,34 0,4 0,52 0,6 0,72 f (x) 0,16 0,22 0,27 0,29 0,32 0,37 a) Obter f (0,47) usando um polinômio de grau 2; Universidade Tecnológica Federal do Paraná (UTFPR) LAURO / NUNES Cálculo Numérico b) Dar uma estimativa para o erro. 4-53 Tabela de diferenças divididas: Resolução: x Interpolação ordem 0 ordem 1 ordem 2 ordem 3 0,2 0,34 0,4 0,52 0,6 0,72 Deve-se escolher 3 pontos próximos de 0,47 para a obtenção de P2 ( x ). P2 ( x )= f [ x0 ]+( x − x0 )⋅ f [ x0 , x1 ]+( x − x0 )⋅( x − x1 )⋅ f [ x0 , x1 , x2 ] P2 ( x )= P2 ( x )= a) P2 (0,47)= .......... .......... ≈ f (0,47) b) | En (0,47)|≈ | En (0,47)|≈ .......... Prove a igualdade seguinte. x − x1 x − x0 P1 ( x )= f ( x 0 )⋅ + f ( x1 )⋅ = f [ x0 ]+( x − x0 )⋅ f [ x0 , x1 ] x0 − x1 x1 − x0 Exercício 71 Resolução: x x0 ordem 0 ordem 1 f [ x0 ]= .......... f [ x0 , x1 ]= x1 f [ x1 ]= .......... .......... ⇒ P1 ( x )= f [ x0 ]+( x − x0 )⋅ f [ x0 , x1 ] P1 ( x )= ⇔ P1 ( x )= ⇔ P1 ( x )= ⇔ P1 ( x )= Universidade Tecnológica Federal do Paraná (UTFPR) LAURO / NUNES Cálculo Numérico 4-54 Interpolação ⇔ P1 ( x )= ⇔ P1 ( x )= ⇔ P1 ( x )= ⇔ P1 ( x )= f ( x 0 )⋅ x − x1 x − x0 + f ( x1 )⋅ x0 − x1 x1 − x0 4.3 Interpolação inversa: casos existentes O problema da interpolação inversa consiste em: dado y ∈( f ( x0 ), f ( xn )), obter x , tal que f ( x )= y . São duas, as formas de se obter x . A primeira é encontrar x tal que Pn ( x )= y ; A segunda é fazer a própria interpolação inversa, utilizando para isso, os valores de y . 4.3.1 Encontrar x tal que Pn ( x ) Obter Pn ( x ) que interpola f ( x ) em x 0 , x1 , x 2 ,…, x n e em seguida encontrar x , tal que f ( x )= y . OBS. 21: x obtido desta forma não permite se estimar o erro. Exercício 72 Encontre x tal que f ( x )=2 pela tabela abaixo: x 0,5 0,6 0,7 0,8 0,9 1,0 f (x) 1,65 1,82 2,01 2,23 2,46 2,72 Resolução: Fazendo interpolação linear por x 0 =0,6 e x1 =0,7: x − x1 x − x0 P1 ( x )= f ( x 0 )⋅ + f ( x1 )⋅ x0 − x1 x1 − x0 P1 ( x )= P1 ( x )= P1 ( x )= P1 ( x )=2 x = .......... .......... .......... . 4.3.2 Interpolação inversa Se f ( x ) for inversível num intervalo contendo y , então x = f −1 ( y )= g ( y ). Condição para a inversão de f ( x ): f é contínua e monótona crescente (decrescente) num intervalo [ a , b ]. Universidade Tecnológica Federal do Paraná (UTFPR) LAURO / NUNES Cálculo Numérico Interpolação 4-55 Dado f ( x ) contínua em ( x 0 , x n ), então f ( x ) será admitida monótona crescente se f ( x 0 ) < f ( x1 ) < … < f ( x n ) e monótona decrescente se f ( x 0 ) > f ( x1 ) > … > f ( x n ). Respeitadas as condições dadas acima, será obtido o polinômio Pn ( y ) que interpola g ( y )= f −1 ( y ) sobre [ y0 , yn ]. Exercício 73 Considere a tabela a seguir: x 0 0,1 0,2 0,3 0,4 0,5 y =ex 1 1,1052 1,2214 1,3499 1,4918 1,6487 Obter x , tal que e x =1,3165, usando um processo de interpolação quadrática. Usar a forma de Newton para obter P2 ( y ). Construir a tabela de diferenças divididas. Resolução: y ordem 0 ordem 1 ordem 2 ordem 3 1 1,1052 1,2214 1,3499 1,4918 1,6487 P2 ( y )= g [ y0 ]+( y − y0 )⋅ g [ y0 , y1 ]+( y − y0 )⋅( y − y1 )⋅ g [ y0 , y1 , y2 ] P2 ( y )= P2 (1,3165)= Assim, e .............................≈1,3165 Erro cometido: | E2 ( y )| ≤ |( y − y0 )⋅( y − y1 )⋅( y − y2 )|⋅ Na calculadora = 1,316359. M3 3! | E2 (1,3165)| ≤ | E2 (1,3165)| ≤ ⇒ M 3 = max g' ' ' ( y ) , y ∈[ y0 , y2 ]. M3 pode ser aproximado por .......... (tabela de diferenças divididas de ordem 3). 3! | E2 (1,3165)| ≈ .......... .......... .......... .......... ⇒ | E2 ( y )| ≈ .......... .......... .......... . 1o Caso: 2o Caso: f ( x )= e x ⇒ g ( y )= f −1 ( y )= ln y Universidade Tecnológica Federal do Paraná (UTFPR) LAURO / NUNES Cálculo Numérico ⇒ Interpolação 4-56 Logo: M 3 = | E2 (1,3165)| ≤ 4.4 Funções spline em interpolação Considere f ( x )= i =0,1,…, n . 1 2i tabelada no intervalo [−1,1] nos pontos xi =−1+ , com 2 n 1 + 25 x No gráfico abaixo, pode ser observada a função f ( x ) e o polinômio P10 ( x ) que interpola o conjunto discreto de pontos para n =10. −1,0 −0,8 −0,6 −0,4 −0,2 0 0,2 0,4 0,6 0,8 1,0 f ( x ) 0,038 0,059 0,1 0,2 0,5 1,0 0,5 0,2 0,1 0,059 0,038 x 3 2 y 1 1 2 P10(x ) f (x ) -1 - 12 [Fig. 26]: Gráfico do polinômio 0 1 2 1 x P10( x ) interpolando f ( x ) . Em certos casos, a aproximação por Pn ( x ) pode ser desastrosa. Uma alternativa é interpolar f ( x ) em grupos de poucos pontos, obtendo-se polinômios de graus menores, e impor condições para que a função de aproximação seja contínua e tenha derivadas contínuas até uma certa ordem. 4.4.1 Função Spline Considere a função f ( x ) tabelada nos pontos x 0 < x1 < x 2 <…< x n . Uma função S p ( x ) é denominada SPLINE DE GRAU p com nós nos pontos xi , com i =0,1,…, n , se satisfaz as 3 seguintes condições: Universidade Tecnológica Federal do Paraná (UTFPR) LAURO / NUNES Cálculo Numérico Interpolação 4-57 1) Em cada subintervalo [ xi , xi +1 ], com i =0,1,…,( n −1), S p ( x ) é um polinômio de grau p representado por si ( x ). 2) S p ( x ) é contínua e tem derivada contínua até ordem ( p −1) em [ a , b ]. 3) S p ( xi )= f ( xi ), com i =0,1,…, n . Nestes termos, S p ( x ) é denominada SPLINE INTERPOLANTE. 4.4.2 Spline linear interpolante É representada por S1 ( x ) . S1 ( x ) pode ser escrita em cada subintervalo [ xi −1 , xi ], com i =1,2,…, n como: si ( x )= f ( xi −1 ) (Eq.22) xi − x x − xi −1 + f ( xi ) , ∀x ∈[ xi −1 , xi ]. xi − xi −1 xi − xi −1 S1 ( x ) definida dessa forma satisfaz as condições 1) , 2) e 3) . Achar a função spline linear que interpola a função f ( x ) tabelada a seguir. Exercício 74 x0 x1 x2 x3 x 1 2 5 7 y = f (x) 1 2 3 2,5 3 2,5 2 y s3 (x) f (x ) s2 (x) s1(x) 1 0 1 2 3 4 5 6 7 x [Fig. 27]: Spline linear interpolando 4 pontos. Pela definição, pode-se definir 3 splines lineares para os 4 pontos: s1 ( x ), s2 ( x ) e s3 ( x ). Resolução: s1 ( x )= y0 x1 − x x − x0 + y1 x1 − x0 x1 − x0 ⇒ s1 ( x )= .......... , x ∈[ .......... , .......... ]. s1 ( x )= s2 ( x )= y1 x2 − x x − x1 + y2 x2 − x1 x2 − x1 s2 ( x )= s3 ( x )= y2 ⇒ s2 ( x )= .......... .......... .......... , x ∈[ .......... , .......... ]. x3 − x x − x2 + y3 x3 − x2 x3 − x2 Universidade Tecnológica Federal do Paraná (UTFPR) LAURO / NUNES Cálculo Numérico s3 ( x )= Interpolação 4-58 ⇒ s3 ( x )= .......... .......... .......... , x ∈[ .......... , .......... ]. Então, no intervalo [ a , b ]=[1,7], a spline linear S1 ( x ) é dada por: S1 ( x )= 4.4.3 Spline cúbica interpolante É representada por S3 ( x ) . A spline linear tem derivada primeira descontínua nos nós. A spline quadrática S2 ( x ) tem derivadas contínuas até ordem 1, portanto, pode ter picos ou troca abrupta de curvatura nos nós. A spline cúbica S3 ( x ) é mais utilizada por ter derivadas primeira e segunda contínuas, que faz S3 ( x ) ser mais suave nos nós. Suponha f ( x ) dada por xi , com i =0,1,…, n . Tome S3 ( x ) como spline cúbica de f ( x ) nos nós xi , caso existam n polinômios de grau 3 definidos em cada subintervalo k por sk ( x ), com k =1,2,…, n . Então a spline cúbica S3 ( x ) deve satisfazer as 5 igualdades seguintes: 1) S3 ( x )= sk ( x ) para x ∈[ xk −1 , xk ], k =1,2,…, n . 2) S3 ( xi )= f ( xi ), com i =0,1,…, n . 3) sk ( xk )= sk +1 ( xk ), k =1,2,…,( n −1). 4) sk, ( xk )= sk, +1 ( xk ), k =1,2,…,( n −1). 5) sk,, ( xk )= sk,,+1 ( xk ), k =1,2,…,( n −1). Em cada intervalo [ xk −1 , xk ], sk ( x ) será dada por: (Eq.23) sk ( x )= a k ( x − xk )3 + bk ( x − xk )2 + ck ( x − xk )+ d k , com k =1,2,…, n . São 4 coeficientes para cada k à serem determinados. Tome a notação h k = xk − xk −1 , para x = xk −1 . Condição 1) : é satisfeita pela definição de sk ( x ). Para a condição 2) , tem-se as equações: (Eq.24) d k = f ( xk )= sk ( xk ), k =1,2,…, n . (Eq.25) s1 ( x0 )= f ( x0 ) ⇒ − a1 h13 + b1 h12 − c1 h1 + d 1 = f ( x0 ), k =1. Condição 3) para k =1,2,…,( n −1). Universidade Tecnológica Federal do Paraná (UTFPR) LAURO / NUNES Cálculo Numérico sk +1 ( xk )= f ( xk ) Interpolação 4-59 − a k +1 h 3k +1 + bk +1 h 2k +1 − ck +1 h k +1 + d k +1 = f ( xk ). (Eq.26) Para as condições 4) e 5) , tome as derivadas: (Eq.27) sk, ( x )=3 a k ( x − xk )2 +2 b k ( x − xk )+ c k . (Eq.28) sk,, ( x )=6 a k ( x − xk )+2 b k . Para x = xk ⇒ sk,, ( xk )=2 b k . Assim, o coeficiente b k é dado por: bk = (Eq.29) sk,, ( xk ) . 2 Para x = xk −1 ⇒ sk,, ( xk −1 )=−6 a k h k +2 b k . ak = 2bk − sk,, ( xk −1 ) 6h k = sk,, ( xk ) − s ,k, ( xk −1 ) . 6 hk Impondo a condição 5) , sk,, ( xk −1 )= sk,,−1 ( xk −1 ), obtém-se: sk,, ( xk ) − s ,k,−1( xk −1 ) ak = , com s0,, ( x0 ) arbitrária. 6h k (Eq.30) Na obtenção de c k , utilizam- se as equações (Eq.25) e (Eq.26): ck = ck = − f ( xk −1) − ak h3k + bk h2k + d k hk , d k = f ( xk ) f ( xk ) − f ( xk −1 ) −( a k h 2k − b k h k ), substituindo a k e b k obtém-se: hk f ( xk ) − f ( xk −1 ) sk,, ( xk ) − sk,,−1( xk −1) sk,, ( xk ) ck = − hk − hk 2 hk 6 Daí, c k pode ser dado por: (Eq.31) ck = ,, ,, f ( xk ) − f ( xk −1 ) 2s k ( xk ) ⋅ h k + sk −1( xk −1) ⋅ h k + . 6 hk Na obtenção dos coeficientes, tome yk = f ( xk ) e g k = sk,, ( xk ). (Eq.32) ak = gk − g k −1 6h k (Eq.33) bk = gk 2 (Eq.34) ck = y k − yk −1 2hk gk + g k −1hk + hk 6 (Eq.35) d k = yk . Universidade Tecnológica Federal do Paraná (UTFPR) LAURO / NUNES Cálculo Numérico Interpolação 4-60 Impondo a última condição 4) , sk, ( xk )= sk, +1 ( xk ), com k =1,2,…,( n −1), conclui-se que: Para x = xk ⇒ sk, ( xk )= c k , então: c k =3 a k +1 h 2k +1 −2 b k +1 h k +1 + c k +1 ⇒ c k +1 = c k −3 a k +1 h 2k +1 +2 b k +1 h k +1 . Fazendo-se algumas substituições, através das equações (Eq.32), (Eq.33) e (Eq.34): gk +1h k +1 y k +1 − yk 2h k +1g k +1 + g k hk +1 y k − yk −1 2hk gk + g k −1hk g − gk + = + −3 k +1 h k +1 +2 6 6 2 hk +1 hk 6 Daí, chega-se a (Eq.36): (Eq.36) y − yk yk − yk −1 , com k =1,2,…,( n −1). h k g k −1 +2( h k + h k +1 ) g k + h k +1 gk +1 =6 k +1 − hk +1 h k A equação (Eq.36) é um sistema de equações lineares A g = b , onde k =1,2,…,( n −1). A ordem do sistema é: A(n −1 )× (n +1 ) , g (n +1)×1 e b( n −1)×1 . Pela variação de k , o sistema A g = b é indeterminado. Para se resolver o sistema, de forma única, é necessário impor mais duas condições, apresentadas nas três alternativas a seguir. Spline Natural ⇒ nos extremos, S3 ( x0 ) é aproximadamente linear. (1a) S3" ( x0 S3" ( xn (2a) )= g 0 =0 )= g n =0 Nos extremos, S3 ( x ) é aproximadamente parábola. g 0 = g1 g n = g n−1 (3a) Nos extremos, é dada uma inclinação I 0 e I n para S3 ( x ). S3' ( x0 )= I 0 ⇒ s1, ( x0 )= I 0 ⇒ 3 a1 h12 −2 b1 h1 + c1 = I 0 S3' ( xn )= I n ⇒ s ,n ( xn )= I n ⇒ c n = In . Nas alternativas (1a) e (2a), são eliminadas duas variáveis, g 0 e g n . Assim A g = b é SPD, sendo que, o sistema é dado na ordem: A(n −1 )× (n −1) , g (n −1)×1 e b( n −1)×1 . Na alternativa (3a), são acrescentadas duas equações. Assim A g = b é SPD, sendo que, o sistema é dado na ordem: A(n +1)×(n +1) , g (n +1)×1 e b(n +1)×1 . Encontrar uma aproximação para interpolando a tabela: Exercício 75 f (0,25) por spline cúbica natural, x0 x1 x2 x3 x4 x 0 0,5 1,0 1,5 2,0 y = f (x) 3 1,8616 −0,5571 −4,1987 −9,0536 Universidade Tecnológica Federal do Paraná (UTFPR) LAURO / NUNES Cálculo Numérico Resolução: n =4, logo, procura-se s1 ( x ), s 2 ( x ), s 3 ( x ) e s 4 ( x ). Interpolação 4-61 Spline Natural ⇒ k =1,2,…,( n −1) ⇒ k =1,2,3 ⇒ Utilizando a (Eq.36), segue que: y − yk yk − yk −1 (Eq.36) ⇒ h k g k −1 +2( h k + h k +1 ) g k + h k +1 gk +1 =6 k +1 − hk +1 h k Desenvolvendo o sistema A g = b : .......... g 0 + .......... g1 + ..........g 2 = .......... .......... g1 + .......... g 2 + .......... g3 = .......... .......... g 2 + ..........g 3 + ..........g 4 = .......... g 0 = g 4 = .......... (Spline Natural). Então, .......... .......... .......... g1 .......... . A g = b ⇒ .......... .......... .......... ⋅ g 2 = .......... ∗ .......... .......... .......... .......... g 3 .......... Substituindo os valores: .......... .......... .......... g1 .......... .......... ⋅ g = ⇒ g = .......... .......... .......... 2 .......... .......... .......... .......... .......... g 3 .......... .......... Forma geral de s i ( x ) ⇒ s i ( x )= ai ( x − xi )3 + bi ( x − xi )2 + ci ( x − xi )+ d i , com . i =1,2,3,4. f (0,25) ≈ s1 (0,25) g1 − g0 = .......... 6h g b1 = 1 = .......... 2 y − y0 2hg1 + g0h c1 = 1 + = .......... h 6 d 1 = y1 = .......... a1 = Logo, s1 (0,25)= ⇒ s1 (0,25)= ⇒ a1 = .......... ⇒ b1 = .......... ⇒ c1 = .......... ⇒ d 1 = .......... .......... .......... .......... ≈ f (0,25) . Universidade Tecnológica Federal do Paraná (UTFPR) LAURO / NUNES Cálculo Numérico Interpolação 4-62 Considerando os próximos 5 exercícios, encontrar uma aproximação para f ( x ) por spline cúbica natural, interpolando a tabela: x0 x1 x2 x3 x4 0 0,5 1,0 1,5 2,0 x y = f (x) 3 1,8616 −0,5571 −4,1987 −9,0536 n =4, logo, procura-se s1 ( x ), s 2 ( x ), s 3 ( x ) e s 4 ( x ). Do exercício anterior, a forma geral de s i ( x ) é dada por: s i ( x )= ai ( x − xi )3 + bi ( x − xi )2 + ci ( x − xi )+ d i , com i =1,2,3,4. Exercício 76 f (0,8). Resolução: f (0,8) ≈ s 2 (0,8) g2 − g1 = .......... 6h g b 2 = 2 = .......... 2 y − y1 2hg 2 + g1h c2= 2 + = .......... h 6 d 2 = y2 = .......... a2= Logo, s 2 (0,8)= ⇒ s 2 (0,8)= Exercício 77 ⇒ a 2 = .......... ⇒ b 2 = .......... ⇒ c 2 = .......... ⇒ d 2 = .......... .......... .......... .......... ≈ f (0,8) . f (1,1). Resolução: f (1,1) ≈ s 3 (1,1) g3 − g 2 = .......... 6h g b3 = 3 = .......... 2 y − y2 2hg 3 + g 2h c3 = 3 + = .......... h 6 d 3 = y3 = .......... a3 = ⇒ a 3 = .......... ⇒ b3 = .......... ⇒ c 3 = .......... ⇒ d 3 = .......... Logo, s 3 (1,1)=−0,7137(−0,4) −3,1260(−0,4)2 −8,6678(−0,4)−4,1987 3 ⇒ s 3 (1,1)= .......... .......... ≈ f (1,1) . Universidade Tecnológica Federal do Paraná (UTFPR) LAURO / NUNES Cálculo Numérico Exercício 78 Interpolação 4-63 f (1,2). Resolução: f (1,2) ≈ s 3 (1,2) g3 − g 2 = .......... 6h g b3 = 3 = .......... 2 y − y2 2hg 3 + g 2h c3 = 3 + = .......... h 6 d 3 = y3 = .......... a3 = Logo, s 3 (1,2)= ⇒ s 3 (1,2)= Exercício 79 ⇒ a 3 = .......... ⇒ b3 = .......... ⇒ c 3 = .......... ⇒ d 3 = .......... .......... .......... .......... ≈ f (1,2) . f (1,3). Resolução: f (1,3) ≈ s 3 (1,3) g3 − g 2 = .......... 6h g b3 = 3 = .......... 2 y3 − y2 2hg 3 + g 2h c3 = + = .......... h 6 d 3 = y3 = .......... a3 = Logo, s 3 (1,3)= ⇒ s 3 (1,3)= Exercício 80 ⇒ a 3 = .......... ⇒ b3 = .......... ⇒ c 3 = .......... ⇒ d 3 = .......... .......... .......... .......... ≈ f (1,3) . f (1,7). Resolução: f (1,7) ≈ s 4 (1,7) g4 − g3 = .......... 6h g b 4 = 4 = .......... 2 y − y3 2hg4 + g3h c4= 4 + = .......... h 6 d 4 = y4 = .......... a4= Logo, s 4 (1,7)= ⇒ s 4 (1,7)= ⇒ a 4 = .......... ⇒ b 4 = .......... ⇒ c 4 = .......... ⇒ d 4 = .......... .......... .......... .......... ≈ f (1,7) . Universidade Tecnológica Federal do Paraná (UTFPR) LAURO / NUNES Cálculo Numérico Ajuste de curvas pelo método dos mínimos quadrados 5-64 5 Ajuste de curvas pelo método dos mínimos quadrados 5.1 Introdução Uma forma de se trabalhar com uma função definida por uma tabela de valores é a interpolacão. Contudo, a interpolação pode não ser aconselhável quando: É preciso obter um valor aproximado da função em algum ponto fora do intervalo de tabelamento (extrapolação). Os valores tabelados são resultado de experimentos físicos, pois estes valores poderão conter erros inerentes que, em geral, não são previsíveis. Surge então a necessidade de se ajustar a estas funções tabeladas uma função que seja uma “boa aproximação” para as mesmas e que nos permita “extrapolar” com certa margem de segurança. Assim, o objetivo deste processo é aproximar uma função f por outra função g , escolhida de uma família de funções em duas situações distintas: Domínio discreto: quando a função f é dada por uma tabela de valores. y x [Fig. 28]: Domínio discreto Domínio contínuo: quando a função f é dada por sua forma analítica. y y = f (x) x a b [Fig. 29]: Domínio contínuo Universidade Tecnológica Federal do Paraná (UTFPR) LAURO / NUNES Cálculo Numérico Ajuste de curvas pelo método dos mínimos quadrados 5-65 5.2 Caso Discreto O problema do ajuste de curvas no caso em que se tem uma tabela de pontos: x1 x2 x3 … xm f ( x1 ) f ( x2 ) f ( x3 ) … f ( xm ) com x1 , x 2 , x 3 , … , x m ∈[ a , b ], consiste em: “escolhidas” n funções contínuas g 1 ( x ), g 2 ( x ), g 3 ( x ), … , g n ( x ), contínuas em [a , b ], obter n constantes α 1 , α 2 , α 3 , … , α n tais que a função g ( x )= α 1 g 1 ( x )+ α 2 g 2 ( x )+ α 3 g 3 ( x )+ … + α n g n ( x ) se aproxime ao máximo de f ( x ). Este modelo matemático é linear pois os coeficientes que devem ser determinados α 1 , α 2 , α 3 , … , α n aparecem linearmente, embora as funções g 1 ( x ), g 2 ( x ), g 3 ( x ), … , g n ( x ) possam ser não lineares. Surge então a primeira pergunta: Como escolher as funções contínuas g 1 ( x ), g 2 ( x ), g 3 ( x ), … , g n ( x ) ? Esta escolha pode ser feita observando o gráfico dos pontos tabelados (diagrama de dispersão) ou baseando-se em fundamentos teóricos do experimento que forneceu a tabela. Seja d k = f ( x k )− g ( x k ) o desvio em x k . O método dos mínimos quadrados consiste em escolher os coeficientes α 1 , α 2 , α 3 , … , α n de tal forma que a soma dos quadrados dos desvio s seja mínima, isto é: m m k =1 k =1 ∑ d k2 = ∑ [ f ( xk ) − g (x k )]2 deve ser mínimo. Assim, os coeficientes α 1 , α 2 , α 3 , … , α n que fazem com que g ( x ) se aproxime ao máximo de f ( x ), são os que minimizam a função: m F ( α 1 , α 2 , α 3 ,…, α n )= ∑ [ f ( xk ) − g ( x k )] 2 = k =1 m ∑ [ f ( xk ) − α1 g1 ( xk ) − α 2 g 2 (x k ) − α 3 g 3 ( x k ) − L − α n g n ( xk )]2 . k =1 g y f ( x k) dk g( xk) x xk [Fig. 30]: O método do mínimos quadrados Para isto é necessário que: Universidade Tecnológica Federal do Paraná (UTFPR) LAURO / NUNES Cálculo Numérico Ajuste de curvas pelo método dos mínimos quadrados ∂F (α 1 , α 2 , α 3 , L, α n ) =0, j =1, 2, 3, …, n , isto é: ∂α j 5-66 ∂F (α 1 , α 2 , α 3 ,L , α n ) = ∂α j m 2· ∑ [ f ( x k ) − α1 g1 ( xk ) − α 2 g 2 ( xk ) − L − α n g n ( x k )] ⋅ [− g j ( x k )] =0, j =1, 2, 3, …, n k =1 ou m ∑ [ f (x k ) − α1g1 ( xk ) − α 2 g 2 ( xk ) − L − α n g n ( xk )] ⋅ [g j ( xk )] =0, k =1 j =1, 2, 3, …, n Assim, tem-se o seguinte sistema de n equações lineares com n incógnitas α 1 , α 2 , α3 , … , αn : (Eq.37) m ∑ [ f ( x k ) − α1g1 ( x k ) − α 2 g 2 ( xk ) − L − α n g n ( xk )] ⋅[ g1( xk )] = 0 k =1 m ∑ [ f ( x k ) − α1g1 ( x k ) − α 2 g 2 ( xk ) − L − α n g n ( xk )] ⋅[ g 2 ( x k )] = 0 k =1 M M m ∑ [ f ( x k ) − α1g1 ( x k ) − α 2 g 2 ( xk ) − L − α n g n ( xk )] ⋅[ g n ( x k )] = 0 k =1 Que é equivalente a: (Eq.38) m m m g ( x ) ⋅ g ( x ) ⋅ α + L + g ( x ) ⋅ g ( x ) ⋅ α = ∑ 1 k ∑ 1 k 1 k 1 n k n ∑ g1( xk ) ⋅ f ( xk ) k =1 k =1 k =1 m m m g ( x ) ⋅ g ( x ) ⋅ α + L + g ( x ) ⋅ g ( x ) ⋅ α = ∑ 2 k ∑ 2 k ∑ g 2 ( xk ) ⋅ f ( x k ) 1 k 1 n k n k =1 k =1 k =1 M M m m m ∑ g n ( xk ) ⋅ g1 ( x k ) ⋅ α1 + L + ∑ g n ( xk ) ⋅ g n ( xk ) ⋅ α n = ∑ g n ( x k ) ⋅ f ( xk ) k =1 k =1 k =1 As equações deste sistema linear são chamadas de equações normais. Este sistema pode ser escrito na forma matricial A ⋅ α = b : a11α1 a 21α1 M an1α 1 + + a12α 2 a 22α 2 + L + a1n α n + L + a 2n α n M + an 2 α 2 M + L + ann α n = b1 = b2 M = bn Universidade Tecnológica Federal do Paraná (UTFPR) LAURO / NUNES Cálculo Numérico Ajuste de curvas pelo método dos mínimos quadrados m m k =1 k =1 5-67 onde A = ( aij ) tal que aij = ∑ g i ( xk ) ⋅ g j ( xk ) = ∑ g j ( xk ) ⋅ g i ( xk ) = a ji , ou seja, A é uma matriz simétrica; m α = [α1 , α 2 ,L , α n ]T e b = [b1 , b2 ,L , bn ]T é tal que bi = ∑ gi ( x k ) ⋅ f ( x k ) . k =1 m Lembrando que, dados os vetores x e y ∈ ℜm o número real 〈 x, y〉 = ∑ xk ⋅ y k é k =1 chamado de produto escalar de x por y , e usando esta notação no sistema normal A ⋅ α = b , tem-se: a ij = 〈 gi , g j 〉 e bi = 〈 g i , f 〉 onde: g l é o vetor [ g l ( x1 ) g l ( x2 ) g l ( x3 ) L g l ( x m )]T e f é o vetor [ f ( x1 ) f ( x 2 ) f ( x 3 ) L f ( x m )]T . Desta forma o sistema na forma matricial fica: (Eq.39) 〈 g1 , g1〉 〈 g1 , g 2 〉 L 〈 g1 , g n 〉 α1 〈 g1 , f 〉 〈 g , g 〉 〈 g , g 〉 L 〈 g , g 〉 α 〈g 2 , f 〉 2 2 2 n 2 2 1 ⋅ = M M M M M 〈 g n , g1 〉 〈 g n , g 2 〉 L 〈 g n , g n 〉 α n 〈 g n , f 〉 Demonstra-se que, se as funções g 1 ( x ), g 2 ( x ), g 3 ( x ), … , g n ( x ) forem tais que os vetores g1 , g 2 , g 3 ,L , g n , sejam linearmente independentes (LI), então det A ≠ 0 e o sistema de equações é possível e determinado (SPD). Demonstra-se ainda que a solução única deste sistema, α 1 , α 2 , α 3 , … , α n é o ponto em que a função F ( α 1 , α 2 , α 3 ,…, α n ) atinge seu valor mínimo. Se os vetores g1 , g 2 , g 3 ,L , g n , forem ortogonais entre si, isto é, se 〈 g i , g j 〉 = 0 se i ≠ j e 〈 g i , g j 〉 ≠ 0 se i = j , a matriz dos coeficientes A será uma matriz diagonal, o que facilita a resolução do sistema A ⋅ α = b . OBS. 22: Exercício 81 (Regressão Linear) Ajustar os dados da tabela abaixo através de uma reta. i 1 2 3 4 5 xi 1,3 3,4 5,1 6,8 8,0 f ( xi ) 2,0 5,2 3,8 6,1 5,8 Fazendo g ( x ) = α1 ⋅ g1( x ) + α 2 ⋅ g 2 ( x) e considerando g1 (x ) = .......... e g 2 (x ) = .......... , tem-se: g ( x ) = .................................................. Assim, a reta que melhor se ajusta aos valores da tabela terá coeficientes α1 e α 2 , que são solução do seguinte sistema na forma matricial: 〈 g1, g1〉 〈 g1 , g 2 〉 α1 〈 g1, f 〉 〈 g , g 〉 〈 g , g 〉 ⋅ α = 2 1 2 2 2 〈 g 2 , f 〉 g1 =[ .......... .......... .......... .......... .......... ]T g 2 =[ .......... .......... .......... .......... .......... ]T Resolução: f =[ .......... T .......... .......... .......... .......... ] Universidade Tecnológica Federal do Paraná (UTFPR) LAURO / NUNES Cálculo Numérico Ajuste de curvas pelo método dos mínimos quadrados 5-68 〈 g1 , g1 〉 = .............................................................................................................................................................................. 〈 g1 , g 2 〉 = .............................................................................................................................................................................. 〈 g 2 , g1 〉 = .............................................................................................................................................................................. 〈 g 2 , g 2 〉 = .............................................................................................................................................................................. 〈 g1 , f 〉 = .............................................................................................................................................................................. 〈 g2 , f 〉 = Assim, .............................................................................................................................................................................. Logo a equação da reta procurada é: g ( x ) = ................................................. Exercício 82 Ajustar os dados da tabela através da parábola g ( x ) = x 2 : i 1 2 3 4 5 6 7 8 9 10 11 xi −1 −0,75 −0,6 −0,5 −0,3 0 0,2 0,4 0,5 0,7 1 f ( xi ) 2,05 1,153 0,45 0,4 0,5 0 0,2 0,6 0,512 1,2 2,05 y 2 1 -1 1 x [Fig. 31]: Diagrama de dispersão. Fazendo g ( x ) = α1 ⋅ g1 ( x) e considerando g1 (x ) = x 2 , obtém-se g ( x ) = .................... . Assim, para se obter a parábola que melhor se ajusta aos pontos da tabela, será necessário encontrar α1 do sistema: [〈 g1 , g1 〉 ] ⋅ [α 1 ] = 〈 f , g1 〉 g1 =[ .................... .................... .................... … .................... .................... ]T Resolução: [ f =[ .................... ] .................... .................... … T .................... .................... ] 〈 g1 , g1 〉 = .............................................................................................................................................................................. .............................................................................................................................................................................. 〈 g1 , f 〉 = .............................................................................................................................................................................. .............................................................................................................................................................................. Assim, α1 = .................... . Universidade Tecnológica Federal do Paraná (UTFPR) LAURO / NUNES Cálculo Numérico Ajuste de curvas pelo método dos mínimos quadrados Logo a equação da parábola procurada é: g ( x ) = ................................................. 5-69 Ajustar os dados da tabela abaixo por um polinômio do segundo grau g ( x ) = α1 + α2 ⋅ x + α 3 ⋅ x 2 . Exercício 83 i 1 2 3 4 xi −2 −1 1 2 f ( xi ) 1 −3 1 9 Neste caso tem-se que: g1 (x ) = .......... , g 2 (x ) = .......... e g 3 ( x) = .......... Resolução: 〈 g1 , g1〉 〈 g1 , g 2 〉 〈 g1 , g 3 〉 α1 〈 g1 , f 〉 〈 g 2 , g1〉 〈 g 2 , g 2 〉 〈 g 2 , g 3 〉 ⋅ α 2 = 〈 g 2 , f 〉 〈 g 3 , g1 〉 〈 g 3 , g 2 〉 〈 g 3 , g 3 〉 α 3 〈 g 3 , f 〉 T g1 =[ .......... .......... .......... .......... ] g 2 =[ .......... g 3 =[ .......... T .......... .......... .......... ] T .......... .......... .......... ] =[ .......... .......... .......... .......... ]T f 〈 g1 , g1 〉 = .............................................................................................................................................................................. 〈 g1 , g 2 〉 = .............................................................................................................................................................................. 〈 g 2 , g1 〉 = .............................................................................................................................................................................. 〈 g1 , g 3 〉 = .............................................................................................................................................................................. 〈 g 3 , g1〉 = .............................................................................................................................................................................. 〈 g 2 , g 2 〉 = .............................................................................................................................................................................. 〈 g 2 , g 3 〉 = .............................................................................................................................................................................. 〈 g 3 , g 2 〉 = .............................................................................................................................................................................. 〈 g 3 , g 3 〉 = .............................................................................................................................................................................. 〈 g1 , f 〉 = .............................................................................................................................................................................. 〈 g2 , f 〉 = .............................................................................................................................................................................. 〈 g 3 , f 〉 = .............................................................................................................................................................................. Assim, Logo a equação da parábola procurada é: g ( x ) = ................................................. Universidade Tecnológica Federal do Paraná (UTFPR) LAURO / NUNES Cálculo Numérico Ajuste de curvas pelo método dos mínimos quadrados 5-70 5.3 Caso Contínuo No caso contínuo, o problema de ajuste de curvas consiste em: dada uma função f ( x ) , contínua em [a , b ] e escolhidas as funções g1 ( x ), g 2 ( x ), g 3 ( x ),…, g n ( x ), todas contínuas em [ a , b ], determinar constantes α 1 , α 2 , α 3 ,…, α n de modo que a função g ( x )= α 1 g 1 ( x )+ α 2 g 2 ( x )+ α 3 g 3 ( x )+…+ α n g n ( x ) se aproxime ao máximo de f ( x ) no intervalo [ a , b ]. Seguindo o critério dos mínimos quadrados para o conceito de proximidade entre f ( x ) e g ( x ), os coeficientes α 1 , α 2 , α 3 ,…, α n a serem obtidos são tais que b ∫a [ f (x ) − g (x )] dx seja o menor possível. 2 Para achar α tal que g ( x )≈ f ( x ), tome: b ∫a [ f (x ) − g (x )] dx = F (α)= F ( α 1 , α 2 , α 3 ,…, α n ). 2 Encontram-se os pontos críticos de F (α): ∂F (α)=0, j =1,2,…, n . ∂α j b b a a Mas, F (α)= ∫ [ f ( x ) − g ( x )]2dx = ∫ [ f ( x )2 − 2 f ( x ) g ( x ) + g ( x )2 ]dx b b b a a a ⇒ F (α)= ∫ f ( x) 2dx −2 ∫ f ( x ) g ( x)dx + ∫ g ( x) 2dx . Ao desenvolver ∂F (α)=0, j =1,2,…, n , obtém-se: ∂α j b bg 2 ( x) dx α + L + ∫ g1( x ) g n ( x )dx α n 1 ∫a 1 a b b ∫ g2 ( x ) g1 ( x )dx α1 + L + ∫ g 2 ( x ) g n ( x )dx α n a a M O M b b g 2( x )dx α ∫a gn ( x ) g1( x ) dx α1 + L + ∫a n n b = ∫a f (x )g1( x)dx = ∫a f (x )g 2 ( x)dx . b M = b ∫a f (x )g n ( x )dx Este é um sistema linear A α= b de ordem n . b A =( aij ) tal que aij = ∫ gi ( x) g j ( x )dx = a ji ⇒ aij = a ji . a A é SIMÉTRICA. α=( α 1 , α 2 , α 3 ,…, α n ) e b =( b1 , b2 , b3 ,…, bn ), tal que b bi = ∫ f ( x) gi ( x) dx . a Usando a definição de produto escalar de duas funções p ( x ) e q ( x ) no intervalo b [ a , b ] por 〈 p , q 〉 = ∫ p( x) ⋅ q ( x) dx , o sistema A α= b fica: a (Eq.40) A =( aij )= gi , g j e b =( bi )= f , gi . Universidade Tecnológica Federal do Paraná (UTFPR) LAURO / NUNES Cálculo Numérico Ajuste de curvas pelo método dos mínimos quadrados 5-71 Aproximar a função f ( x )=4 x 3 por um polinômio do primeiro grau, uma reta, no intervalo [0,1]. Exercício 84 Resolução: g ( x )= α 1 g 1 ( x )+ α 2 g 2 ( x )= ................................................., isto é, g1 ( x )= .......... e g 2 ( x )= .......... . a11 a12 α1 b1 〈 g , g 〉 A α= b ⇒ ⋅ = ⇒ 1 1 a21 a22 α 2 b2 〈 g2 , g1〉 〈 g1 , g 2 〉 α1 〈 f , g1〉 ⋅ = 〈 g 2 , g 2 〉 α 2 〈 f , g2 〉 a11 = 〈 g1, g1〉 = .......... a12 = 〈 g1 , g 2 〉 = 〈 g 2 , g1 〉 = a21 = .......... a22 = 〈 g 2 , g 2 〉 = .......... b1 = 〈 f , g1〉 = .......... b2 = 〈 f , g 2 〉 = .......... A α= b ⇒ Logo: g ( x )= Exercício 85 ................................................. ≈ f ( x )=4 x 3 em [0,1]. Aproximar a função f ( x )= e x no intervalo [0,1] por uma reta. Resolução: g ( x )= α 1 g 1 ( x )+ α 2 g 2 ( x )= ................................................., isto é, g1 ( x )= .......... e g 2 ( x )= .......... . a11 a12 α1 b1 〈 g , g 〉 A α= b ⇒ ⋅ = ⇒ 1 1 a21 a22 α 2 b2 〈 g2 , g1〉 〈 g1 , g 2 〉 α1 〈 f , g1〉 ⋅ = 〈 g 2 , g 2 〉 α 2 〈 f , g2 〉 a11 = 〈 g1, g1〉 = .......... a12 = 〈 g1 , g 2 〉 = 〈 g 2 , g1 〉 = a21 = .......... a22 = 〈 g 2 , g 2 〉 = .......... b1 = 〈 f , g1〉 = .......... b2 = 〈 f , g 2 〉 = .......... Universidade Tecnológica Federal do Paraná (UTFPR) LAURO / NUNES Cálculo Numérico Ajuste de curvas pelo método dos mínimos quadrados 5-72 Usando o método de integração por partes em b2 : ∫ u ⋅ dv = u ⋅ v − ∫ v ⋅ du g ( x )= ................................................. 5.4 Família de Parâmetros ≈ f ( x )= e x em [0,1]. Funções Não Lineares nos Em alguns casos, a família de funções escolhidas pode ser não linear nos parâmetros, m isto é, g ( x ) não é da forma ∑ α k ⋅ gk (x ) . Nestes casos é preciso efetuar uma “linearização”, k =1 através de transformações convenientes. Exemplos: 1o ) f ( x )≈ α1 ⋅ e α2 x = g ( x ) ln f ( x )≈ ln α1 ⋅ e α2 x = ln α1 + α 2 ⋅ x = G ( x ). Fazendo ln α1 = a1 e α 2 = a2 , tem-se: G ( x )= a1 + a 2 ⋅ x , Desta forma G ( x )≈ ln f ( x ), sendo que G ( x ) é linear nos parâmetros a1 e a 2 . 2o ) f ( x )≈ 1 =g (x) α1 + α 2 ⋅ x 1 ≈ α1 + α 2 ⋅ x = G ( x ). f ( x) Fazendo α1 = a1 e α 2 = a2 , tem-se: G ( x )= a1 + a 2 ⋅ x , Desta forma G ( x )≈ 1 , sendo que G ( x ) é linear nos parâmetros a1 e a 2 . f ( x) 3o ) f ( x )≈ α1 + α 2 ⋅ x = g ( x ) f 2 ( x )≈ α1 + α 2 ⋅ x = G ( x ). Fazendo α1 = a1 e α 2 = a2 , tem-se: G ( x )= a1 + a 2 ⋅ x , Desta forma G ( x )≈ f 2 ( x ), sendo que G ( x ) é linear nos parâmetros a1 e a 2 . Universidade Tecnológica Federal do Paraná (UTFPR) LAURO / NUNES Cálculo Numérico Ajuste de curvas pelo método dos mínimos quadrados 5-73 Exercício 86 Ajustar os dados da tabela que segue por uma função da forma α2x g ( x )= α1 ⋅ e . x 0 1 2 f (x) 1 0,5 0,7 Desta forma, “linearizando” a função g ( x )= α1 ⋅ e α 2 x , como no primeiro exemplo anterior, tem-se: Resolução: 〈 g1, g1〉 〈 g1, g 2 〉 a1 〈 〈 g , g 〉 〈 g , g 〉 ⋅ a = 〈 2 1 2 2 2 , g1 〉 , g 2 〉 g1 =[ .......... .......... .......... ]T g 2 =[ .......... .......... .......... ]T T .................... =[ .................... .................... .................... ] 〈 g1 , g1〉 = .............................................................................................................................................................................. 〈 g1 , g 2 〉 = .............................................................................................................................................................................. 〈 g 2 , g1〉 = 〈 g1 , g 2〉 = .......... 〈 g 2 , g 2 〉 = .............................................................................................................................................................................. 〈 .............. , g1 〉 = .............................................................................................................................................................................. 〈 ............. , g 2 〉 = .............................................................................................................................................................................. ⇒ g ( x )= ................................................. ≈ f ( x ). Os parâmetros assim obtidos não são ótimos dentro do critério dos mínimos quadrados, isto porque estamos ajustando o problema linearizado por mínimos quadrados e não o problema original. Portanto, os parâmetros a1 e a 2 do exemplo, são os que ajustam a função G ( x ) à função ln f ( x ), no sentido dos mínimos quadrados. Não se pode afirmar que os parâmetros α1 e α 2 (obtidos de a1 e a 2 ) são os que ajustam g ( x )= α1 ⋅ e α 2 x à f ( x ), dentro do critério dos mínimos quadrados. Universidade Tecnológica Federal do Paraná (UTFPR) LAURO / NUNES Cálculo Numérico Integração Numérica 6-74 6 Integração Numérica Se uma função f ( x ) é contínua em um intervalo [a , b ] e sua primitiva F ( x ) é conhecida, então (Eq.41) b ∫a f (x )dx = F ( b )− F ( a ) onde F ' ( x )= f ( x ). Por outro lado, nem sempre se tem F ( x ) e em alguns casos, a função a ser integrada é dada por meio de tabela de pontos. Neste caso, torna-se necessária a utilização de métodos numéricos. A idéia básica da integração numérica é a substituição da função f ( x ) por um polinômio que a aproxime no intervalo [ a , b ]. Assim o problema fica resolvido pela integração de polinômios, o que é trivial de se fazer. 6.1 Fórmulas de Newton-Cotes Neste caso, o polinômio que interpola f ( x ) o faz em pontos igualmente espaçados de [ a , b ]. Fórmulas fechadas: x 0 = a , x n = b e b ∫a n f ( x ) dx = ∑ Ai f ( x i ) , sendo Ai coeficientes i =0 determinados de acordo com o grau do polinômio aproximador. 6.1.1 Regra dos Trapézios f ( x1) f (x ) p 1(x ) y f ( x0) 0 a= x 0 b = x1 x h= b - a , h= x1- x 0 [Fig. 32]: Regra dos trapézio. A integral de f ( x ) no intervalo [ a , b ] é aproximada pela área de um trapézio. (Eq.42) b ∫a f (x )dx ≈ h [ f ( x 0 )+ f ( x1 )] = I T 2 A aproximação de f ( x ) pela fórmula de Lagrange é p 1 ( x )= y 0 L0 ( x )+ y1 L1 ( x ) com L0 ( x )= (Eq.43) x − x1 x 0 − x1 p 1 ( x )= e L1 ( x )= x − x0 x1 − x 0 , logo: x − x1 x − x0 f ( x 0 )+ f ( x1 ) −h h Universidade Tecnológica Federal do Paraná (UTFPR) LAURO / NUNES Cálculo Numérico Integração Numérica 6-75 6.1.1.1 Estimativa para o Erro E n ( x )=( x − x 0 )⋅…⋅( x − x n )⋅ f ( x )= p 1 ( x )+ E ( x ) E ( x )=( x − x 0 )⋅( x − x1 )⋅ f ( n+1) ( ξx ) ( n + 1)! f " (ξ x ) , ξ x ∈( x 0 , x1 ) 2 f " (ξ x ) f ( x )= p 1 ( x )+( x − x 0 )⋅( x − x1 )⋅ . 2 Integrando f ( x ): x1 ∫x x1 x1 x0 x0 f ( x ) dx = ∫ p1 ( x ) dx + ∫ 0 ( x − x 0 )( x − x1 ) x = a f " (ξ x ) dx , com 0 2 x1 = b b I T = ∫ p1 ( x ) dx a b ET = ∫ ( x − a )( x − b ) a f " (ξ x ) dx 2 b 1 " f ( c ) ∫ ( x − a )( x − b ) dx a 2 1 ( b − a )3 ET = f " ( c ) 2 6 ET = ET = (Eq.44) h3 " f ( c ) com c ∈( a , b ) 12 ou | ET |≤ (Eq.45) h3 max | f " ( x )| 12 x∈[ a,b] OBS. 23: b b ∫a x 3 ax 2 bx 2 b 3 − 3ab 2 + 3a 2 b − a 3 ( b − a )3 ( x − a x − b x + a b ) dx = − = . − = 6 2 2 6 3 a 2 Exercício 87 Calcular 9 ∫1 6x − 5 dx , usando a regra dos trapézios. Resolução: 9 ∫1 6x − 5 dx ≈ I T = .................... . O erro cometido será, no máximo: Universidade Tecnológica Federal do Paraná (UTFPR) LAURO / NUNES Cálculo Numérico Logo, | ET |≤ Integração Numérica 6-76 .................... . 6.1.2 Regra dos Trapézios repetida y f (x ) 0 a = x0 x1 x2 x3 x n-1 b = xn x [Fig. 33]: Regra dos trapézios repetida h = x1 − x 0 = x 2 − x1 = x 3 − x 2 = … = x n − x n −1 h= b−a , com n sendo o número de subdivisões do intervalo [ a , b ]. n b ∫a f (x )dx ≈ Ai = (Eq.46) A1 + A2 + A3 +…+ An tal que Ai =área do trapézio i , com i =1,2,…, n . h [ f ( x i −1 )+ f ( x i )] 2 b ∫a f ( x ) dx ≈ n −1 h [ f ( x 0 )+ f ( x n )+2⋅ ∑ f ( x i ) ] 2 i =1 6.1.2.1 Estimativa para o Erro (Eq.47) | ETR |≤ Exercício 88 (b − a ) 3 max | f " ( x )| 2 x∈ [ a ,b ] 12n Calcular 9 ∫1 6x − 5 dx empregando o método dos trapézios com 8 repetições. Determine uma aproximação para o erro cometido. Resolução: Universidade Tecnológica Federal do Paraná (UTFPR) LAURO / NUNES Cálculo Numérico Integração Numérica 6-77 x 0 = ....... x1 = ....... x 2 = ....... x 3 = ....... x 4 = ....... x 5 = ....... x 6 = ....... x 7 = ....... x 8 = ....... x f (x) 9 ∫1 6x − 5 dx ≈ .................... . Erro cometido será, no máximo: | ETR | ≤ .................... . Neste caso em particular, f ( x ) pode ser integrada de forma exata: 9 ∫1 6x − 5 dx = Exercício 89 .................... . 1 Seja I = ∫ e x dx . Calcule uma aproximação para I usando 10 subintervalos e a 0 regra dos trapézios repetida. Estimar o erro cometido. Resolução: 1 x ∫0 e dx ≈ .................... . Erro cometido será, no máximo: | ETR | ≤ Exercício 90 .................... . 1 Seja I = ∫ e x dx . Qual o número mínimo de subdivisões, para a regra dos 0 trapézios repetida aplicada em I , de modo que o erro seja inferior a 10−3 ? Resolução: n = .................... . 6.1.3 Regra 1/3 de Simpson É obtida aproximando-se a função f ( x ) da (Eq.41) por um por um polinômio interpolador de 2o grau, p2 ( x ), que é dado pela fórmula de Lagrange: p2 ( x )= L0 ( x ) f ( x0 )+ L1 ( x ) f ( x1 )+ L2 ( x ) f ( x2 ) Universidade Tecnológica Federal do Paraná (UTFPR) LAURO / NUNES Cálculo Numérico 2 Integração Numérica tal que Li ( x )= ∏ (x − x j ) j = 0 ( xi j≠i − xj) 6-78 , com i =0,1,2. y f (x) p2 (x ) f ( x0) f ( x2) f ( x1) 0 a= x 0 h m= x 1 h b = x2 x [Fig. 34]: Regra 1/3 de Simpson. x0 = a , x1 = m e x2 = b a+b 2 m = x1 = h= b−a 2 x0 − x1 =− h , x0 − x2 =−2 h , x1 − x0 = h , x1 − x2 =− h , x2 − x0 =2 h , x2 − x1 = h . p 2 ( x )= b ∫a ( x − x1 )( x − x 2 ) ( − h)( −2h ) f ( x 0 )+ x2 x2 x0 x0 ( x − x 0 )( x − x 2 ) ( h )( −h ) f ( x1 )+ ( x − x 0 )( x − x1 ) ( 2 h)( h ) f ( x2 ) f ( x ) dx = ∫ f ( x )dx ≈ ∫ p2 ( x) dx f ( x0 ) x2 f ( x1) x2 f ( x2 ) ( x − x )( x − x ) dx − ( x − x0 )( x − x2 )dx + 1 2 2 ∫x 2 ∫ x 0 0 2h h 2h2 h = [ f ( x 0 )+4 f ( x1 )+ f ( x2 )]. Logo: 3 = (Eq.48) b ∫a x2 f ( x ) dx = ∫ f ( x )dx ≈ x0 x2 ∫x (x − x0 )( x − x1)dx 0 h [ f ( x 0 )+4 f ( x1 )+ f ( x2 )]. 3 6.1.3.1 Estimativa para o Erro x2 ∫x 0 (Eq.49) x2 x2 x0 x0 f ( x )dx = ∫ p2 ( x) dx + ∫ R2 ( x )dx b b a a ES = ∫ R2 ( x) dx = ∫ ( x − x0 )( x − x1 )( x − x2 ) f ''' ( ξx ) dx 3! Universidade Tecnológica Federal do Paraná (UTFPR) LAURO / NUNES Cálculo Numérico Integração Numérica 6-79 6.1.3.2 Mudança de Variável z= x − x0 ⇒ x = hz + x 0 h x0 − x 0 ⇒ z =0 h x − x 0 2h x = x2 = b ⇒ z = 2 = ⇒ z =2 h h x = x0 = a ⇒ z = dx ⇒ dx = h dz h h ⋅ f ''' (ξ z ) 2 ES = ∫0 hz ( hz − h )( hz −2 h ) dz 6 2 h4 ⋅ f ''' ( ξ z ) 2 h4 ''' ES = z ( z −1)( z −2) dz = f ( ξ z ) ∫ ( z 3 − 3z 2 + 2 z ) dz ∫ 0 0 6 6 dz = 2 z4 h4 ''' h4 ''' ES = f (ξ z ) ⋅ − z3 + z2 = f ( ξ z ) ⋅0 = 0. 6 4 0 6 1442443 =0 Logo, ES =0. Isso quer dizer que ES não depende de R2 (resíduo de 2o grau). Então: f 4 (ξ x ) ES = ∫ R3 ( x ) dx = ∫ ( x − x0 )( x − x1)( x − x2 )( x − x3 ) dx a a 4! 2 h5 ⋅ f 4 ( ξ z ) 2 h5 4 ES = z ( z −1)( z −2)( z −3) dz = f ( ξ z ) ∫ ( z 4 − 6 z 3 + 11z 2 − 6 z ) dz ∫ 0 0 24 24 1 4444244443 b b =− ES = − (Eq.50) h5 4 f (ξ) com ( a ≤ξ≤ b ). 90 | ES | = h5 ⋅ max | f 4 ( x ) | 90 x∈[ a,b] Considerando h = (Eq.51) 4 15 | ES | ≤ b−a ( b − a) 5 ⇒ h5 = , tem-se: 2 32 ( b − a) 5 ⋅ max | f 4 ( x ) |. 2880 x∈[ a,b] Universidade Tecnológica Federal do Paraná (UTFPR) LAURO / NUNES Cálculo Numérico 6-80 Integração Numérica 6.1.4 Regra 1/3 de Simpson repetida y f (x) 0 a = x0 x1 h x2 x3 x4 x5 x6 xm -2 xm -1 b = x m x [Fig. 35]: Regra 1/3 de Simpson repetida Na figura, tome h = b−a ⇒ h = xi − xi −1 ( i =1,2,… m ), para m =2 n ⇒ m é par. 2n Aplica-se a regra de Simpson repetidas vezes no intervalo [ a , b ]=[ x0 , xm ]. x0 , x1 ,…, xm são pontos igualmente espaçados. Então: b ∫a f ( x ) dx = ∫ xm x0 f ( x ) dx h h h [ y 0 +4 y1 + y2 ]+ [ y2 +4 y 3 + y4 ]+…+ [ ym − 2 +4 y m −1 + ym ] 3 3 3 b h ∫a f (x )dx ≈ 3 [ y 0 + ym +2( y2 + y4 +…+ ym − 2 )+4( y1 + y 3 +…+ y m −1 )] ≈ −1 2 2 h f ( x ) dx ≈ y 0 + ym +2 ∑ y2i +4 ∑ y2i −1 . 3 i =1 i =1 m (Eq.52) b ∫a m 6.1.4.1 Estimativa para o erro: ESR ESR h5 ≤ n ⋅ ⋅ max | f 4 ( x ) | 90 x∈[ a,b] (Eq.53) ESR ≤ n ⋅ h5 ⋅ max | f 4 ( x ) | 90 x∈[ a,b] Considerando h = (Eq.54) ESR ≤ b−a ( b − a) ⇒ h5 = , tem-se: 2n 32n 5 5 ( b − a) 5 ⋅ max | f 4 ( x ) | 4 x∈[ a ,b ] 2880n Universidade Tecnológica Federal do Paraná (UTFPR) LAURO / NUNES Cálculo Numérico Exercício 91 Integração Numérica 6-81 1 Seja I = ∫ e xdx . Calcule uma aproximação para I usando a regra 1/3 de 0 Simpson com m =10. Estime o erro cometido. Resolução: 1 x ∫0 e dx ≈ ................................................. . Estimativa do erro: ESR ≤ ................................................. . Observe que ESR ≤ ................................................. e ETR ≤ .................................................. Exercício 92 1 Seja I = ∫ e xdx . Para que valor de m teríamos erro inferior a 10−3 ? 0 Resolução: m = .................... ⇒ Para um erro inferior a 10−3 seriam necessários Obs: na regra dos trapézios com repetição são necessários Exercício 93 .......... .......... subintervalos. intervalos. 10 Seja I = ∫ log xdx . Aproxime I com a regra dos trapézios com 8 repetições. 6 Estime o erro cometido. Resolução: h = ................................................. ⇒ h = .................... . i 0 1 2 3 xi 4 5 6 7 8 f ( xi ) Universidade Tecnológica Federal do Paraná (UTFPR) LAURO / NUNES Cálculo Numérico 10 ∫6 Integração Numérica 6-82 log xdx ≈ ................................................. . Estimativa do erro: ⇒ ETR ≤ ................................................. . Exercício 94 Seja 10 I = ∫ log xdx . Aproxime 6 I com a regra de Simpson com 8 subintervalos. Estime o erro cometido. Resolução: h = ................................................. ⇒ h = .................... . m = .......... e n = .......... . i 0 1 2 3 4 5 6 xi 7 8 f ( xi ) 10 ∫6 log xdx ≈ ................................................. . Estimativa do erro: ⇒ E SR ≤ ................................................. . Universidade Tecnológica Federal do Paraná (UTFPR) LAURO / NUNES Cálculo Numérico Solução numérica de equações diferenciais ordinárias 7-83 7 Solução numérica de equações diferenciais ordinárias 7.1 Introdução Se uma equação diferencial tem apenas uma variável independente, então ela é uma equação diferencial ordinária. EXEMPLOS: dy = x + y ; y , = x 2 + y 2 ; y ,, +(1− y 2 ) y , + y =0. dx Se uma equação diferencial envolve mais que uma variável independente, então ela é equação diferencial parcial. EXEMPLO: ∂ 2u ∂ 2u + =0, com u ≡ u ( x , y ). ∂x 2 ∂y 2 A ordem de uma equação diferencial é a mais alta ordem de derivação que aparece na equação. Se, dada uma equação diferencial de ordem n , a função, assim como suas derivadas até ordem n −1, são especificadas em um mesmo ponto, então temos um problema de valor inicial (PVI). Se, em problemas envolvendo equações diferenciais ordinárias de ordem n , n ≥2, as n condições fornecidas não são dadas todas num mesmo ponto, então temos um problema de valor de contorno (PVC). Exercício 95 Resolver a seguinte EDO: dy =− xy . dx Resolução: ⇒ y = .................... , para k ∈ℜ. Que representa uma família de curvas em ℜ2 . Para a mesma EDO anterior, y , =− xy , resolva considerando uma condição inicial y ( x0 )= y0 , com x0 =0 e y0 =1. Exercício 96 Resolução: y = .................... . Universidade Tecnológica Federal do Paraná (UTFPR) LAURO / NUNES Cálculo Numérico Solução numérica de equações diferenciais ordinárias 7-84 7.2 Problema de valor inicial (PVI) Uma equação diferencial de ordem n se apresenta da seguinte forma: (Eq.55) y (n ) = f ( x , y , y , , y ,, , y (3 ) , y (4 ) ,…, y (n −1 ) ) onde y (l ) = dl y , l =1,2,…, n , x ∈[ a , b ] e y :[ a , b ]→ℜ. dx l Associadas a (Eq.55), podem existir condições cujo número coincide com a ordem da EDO. Se tais condições se referem a um único valor x , tem-se um PROBLEMA DE VALOR INICIAL – PVI. Caso contrário, tem-se um problema de valores de conterno. 7.2.1 Solução numérica de um PVI de primeira ordem Toma-se m subintervalos de [a , b ], (m ≥1), e faz-se x j = x0 + j h onde h = b−a , m j =0,1,2,…, m , x j ∈[ a , b ]. I h ={ x0 , x1 ,…, xm } é denominado REDE ou MALHA de [ a , b ]. A solução numérica ym ( x ) é a função linear por partes. y (xm ) Solução Exata ym y (x3 ) y (x0 ) = y0 y (x0) y0 y (x2) y (x1 ) x0 y1 x1 y2 x2 Solução Numérica y3 x3 xm -1 xm [Fig. 36]: Gráfico da solução numérica de um PVI. NOTAÇÃO: y ( x j )≈ y j significa que y j é aproximação para y ( x j ), x j ∈ I h . NO GRÁFICO: y ( x j ) ⇒ valor exato; y j ⇒ valor aproximado; j =1,2,…, m . 7.2.2 Método de Euler Seja o PVI de primeira ordem definido por: (Eq.56) y , = f ( x , y ) y( x0 ) = y0 = η, sendo η um número dado. Universidade Tecnológica Federal do Paraná (UTFPR) LAURO / NUNES Cálculo Numérico Solução numérica de equações diferenciais ordinárias 7-85 Para se aproximar y j para as soluções exatas y ( x j ), com j =1,2,…, m , procura-se inicialmente y1 . T y1 e1 y (x1 ) y (x ) y (x0 ) = y0 x0 x1 [Fig. 37]: Gráfico do método de Euler. Traça-se a tangente T à curva y ( x ) no ponto ( x0 , y ( x0 )), cuja equação é: (Eq.57) y ( x )= y ( x0 )+( x − x0 ) y , ( x0 ). Fazendo x = x1 e lembrando que y ( x0 )= y0 , x1 − x0 = h , y , ( x0 )= f ( x0 , y ( x0 )) e y1 ≈ y ( x1 ), tem-se: (Eq.58) y1 = y0 + h ⋅ f ( x0 , y ( x0 )). 7.2.2.1 Erro cometido e1 = y1 − y ( x1 ). 7.2.2.2 Aproximação e erro de y j de forma geral (Eq.59) y j +1 = y j + h ⋅ f ( x j , y j ) , com j =0,1,2,…, m −1. e j +1 = y j +1 − y ( x j +1) O método de Euler consiste em calcular RECURSIVAMENTE a seqüência { y j } através das fórmulas: (Eq.60) ( A ) ( B ) Exercício 97 y0 = y( a ) = η y j +1 = y j + h ⋅ f ( x j , y j ) , com j =0,1,2,…, m −1. y, = x − y + 2 Achar aproximações para a solução do PVI na malha de [0,1] y ( 0 ) = 2 com h =0,1. Resolução: 1− 0 → m =10. 0,1 Usar (Eq.59) para j =0,1,2,…,9. x0 =0, y0 =2, a =0, b =1, m = j =0: Universidade Tecnológica Federal do Paraná (UTFPR) LAURO / NUNES Cálculo Numérico Solução numérica de equações diferenciais ordinárias 7-86 j =1: TABELA: j xj 0 1 2 3 4 5 6 7 8 9 10 0 yj y (xj) 2 2 2,004837 2,018731 2,040818 2,07032 2,106531 2,148812 2,196585 2,249329 2,30657 2,367879 y j − y ( x j )= e j Na pratica, não se dispõe da solução exata y ( x j ) do PVI. Daí a necessidade de se determinar uma expressão matemática para o erro. Usa-se a fórmula de Taylor para desenvolver y ( x ), solução teórica do PVI, em torno de x0 : (Eq.61) x − x0 , ( x − x0 ) 2 ,, ( x − x0 ) 3 ,,, y ( x )= y ( x0 )+ y ( x0 )+ y ( x0 )+ y ( x0 )+… 2! 3! 1! Fazendo x = x1 e lembrando que y ( x0 )= y0 , x1 − x0 = h , y , ( x0 )= f ( x0 , y ( x0 )) e y1 = y ( x1 ), toma-se os dois primeiros termos da (Eq.61): y1 = y0 + h ⋅ f ( x0 , y0 ). Generalizando-se, tem-se (Eq.59). 7.2.2.3 Erro local de truncamento - ELT O erro no método de Euler quando se calcula y1 é obtido a partir do resto da fórmula ( x − x0 ) 2 ,, h2 , , de Taylor, que é: y (ξ), x0 <ξ< x1 , ou e1 = y (ξ), para h = x1 − x0 . 2! 2! Numa etapa j dos cálculos, tem-se: (Eq.62) ej = h2 , , y (ξ), x j −1 <ξ< x j , 2! que é o ERRO LOCAL DE TRUNCAMENTO – ELT. Universidade Tecnológica Federal do Paraná (UTFPR) LAURO / NUNES Cálculo Numérico Solução numérica de equações diferenciais ordinárias 7-87 Na prática, procura-se estabelecer COTAS ou ESTIMATIVAS para que se possa conduzir o cálculo do erro com segurança. Toma-se k = y ,, (ξ), constante, e h suficientemente pequeno para ser tomado como parâmetro do ELT. Diz-se que ELT é da ordem de h 2 e se escreve ( h 2 ). 7.2.3 Métodos de Runge-Kutta 7.2.3.1 Métodos de passo simples Um método para resolver o PVI (Eq.56) é de passo simples se a aproximação y j +1 depende apenas do resultado y j da etapa anterior. Forma geral para métodos de passo simples: (Eq.63) y j +1 = y j + h φ( x j , y j ; h ), para j =0,1,2,…, m −1. Onde φ é a função incremento e h o comprimento do passo. Para o método de Euler, a função incremento é φ( x j , y j ; h )= f ( x j , y j ). Um caso especial de Runge-Kutta. OBS. 24: 7.2.3.2 Métodos com Derivadas O método de Euler possui ordem um pois, foi obtido da fórmula de Taylor com desenvolvimento até o termo em h . Ao fazer o mesmo desenvolvimento até o termo em h 2 , obtém-se o método de passo simples e ordem dois. (Eq.64) h2 , , y j +1 = y j + h y ( x j )+ y ( x j ), para j =0,1,2,…, m −1. 2! , 7.2.3.3 ELT – Erro local de truncamento (Eq.65) h3 , , , e j +1 = y (ξ), x j <ξ< x j +1 . 3! Em (Eq.64), y , ( x j )= f ( x j , y j ). OBS. 25: y ,, ( x j )=? Regra da cadeia de f em relação a x j : ∂f ∂f ∂x ∂f ∂y (xj, yj )= ( x j , yj ) (xj, y j) + ( x j , yj ) (xj, yj) ∂x4243 ∂x ∂x4243 ∂y ∂x4243 1 1 1 =1 = y ,, ( x j ) y ,, ( x j )= = f (x j ,y j ) ∂f ∂f ( x j , y j )+ ( x j , y j ) f ( x j , y j ) ∂x ∂y y, = x − y + 2 Achar aproximações para a solução do PVI na malha [0,1] com y( 0) = 2 h =0,1 usando o método da (Eq.64). Exercício 98 Resolução: Universidade Tecnológica Federal do Paraná (UTFPR) LAURO / NUNES Cálculo Numérico Solução numérica de equações diferenciais ordinárias 1− 0 x0 =0, y0 =2, a =0, b =1, m = → m =10. 0,1 Usar (Eq.64) para j =0,1,…,9. 7-88 j =0: j =1: TABELA: j xj 0 1 2 3 4 5 6 7 8 9 10 0 yj y (xj) 2 2 2,004837 2,018731 2,040818 2,07032 2,106531 2,148812 2,196585 2,249329 2,30657 2,367879 y j − y ( x j )= e j 7.2.4 Método de Euler Aprimorado (Método de RungeKutta de Segunda Ordem) Retomando a (Eq.62): y j +1 = y j + h φ( x j , y j ; h ), para j =0,1,2,…, m −1. Universidade Tecnológica Federal do Paraná (UTFPR) LAURO / NUNES Cálculo Numérico Solução numérica de equações diferenciais ordinárias 1 Fazendo-se φ( x j , y j ; h )= ( k1 + k 2 ) e substituindo na equação, tem-se: 2 (Eq.66) y j +1 = y j + 7-89 h ( k1 + k 2 ), para j =0,1,2,…, m −1 2 onde k1 = f ( x j , y j ) e k 2 = f ( x j + h , y j + h k1 ). dy = − xy Exercício 99 Achar aproximações para a solução do PVI dx na malha [0,1] com y( 0) = 1 h =0,5 usando o método de Euler Aprimorado. Resolução: j xj yj 0 1 2 0 1 k1 k2 y ( x j )= e − x 2 /2 | y j − y ( x j )| 7.2.5 Fórmulas de Runge-Kutta de Quarta Ordem Estas fórmulas são normalmente as mais utilizadas. (Eq.67) y j +1 = y j + h ( k1 +2 k 2 +2 k3 + k 4 ), para j =0,1,2,…, m −1 6 onde k1 = f ( x j , y j ), h h k 2 = f ( x j + , y j + k1 ), 2 2 k3 = f ( x j + h h , y j + k2 ) e 2 2 k 4 = f ( x j + h , y j + h k3 ). 7.2.5.1 Erro local de truncamento: ETL (Eq.68) ej = h5 (5 ) y (ξ), x j −1 <ξ< x j . 5! dy = − xy Exercício 100 Calcular a solução do PVI dx com h =0,1, no interior do intervalo y( 0) = 1 [0,1], pelo método de Runge-Kutta de quarta ordem. Resolução: y j +1 = y j + h ( k1 +2 k 2 +2 k3 + k 4 ), para j =0,1,2,…,9. 6 k1 = ......................................................................................... k 2 = ......................................................................................... k3 = ......................................................................................... Universidade Tecnológica Federal do Paraná (UTFPR) LAURO / NUNES Cálculo Numérico Solução numérica de equações diferenciais ordinárias k 4 = ......................................................................................... j xj yj k1 k2 k3 k4 0 0 1 2 3 4 5 6 7 8 9 10 7-90 1 y, = x − y + 2 Achar aproximação para a solução do PVI na malha [0,1] com y ( 0 ) = 2 h =0,1 usando o método de Runge-Kutta de segunda ordem (Euler aprimorado). Exercício 101 Resolução: x0 =0, y0 =2, a =0, b =1, m = y j +1 = y j + 1− 0 → m =10. 0,1 0,1 ( k1 + k 2 ), para j =0,1,2,…,9. 2 k1 = ......................................................................................... e k 2 = ......................................................................................... j xj yj 0 1 2 3 4 5 6 7 8 9 10 0 2 k1 k2 Universidade Tecnológica Federal do Paraná (UTFPR) LAURO / NUNES