Limites Trigonométricos Resolvidos Sete páginas e 34 limites resolvidos senx =1 x→0 x Usar o limite fundamental e alguns artifícios : lim 0 x x lim = , é uma indeterminação. =? à x →0 sen x x → 0 sen x 0 x 1 1 x lim = lim = = 1 logo lim =1 sen x x →0 sen x x →0 sen x x → 0 sen x lim x→0 x x sen 4 x sen 4 x sen 4 x 0 sen y à lim 4. = 4. lim = ? à lim = =4.1= 4 2. lim x →0 y →0 x→0 x→0 0 4x y x x sen 4 x lim =4 x→0 x sen 5 x 5 sen 5 x 5 sen y 5 sen 5 x = ? à lim . logo lim 3. lim = lim . = x →0 2 x x →0 2 y 0 x → 0 → 2 y 5x 2 2x 1. lim sen mx = x →0 nx 4. lim sen 3 x x →0 sen 2 x 5. lim x→0 logo senmx = sennx ? à sen y m . lim n y →0 y = = m m .1= n n = 5 2 sen mx m = x →0 nx n sen y sen 3 x sen 3 x sen 3 x lim 3. lim → y 0 sen 3 x 3 y 3 x → 0 3x = . 3x = . lim = lim x = lim = .1 = sen t sen 2 x x →0 sen 2 x x → 0 sen 2 x x→0 sen 2 x 2 2 lim lim 2. x→0 2 x t →0 t x 2x sen 3 x 3 lim = x →0 sen 2 x 2 sen mx sen mx sen mx m. sen mx m mx m x mx lim = lim = lim = Logo = lim . sen nx x →0 sen nx x →0 n sen nx x → 0 sen nx x →0 n n. nx nx x ? à lim =? à 3 2 6. lim sen mx m sen mx = lim . x →0 x→0 n nx mx logo logo lim senmx m = x → 0 sennx n lim 7. 8. sen x 0 tgx tgx tgx sen x 1 lim = ? à lim = = lim cos x = lim . = à lim x→ 0 x x→ 0 x x→ 0 x x→ 0 x → 0 cos x x 0 x tgx sen x 1 sen x 1 =1 lim . = lim . lim = 1 Logo lim x→ 0 x→ 0 x → 0 cos x x→ 0 x x cos x x x → 1 0 tg (t ) tg a 2 − 1 tg a 2 − 1 = ? à = lim lim à Fazendo t = a 2 − 1, à lim =1 2 2 a →1 a − 1 a →1 a − 1 t → 0 t → 0 0 t ( ) logo lim a →1 ( ( ) ) =1 tg a 2 − 1 a2 −1 1 Limites Trigonométricos Resolvidos Sete páginas e 34 limites resolvidos 9. lim x →0 x − sen 3 x x + sen 2 x = ? à lim x →0 x − sen 3 x x + sen 2 x 0 0 = à f (x ) = x − sen 3 x x + sen 2 x = sen 3 x x.1 − x = sen 5 x x.1 + x sen 3 x sen 3 x sen 3 x x.1 − 3. 1 − 3. 1 − 3. x 3 . = 3. x 3.x = 1 − 3 = −2 = − 1 logo à lim sen 5 x sen 5 x x →0 sen 5 x 1+ 5 6 3 1 + 5. 1 + 5. x.1 + 5. x x 5 . 5 . x 5 . x − sen 3 x 1 lim =− x →0 x + sen 2 x 3 1 sen x 1 sen 2 x 1 tgx − sen x tgx − sen x 10. lim = ? à lim = = lim . . . 3 3 2 x →0 x →0 x→0 x cos x x 1 + cos x 2 x x sen x − sen x . cos x sen x − sen x tgx − sen x cos x sen x.(1 − cos x ) sen x 1 1 − cos x cos x . . f (x ) = = = = = 3 3 3 x x 2 cos x x 3 . cos x x x x sen x 1 1 − cos x 1 + cos x . . . x x 2 cos x 1 + cos x tgx − sen x 1 Logo lim = x →0 2 x3 11. lim = 1 + tgx − 1 + sen x x →0 x sen x 1 1 − cos 2 x 1 . . . 2 x cos x 1 + cos x x =? à 3 lim tgx − sen x x →0 x 3 sen x 1 sen 2 x 1 1 . . . . x →0 x cos x x 2 1 + cos x 1 + tgx + 1 + sen x lim f (x ) = lim x →0 12. 1 + tgx − 1 + senx x3 1 + tgx − 1 + sen x x 3 sen x − sen a lim x→a x−a = = 1 + tgx − 1 − sen x x3 . . = = 1 sen x 1 sen 2 x . . . 2 x cos x x 1 + cos x 1 1 + tgx + 1 + sen x 1 1 1 1 1 1 2 2 = 1. . . . = 1 1 + tgx + 1 + sen x = = 1 4 tgx − sen x x3 . 1 1 + tgx + 1 + sen x 1 4 =? à sen x − sen a lim x→a x−a x − a . cos x + a ) 2 2 . lim x→a 1 x−a 2. 2 = x−a x+a 2 sen . cos 2 2 = lim x→a x−a 2. 2 2 sen( = cos a Logo lim x→a sen x − sen a x−a = cosa 2 Limites Trigonométricos Resolvidos Sete páginas e 34 limites resolvidos 13. lim a →0 sen ( x + a ) − sen x a = ? à lim a →0 sen ( x + a ) − sen x a a 2x + a 2 sen . cos 2 2 . = cos x lim a→a 1 a 2. 2 14. sen ( x + a ) − sen x a →0 a Logo lim lim cos( x + a ) − cos x a 1 1 − sec x − sec a cos x cos a = ? à lim = lim x→a x→ a x−a x−a a+ x a−x − 2. sen . sen cos a − cos x 2 2 = lim = lim x → a ( x − a ). cos x. cos a x→a (x − a ). cos x. cos a a+ x a−x − 2. sen sen 1 2 . 2 . lim x→a 1 a − x cos x. cos a − 2. 2 x2 = x → 0 1 − sec x 16. lim f (x ) = − x2 1 1− cos x 1 1 − cos 2 x x 2 = = = =-senx sec x − sec a lim x→a x−a sen a 1 .1 . 1 cos a. cos a = =cosx x+a+ x x−a− x − 2 sen . sen cos( x + a ) − cos x cos( x + a ) − cos x 2 2 lim = ? à lim = lim a → 0 a→0 a → 0 a a a 2x + a −a −a − 2. sen sen . sen 2x + a 2 2 2 . = − sen x Logo lim = lim − sen a→0 a→0 −a 2 −a 2. 2 2 a→0 15. = x+a−x x+a+ x 2 sen . cos 2 2 . lim a→a 1 x−a 2. 2 sen a 1 . cos a cos a = Logo lim x→a 1 ? à lim − 2 sen x x2 1 1 . . cos x (1 + cos x ) sec x − sec a x−a = 1 x2 x 2 . cos x = = ( 1 − cos x ) 1 (1 + cos x ) cos x − 1 − 1.(1 − cos x ) − . . cos x (1 + cos x ) cos x x2 1 1 1 . . ( cos x 1 + cos x ) = − sen 2 x x 2 . = a+x a−x sen sen 1 2 2 lim . . x→ a 1 a − x cos x. cos a 2 = tga. sec a x2 = lim x→0 x → 0 1 − sec x = cos a − cos x lim cos x. cos a x→a x−a = = tga. sec a −2 = 1 1 . ( cos x 1 + cos x ) 3 Limites Trigonométricos Resolvidos Sete páginas e 34 limites resolvidos 17. 1 − cot gx lim π 1 − tgx x→ 1 − cot gx lim π 1 − tgx x→ =?à −1.(1 − tgx ) tgx lim π tgx 1 − x→ = limπ − 4 1 − cos x 3 18. lim x→ 1 tgx 4 = −1 tgx − 1 tgx = lim π 1 − tgx x→ x→ 1 − cos x 3 sen 2 x x→0 = lim x →0 = 4 Logo limπ 4 = ? à lim sen 2 x x→0 = 4 4 1 tgx lim π x → 1 − tgx 1− 1 − cot gx 1 − tgx = -1 4 (1 − cos x ).(1 + cos x + cos 2 x ) = 1 − cos 2 x (1 − cos x ).(1 + cos x + cos 2 x ) = lim 1 + cos x + cos 2 x = 3 1 − cos 3 x 3 Logo lim = 2 x →0 x 0 x → 0 → (1 − cos x )(. 1 + cos x ) 1 + cos x 2 2 sen x sen x.(1 + 2. cos x ) sen 3 x sen 3 x 19. lim = ? à limπ = limπ − =− 3 π lim x→ 1 − 2. cos x x→ 3 1 − 2. cos x 3 x→ 1 3 ( ) sen 3 x sen ( x + 2 x ) sen x. cos 2 x + sen 2 x. cos x sen x. 2 cos 2 x − 1 + 2. sen x. cos x. cos x = = = = 1 − 2. cos x 1 − 2. cos x 1 − 2. cos x 1 − 2. cos x sen x. 2 cos 2 x − 1 + 2 cos 2 x sen x. 4 cos 2 x − 1 sen x.(1 − 2.cox )( . 1 + 2.cox ) sen x.(1 + 2. cos x ) = =− = − 1 − 2. cos x 1 − 2. cos x 1 − 2. cos x 1 f (x ) = [( ] ) sen x − cos x 1 − tgx 4 20. lim x →π [ =? à ] sen x − cos x 1 − tgx 4 lim x →π = lim (− cos x ) = − x →π 4 sen x − cos x f (x ) = 1 − tgx sen x − cos x sen x − cos x sen x − cos x = = = sen x sen x cos x − sen x 1− 1− cos x cos x cos x sen x − cos x cos x − = − cos x . 1 cos x − sen x 21. lim (3 − x ). cos sec(πx ) = ? à lim (3 − x ). cos sec(πx ) = 0.∞ x→3 sen x − cos x − 1.(sen x − cos x ) cos x = x→3 f (x ) = (3 − x ). cos sec(πx) = (3 − x ). 1 π . sen (3π − πx ) (3π − πx ) = 2 2 1 1 3− x 3− x = = = π . sen 3 π − πx ) ( sen (πx ) sen (π − πx ) sen (3π − πx ) π .(3 − x ) à lim (3 − x ). cos sec(πx ) = lim x→3 x→3 1 π . sen (3π − πx ) (3π − πx ) 1 x x → +∞ t → 0 = = 1 π 1 1 22. lim x. sen( ) = ? à lim x. sen( ) = ∞.0 x→∝ x→∝ x x 1 sen sen t x lim = lim =1 1 t →0 t x →∝ x à Fazendo t = 4 Limites Trigonométricos Resolvidos Sete páginas e 34 limites resolvidos π 1 + sen 2. sen 2 x + sen x − 1 2. sen 2 x + sen x − 1 1 + sen x 6 = lim = 23. lim lim = = ? à 2 π x →π 2. sen 2 x − 3. sen x + 1 x →π − 1 + sen x x →π 2. sen x − 3. sen x + 1 6 6 6 − 1 + sen 6 1 1 sen x − .(sen x + 1) 1+ 2 (sen x + 1) = 1 + sen x 2 2. sen x + sen x − 1 2 =−3 à = f (x ) = = 2 1 1 2. sen x − 3. sen x + 1 (sen x − 1) − 1 + sen x −1+ sen x − .(sen x − 1) 2 2 πx πx πx 24. lim(1 − x ).tg = ? à lim(1 − x ).tg = 0.∞ à f (x ) = (1 − x ).tg = → x →1 x 1 2 2 2 2 2 π 2 .(1 − x ). ( 1 − x) π πx π π π = à (1 − x ). cot g − = = 2 = π πx π πx π πx π πx 2 2 tg − tg − tg − tg − 2 2 2 2 2 2 2 2 π π πx .(1 − x ) − 2 2 2 2 2 2 πx π lim(1 − x ).tg = lim = Fazendo uma mudança de variável, = π ( ) tg t x →1 → 1 x π πx 2 π tg − lim 2 2 t →0 t temos : π πx − 2 2 π πx x → 1 t= − 2 x t → 0 1− x 2 = x →1 sen (πx ) 25. lim f (x ) = 1− x 2 sen πx = 1+ x 1− x 2 = lim x →1 sen (πx ) x →1 π . sen (π − πx ) (π − πx ) ? à lim (1 − x )(. 1 + x ) = sen (π − πx ) = 2 π 1+ x 1+ x = sen (π − πx ) π . sen (π − πx ) (1 − x ) π .(1 − x ) = 1+ x π . sen (π − πx ) (π − πx ) π π 26. lim cot g 2 x. cot g − x = ? à lim cot g 2 x. cot g − x = ∞.0 x →0 x → 0 2 2 tgx 1 − tg 2 x 1 − tg 2 x tgx π f (x ) = cot g 2 x. cot g − x = cot g 2 x.tgx = = = tgx. = 2tgx 2.tgx 2 2 tg 2 x 1 − tg 2 x 1 − tg 2 x π lim cot g 2 x. cot g − x = lim x →0 2 2 x→0 27. lim x →0 f (x ) = cos x − 3 cos x sen 2 x cos x − 3 cos x sen 2 x t = 2.3 cos x = 6 cos x = lim t →1 1 + = t3 − t2 1 − t 12 x → 0 t → 1 = 1 2 −t2 t + t 2 + ... + t 10 + t 11 = =− − t 2 .(1 − t ) 1 12 (1 − t ).(1 + t + t 2 + ... + t 10 + t 11 ) t 6 = cos x , = t 12 = cos 2 x , −t2 1 + t + t 2 + ... + t 10 + t 11 sen 2 x = 1 − t 12 5 Limites Trigonométricos Resolvidos Sete páginas e 34 limites resolvidos BriotxRuffini : 1 0 0 1 • 1 1 1 1 1 ... ... ... 0 1 1 sen 2 x − cos 2 x − 1 = cos x − sen x 4 28. lim π x→ -1 1 0 sen 2 x − cos 2 x − 1 cos x − sen x 4 ? à lim π x→ − 2 ( = lim (− 2. cos x ) = − 2. cos π x→ 4 π 4 = − 2. 2 2 = ) sen 2 x − cos 2 x − 1 2. sen x cos x − 2 cos 2 x − 1 − 1 2. sen x. cos x − 2 cos 2 x + 1 − 1 = = = cos x − sen x cos x − sen x cos x − sen x 2. sen x. cos x − 2 cos 2 x − 2. cos x.(cos x − sen x ) = −2. cos x = cos x − sen x cos x − sen x sen ( x − 1) sen (x − 1) 1 sen (x − 1) 2 x − 1 + 1 = lim . = ? à lim . =1 29. lim x →1 2 x − 1 − 1 x →1 2 x →1 (x − 1) 1 2x − 1 − 1 f (x ) = f (x ) = sen (x − 1) 2x −1 −1 = sen (x − 1) 2x − 1 − 1 2x − 1 + 1 . 2x − 1 + 1 1 sen (x − 1) 2 x − 1 + 1 . . 2 (x − 1) 1 1 − 2. cos x = π x→ x− 3 3 30. limπ ? = sen ( x − 1) 2 x − 1 + 1 sen ( x − 1) 2 x − 1 + 1 . = . = 2x − 1 − 1 1 2.(x − 1) 1 1 − 2. cos x = π x→ x− 3 3 à limπ π − x sen 3 π + x 2 = lim 2. sen 3 . π x →π 2 x − 3 3 2 π +π 2π 3 . = 2. sen 3 . = 2. sen π . = 2. 3 = 3 2. sen 3 2 2 2 3 π + x π − x 3 2.(− 2 ) sen 3 . sen π 2 2 . cos − cos x x 2 3 = = = π π x − x − − 1.2. 3 3 2 π − x sen 3 π + x 2 = 2. sen 3 . 2 π − x 3 2 1 − cos 2 x 2. sen x lim =2 = limπ x →0 x. sen x x x→ 1 2 . − cos 1 − 2. cos x f (x ) = = 2 π π x − x− 3 3 π + x π − x 3 2. sen 3 . sen 2 2 π − x 3 2 1 − cos 2 x 31. lim =? à x →0 x. sen x 3 6 Limites Trigonométricos Resolvidos Sete páginas e 34 limites resolvidos 2 2 1 − cos 2 x 1 − 1 − 2 sen x 1 − 1 + 2 sen 2 x 2. sen x 2. sen x = f (x ) = = = = x. sen x x. sen x x x. sen x x. sen x ( 32. lim x →0 ) x 1 + sen x − 1 − sen x = ? à lim x →0 =1 f (x ) = ( x 1 + sen x − 1 − sen x x. 1 + sen x + 1 − sen x 2. sen x )= = x 1 + sen x − 1 − sen x ( x. 1 + sen x + 1 − sen x 1 + sen x − (1 − sen x ) 1 + sen x + 1 − sen x sen x 2. x = = lim x →0 1 + sen x + 1 − sen x 2. sen x x ) = x.( 1 + sen x + 1+1 2.1 1 − sen x 1 + sen x − 1 + sen x = 1+1 2.1 )= =1 cos 2 x cos x + sen x 2 2 = = lim + = 2 → x 0 1 2 2 cos x − sen x cos 2 x.(cos x + sen x ) cos 2 x.(cos x + sen x ) cos 2 x cos 2 x.(cos x + sen x ) = = f (x ) = = cos x − sen x (cos x − sen x )(. cos x + sen x ) cos 2 x cos 2 x − sen 2 x 33. lim x→0 cos 2 x.(cos x + sen x ) cos x + sen x = cos 2 x 1 34. = 2 2 + 2 2 = = 2 3 − sen x 2. 2 lim π π x→ x− 3 3 3 − 2. sen x 3 − 2. sen x lim =? à lim = π π π π x→ x→ x − x − 3 3 3 3 π π π − 3x π + 3x −x + x . cos 3 2. sen 3 2. sen 3 . cos 3 2 2 2 2 = lim lim π π 3x − π π x→ x→ x− 3 3 3 3 π − 3x π + 3x 2. sen . cos 6 6 lim π − 1.(π − 3 x ) x→ 3 3 = π 2. sen − sen x 3 lim π π x→ x− 3 3 = = 35. ? 7