Laborató Laborat ó rio de Pesquisa e Ensino de Fí Fsica ísica da da Faculdade Faculdade de Educa ção da daUSP USP Atualização dos currículos de Física no Ensino Médio de Escolas Estaduais: a transposição das teorias modernas e contemporâneas para a sala de aula Guia do Aluno Módulo: Efeito Fotoelétrico Este módulo é uma adaptação da unidade Efeito Fotoelétrico – Bloco X extraído do projeto “Atualização dos currículos de Física no Ensino Médio de Escolas Estaduais: a transposição das teorias modernas e contemporâneas para a sala de aula - (Fapesp 03/00146-3)”, proposta que é desenvolvida desde 2003 sob a coordenação de um docente da Faculdade de Educação e dois alunos de mestrado do Instituto de Física da Universidade de São Paulo, com a colaboração de professores da rede pública de ensino do Estado de São Paulo e de alunos de iniciação científica. Desde o inicio da proposta as atividades foram implementadas com sucesso e eventuais revisões e alterações foram feitas após cada ano letivo. Este projeto foi desenvolvido a partir da dissertação de mestrado de BROCKINGTON, Guilherme “A realidade escondida: a dualidade onda partícula para estudantes do ensino médio (São Paulo, 2005, (IFUSP/FEUSP)”, orientada por PIETROCOLA, Mauricio. Todos as unidades do projeto de transposição da s teorias modernas para sala de aula podem ser encontrados no site http://www.lapef.fe.usp.br e na dissertação de mestrado apresentada acima. Recurso de Ensino 1 O EFEITO FOTOELÉTRICO E O ABALO NO MODELO ONDULATÓRIO DA LUZ No final do século XIX, o modelo ondulatório para a luz foi consolidado. No entanto, o “reinado” dessa compreensão não durou muito e a concepção sobre a natureza da luz passou por uma série de modificações. Veremos agora como um fenômeno, chamado atualmente de Efeito Fotoelétrico, possibilitou essas mudanças. O Efeito Fotoelétrico e as Discordâncias com o Modelo Ondulatório Clássico para a Luz 1 Laborató Laborat ó rio de Pesquisa e Ensino de Fí Fsica ísica da da Faculdade Faculdade de Educa ção da daUSP USP Atualização dos currículos de Física no Ensino Médio de Escolas Estaduais: a transposição das teorias modernas e contemporâneas para a sala de aula Em 1888, Hertz realizou uma série de experiências que confirmaram a teoria de Maxwell e consolidaram o modelo ondulatório para a luz. No entanto, ele também observou um outro efeito: era muito mais fácil obter descargas elétricas entre duas esferas de zinco quando uma delas era iluminada por luz ultravioleta. Ou seja, a luz pode interferir nas propriedades elétricas dos objetos. Em 1889, Thomson explicou esse efeito, postulando que a descarga era facilitada devido à emissão de elétrons do metal quando iluminado por luz ultravioleta. Hoje em dia, denominamos de Efeito Fotoelétrico a emissão de elétrons de uma superfície, quando ela é iluminada por luz apropriada. As primeiras observações do Efeito Fotoelétrico podiam ser explicadas pela física clássica. Como a luz é uma onda eletromagnética, ao atingir os átomos da rede cristalina do metal, ela faz com que os elétrons livres em seu interior também vibrem conforme a sua freqüência de oscilação; com isso, alguns desses elétrons podem ganhar energia suficiente para escaparem do metal. Como conseqüência, a teoria clássica previa que se a intensidade 1 da radiação fosse aumentada, aumentar-se- ia em média a energia fornecida aos elétrons e consequentemente eles seriam ejetados com velocidades maiores. Isso pode ser entendido em nosso cotidiano de maneira simples imaginando a seguinte situação: quanto mais energia a pilha fornecer ao carrinho de controle remoto, mais rápido ele andará. Quando a pilha está “velha”, a energia que fornece não é mais a mesma e o carrinho não se locomove tal como quando a pilha estava “nova”. A teoria clássica também prevê que o Efeito Fotoelétrico ocorreria para qualquer freqüência da luz, desde que a energia da onda eletromagnética fosse suficientemente intensa para que os elétrons pudessem ser emitidos da superfície. Ainda, se a intensidade da luz fosse bastante fraca, ou seja, com amplitude menor, a ejeção de elétrons deveria demorar um pouco, até que eles armazenassem a energia necessária para saírem do metal. Em 1902, Lenard, fez o seguinte experimento para verificar se os elétrons eram emitidos como previa a teoria ondulatória. Em um recipiente de vidro com vácuo, ele incidiu de cada vez luz de diversas cores (ou seja, diversas freqüências), sobre uma placa (emissora). Ele media então a corrente elétrica que era captada por outra placa 1 A intensidade na teoria ondulatória depende apenas da amplitude da onda. 2 Laborató Laborat ó rio de Pesquisa e Ensino de Fí Fsica ísica da da Faculdade Faculdade de Educa ção da daUSP USP Atualização dos currículos de Física no Ensino Médio de Escolas Estaduais: a transposição das teorias modernas e contemporâneas para a sala de aula (coletora). Para medir a velocidade dos elétrons, ele carregou a placa coletora negativamente, repelindo os elétrons, de modo que apenas os mais velozes podiam atingi- la. Ao aumentar um pouco mais a tensão na placa, ele observava que nenhum elétron conseguia mais chegar. Ou seja, quando a corrente medida era zero, a energia cinética dos elétrons (relacionada com a velocidade dos elétrons) era igual à energia de repulsão da placa. De modo surpreendente, nenhuma das previsões da teoria ondulatória da luz que discutimos foram observadas no experimento de Lenard. Não foram detectados elétrons mais energéticos, e portanto mais rápidos, ao se aumentar a intensidade da luz. Por exemplo, dobrando a intensidade da luz nesse experimento, dobrou-se o número de elétrons emitidos, mas as suas velocidades não foram afetadas. Além disso, o Efeito Fotoelétrico só ocorria para luz com freqüência acima de determinado valor para cada material. Por exemplo, luz vermelha, que possui uma freqüência baixa, não consegue arrancar elétrons de alguns metais. Por outro lado, quando a placa é iluminada com luz de maior freqüência (como a ultravioleta), não só os elétrons eram arrancados, como a sua velocidade aumentava com o aumento da freqüência da luz. Finalmente, percebeu-se que mesmo com uma intensidade baixa da luz, os elétrons eram emitidos imediatamente. Fig.1 – Esquema do experimento para análise do Efeito Fotoelétrico. Fig.2 – Variação da energia do elétron emitdo com a mudança da freqüência da luz. (Eisberg & Renick, 1994, p. 53) A Sugestão de Einstein Em 1905, Albert Einstein conseguiu explicar os resultados dos experimentos com Efeito Fotoelétrico, sugerindo que a luz, nessa situação, comporta-se como uma 3 Laborató Laborat ó rio de Pesquisa e Ensino de Fí Fsica ísica da da Faculdade Faculdade de Educa ção da daUSP USP Atualização dos currículos de Física no Ensino Médio de Escolas Estaduais: a transposição das teorias modernas e contemporâneas para a sala de aula partícula e não como uma onda. Cada partícula de luz, conhecida hoje como fóton, teria energia Efóton proporcional à freqüência ν da luz. Ou seja: Efóton = hν . A constante de proporcionalidade h é conhecida como constante de Planck 2 . Seu valor é h = 4,2 x 10-15 eVs. Também chamamos de função trabalho W, a energia necessária para retirar os elétrons de cada superfície. Essa energia é dissipada na estrutura cristalina do metal. Assim, por conservação da energia, a energia cinética Ec que medimos para os elétrons emitidos, é igual à energia que ele recebe de um fóton, menos a função trabalho: Ec = hν - W . A energia dos elétrons emitidos não depende da intensidade da luz3 , apenas de sua freqüência. Se a energia do fóton é menor que a função trabalho, não há emissão do elétron, uma vez que sua energia cinética não pode ser menor que zero. Ou seja, para baixas freqüências não há Efeito Fotoelétrico. Finalmente, o conceito de fóton também explica a emissão instantânea do elétron, uma vez que ele não precisa ficar absorvendo a luz da onda por um grande tempo; ele na realidade absorve de uma vez a energia de um fóton. Querendo tentar derrubar a teoria de Einstein, Robert Milikan passou dez anos realizando experimentos mais precisos sobre o Efeito Fotoelétrico. Contudo, em 1916, ele chegou à conclusão de que a teoria de Einstein estava correta. Por seus valiosos trabalhos, ambos ganharam o prêmio Nobel alguns anos depois. QUESTÕES 1 - Preencha o quadro abaixo com três das previsões da teoria clássica que não foram confirmadas pela experiência do Efeito Fotoelétrico. 2 Essa notação é moderna, pois Eintein não utilizou a constante de Planck em seu trabalho sobre o efeito fotoelétrico publicado em 1905. 3 Se pensarmos na luz como formada por minúsculas partículas de energia que chamamos de fóton, a intensidade da luz significa quantidade de fótons. Assim, quanto mais intensa é uma luz, mais fótons estão sendo emitidos por unidade de tempo. 4 Laborató Laborat ó rio de Pesquisa e Ensino de Fí Fsica ísica da da Faculdade Faculdade de Educa ção da daUSP USP Atualização dos currículos de Física no Ensino Médio de Escolas Estaduais: a transposição das teorias modernas e contemporâneas para a sala de aula Previsão da Teoria ondulatória para a Luz no Efeito Fotoelétrico (clássica) A experiência do Efeito Fotoelétrico 2 - Simplificadamente relate o que significa, em termos práticos, aumentar a intensidade da luz no modelo ondulatório e no corpuscular? 3 - Uma luz mais intensa sobre uma superfície metálica arrancará mais elétrons que uma luz com pouca intensidade? Como isso é explicado pelo modelo corpuscular (fóton)? 4 - Por que existe uma freqüência mínima da luz para que o efeito fotoelétrico ocorra? 5 - Por que uma luz vermelha muito intensa não transfere mais energia a um elétron ejetado do que um fraco feixe de luz ultravioleta? 6 - Queimaduras solares produzem danos às células da pele. Por que a radiação ultravioleta é capaz de produzir tais danos, enquanto a radiação visível, ainda que muito intensa não é capaz? 7 - O cobre só apresenta a emissão de elétrons quando irradiado com luz de comprimento de onda abaixo de 2,93x10-7 m. Calcule a função trabalho do cobre lembrando que o comprimento de onda λ e a freqüência ν estão relacionadas por: λ ν = 3x108 m/s. 8 - Utilizando o resultado do exercício anterior, calcule a energia máxima, em eV, de um elétron emitido pelo cobre, quando esse material é exposto a luz de 2x10-7 m. 9 - Qual você acha que seja a verdadeira natureza da luz: ondulatória ou corpuscular? Justifique. 5 Laborató Laborat ó rio de Pesquisa e Ensino de Fí Fsica ísica da da Faculdade Faculdade de Educa ção da daUSP USP Atualização dos currículos de Física no Ensino Médio de Escolas Estaduais: a transposição das teorias modernas e contemporâneas para a sala de aula 6