Sensores Sensores ópticos químicos para ópticos químicos para análisis industrial y control de procesos Prof. Dr. Guillermo Orellana Moraleda Grupo de Sensores Optoquímicos y Fotoquímica Aplicada (GSOLFA) U i Universidad id d Complutense C l t de d M Madrid d id Facultad de Ciencias Químicas (España) [email protected] www.ucm.es/info/gsolfa Prof. Guillermo Orellana (UCM, Espanha) – Curso SENSORES ÓPTICOS QUÍMICOS – UEL/IAPAR – Londrina, PR – 22-23/032012 Esquema del curso 5ª FEIRA 22/03/2012 6ª FEIRA 23/03/2012 09:00 – Fundamentos de los 11:00 sensores y biosensores químicos ópticos. químicos ópticos. 11:00 – Sensores basados en 12:00 luminiscencia. Cultivos de microalgas para producción de biocombustibles Visita a laboratorios del IAPAR 12:00 – Almuerzo 14:00 Almuerzo 14:00 – Sensores 14:00 Sensores ópticos ópticos 15:00 químicos para análisis de procesos. P Pausa‐café fé Sensores luminiscentes para Sensores luminiscentes para monitorización de cultivos de microalgas. P Pausa‐café fé 15:30 – Prácticas de laboratorio Discusión del CASO 18:00 PRÁCTICO propuesto (O2) Prof. Guillermo Orellana (UCM, Espanha) – Curso SENSORES ÓPTICOS QUÍMICOS – UEL/IAPAR – Londrina, PR – 22-23/032012 Fundamentos de los sensores y Fundamentos de los sensores y biosensores químicos ópticos Prof. Guillermo Orellana (UCM, Espanha) – Curso SENSORES ÓPTICOS QUÍMICOS – UEL/IAPAR – Londrina, PR – 22-23/032012 Objetivos 1. C 1 Conocer el concepto de sensor. l t d 2. Familiarizarse con las características de los sensores ópticos. ópticos 3. Conocer los diferentes principios de medida que permiten desarrollar sensores ópticos desarrollar sensores ópticos. 4. Las fibras ópticas en los sensores ópticos. 5 Sensores ópticos basados en moléculas indicadoras y sin 5. Sensores ópticos basados en moléculas indicadoras y sin indicador (“label‐free”) 6. Biosensores ópticos químicos Biosensores ópticos químicos 7. Fundamentos de luminiscencia y fotoquímica para desarrollo de sensores ópticos. p Prof. Guillermo Orellana (UCM, Espanha) – Curso SENSORES ÓPTICOS QUÍMICOS – UEL/IAPAR – Londrina, PR – 22-23/032012 “Traditional” Traditional vs. modern analysis Chrris Riddell Prof. Guillermo Orellana (UCM, Espanha) – Curso SENSORES ÓPTICOS QUÍMICOS – UEL/IAPAR – Londrina, PR – 22-23/032012 Sensors today: The “senses” senses of electronics G. Orellana, in Optical Chemical Sensors, NATO Sci. Ser. Vol. 224, Baldini, Chester, Homola, Martellucci (Eds.), Springer-Kluwer, 2006; pp. 99–116. Prof. Guillermo Orellana (UCM, Espanha) – Curso SENSORES ÓPTICOS QUÍMICOS – UEL/IAPAR – Londrina, PR – 22-23/032012 “A chemical sensor is a device that transforms chemical information ranging from information, the concentration of a specific sample component to total composition analysis, into an analytically useful signal” (IUPAC 1991) Prof. Guillermo Orellana (UCM, Espanha) – Curso SENSORES ÓPTICOS QUÍMICOS – UEL/IAPAR – Londrina, PR – 22-23/032012 Basics of a chemical (bio)sensor OPTICAL ELECTROCHEMICAL ELECTRICAL MASS THERMAL MAGNETIC OTHERS ANALYTE RECEPTOR TRANSDUCER 0.000 TRANSMISSION PROCESSING STORAGE Prof. Guillermo Orellana (UCM, Espanha) – Curso SENSORES ÓPTICOS QUÍMICOS – UEL/IAPAR – Londrina, PR – 22-23/032012 The idea(l) of a chemical sensor… In situ (at situ) Continuous (regenerable) Real-time (quasi) Reagent-free (analyzer) G. Orellana et al., “Online monitoring sensors”, in Treatise on Water Science, vol. 3, P. Wilderer (Ed.), Oxford: Academic Press, 2011; pp 221–262. Prof. Guillermo Orellana (UCM, Espanha) – Curso SENSORES ÓPTICOS QUÍMICOS – UEL/IAPAR – Londrina, PR – 22-23/032012 F F D TS LIGHT SOURCE DETECTOR Lamp LED Laser diode Laser WAVELENGTH SELECTORS Filters (glass, interf.) Monochromators G ti Gratings F OPTICAL FIBER PMT Photodiode PDA CCD “Optrode” CELL “Optode” Prof. Guillermo Orellana (UCM, Espanha) – Curso SENSORES ÓPTICOS QUÍMICOS – UEL/IAPAR – Londrina, PR – 22-23/032012 Advantages g of chemical optosensors opto sensors Not subjected to electrical interferences or risks Contact-less measurements and/or long distance Lack of analyte consumption "New" analytes may be determined Easy miniaturization Multiplexing capability and distributed sensing Higher information density can be transported Simplicity, Simplicity ruggedness and cost Prof. Guillermo Orellana (UCM, Espanha) – Curso SENSORES ÓPTICOS QUÍMICOS – UEL/IAPAR – Londrina, PR – 22-23/032012 Drawbacks of chemical optosensors opto sensors (not limiting limiting!) !) Interference from ambient light Stability of the indicator phase (photobleaching, leaching, eac g, deg degradation,...) adat o ,...) Limited dynamic range and response to concentration Availability of indicator dyes and optoelectronic components. Prof. Guillermo Orellana (UCM, Espanha) – Curso SENSORES ÓPTICOS QUÍMICOS – UEL/IAPAR – Londrina, PR – 22-23/032012 Optical sensors according to measuring principle ABSORPTION REFLECTANCE LUMINESCENCE (fluorescence ((fl fl fluorescence/ /phosphorescence) phosphorescence h h ) CHEMILUMINESCENCE RAMAN SCATTERING REFRACTION INDEX Prof. Guillermo Orellana (UCM, Espanha) – Curso SENSORES ÓPTICOS QUÍMICOS – UEL/IAPAR – Londrina, PR – 22-23/032012 An optical transducer allows quantification of: AMPLITUDE PHASE A FREQUENCY (or ) POLARIZATION KINETICS (impulse) Prof. Guillermo Orellana (UCM, Espanha) – Curso SENSORES ÓPTICOS QUÍMICOS – UEL/IAPAR – Londrina, PR – 22-23/032012 Optical sensors: sensors: Working principle of the transducer (1/6) 1. ABSORPTION Absorption of light by the analyte or reagent layer Measurements in the UV, VIS, NIR or IR regions of the electromagnetic spectrum. Analytical parameters : I, . A=lc A = i li ci Io I c l Prof. Guillermo Orellana (UCM, Espanha) – Curso SENSORES ÓPTICOS QUÍMICOS – UEL/IAPAR – Londrina, PR – 22-23/032012 Optical sensors: sensors: Working principle of the transducer (2/6) 2. REFLECTANCE, REFLECTANCE for measurements in opaque media, media with immobilized indicators. SPECULAR (“regular reflection”) DIFFUSE: • Some light absorbed by the particles • Some light scattered by the particles in all directions IIncident id t beam Air Medium KUBELKA-MUNK U UN function u c o (infinite thickness layer): F(R) = (1 (1-R) R)2/2R = c/S Specular component Diffuse component Prof. Guillermo Orellana (UCM, Espanha) – Curso SENSORES ÓPTICOS QUÍMICOS – UEL/IAPAR – Londrina, PR – 22-23/032012 Optical sensors: sensors: Working principle of the transducer (3/6) 3. LUMINESCENCE LUMINESCENCE:: Fluorescent/phosphorescent ANALYTE (IF = kcA) A reaction of the ANALYTE with a REAGENT yields a luminescent PRODUCT (IF = k’cP) The ANALYTE MODIFIES the light emitted by the luminophore: “QUENCHING” (dimming) STATIC QUENCHING F+Q FQ I0/I = 1 + Keq[Q] DYNAMIC QUENCHING I0/I = 1 + KSV[Q] F + h F* F + h´ F* + Q F + Q* KSV = kQ Prof. Guillermo Orellana (UCM, Espanha) – Curso SENSORES ÓPTICOS QUÍMICOS – UEL/IAPAR – Londrina, PR – 22-23/032012 Emission lifetimelifetime-based optical sensors: Ph PhasePhase -sensitive iti vs. time ti -resolved timel d luminescence l i detection d t ti I = I0 exp(t/ tan = 2f phase ((º)) p time Decay time INDEPENDENT of dye concentration, light source intensity and detector age: less signal drift, longer sensor lifetime, higher precision Luminescence p profile NOT AFFECTED by y static q quenching: g extended linear range of calibration curves More sophisticated instrumentation Dye immobilization leads to non-exponential decays Prof. Guillermo Orellana (UCM, Espanha) – Curso SENSORES ÓPTICOS QUÍMICOS – UEL/IAPAR – Londrina, PR – 22-23/032012 Optical sensors: Working principle of the transducer (4/6) (4/6) 4. CHEMI/BIOLUMINESCENCE CHEMI/BIOLUMINESCENCE: the light emitted by a chemical/biochemical reaction produced in the sensor ( (receptor) ) element iis measured: A + B C* C* C + h Low detection limits Reagent consumption Wide dynamic range Limited scope Does not require a light source Prof. Guillermo Orellana (UCM, Espanha) – Curso SENSORES ÓPTICOS QUÍMICOS – UEL/IAPAR – Londrina, PR – 22-23/032012 Optical sensors: sensors: Working principle of the transducer (5/6) 5 RAMAN SPECTROMETRY 5. Involves inelastic scatter of light by molecules The differences between the excitation light frequency and the Raman bands correspond to the vibrational frequencies of the sample molecule Band intensity depends on the polarizability of the bond D spectrometer Scattered light Excitation light Prof. Guillermo Orellana (UCM, Espanha) – Curso SENSORES ÓPTICOS QUÍMICOS – UEL/IAPAR – Londrina, PR – 22-23/032012 Optical sensors: sensors: Working principle of the transducer (6/6) 6. REFRACTOMETRY REFRACTOMETRY: sensitive to variations of the refraction index of the medium surrounding the sensor A. SURFACE PLASMON RESONANCE (SPR) B. INTERFEROMETRY Prof. Guillermo Orellana (UCM, Espanha) – Curso SENSORES ÓPTICOS QUÍMICOS – UEL/IAPAR – Londrina, PR – 22-23/032012 A. SURFACE PLASMON RESONANCE (SPR) E p-polarized di ti radiation PRISM REFLECTED LIGHT R = f(,) SP SAMPLE METAL FILM Au,, Ag, g, Cu,, Al,, Pt,, Ni,, Co (50 ( nm)) Coupling between •Photon momentum •Electron gas momentum ENERGY TRANSFER TO THE METAL SURFACE “PLASMON RESONANCE” The plasmon wave is sensitive to the refractive index of the sample medium MEASUREMENTS At a particular , if we keep a fixed ANGLE At a particular ANGLE, if we keep a fixed Prof. Guillermo Orellana (UCM, Espanha) – Curso SENSORES ÓPTICOS QUÍMICOS – UEL/IAPAR – Londrina, PR – 22-23/032012 SURFACE PLASMON RESONANCE (SPR) 10-3-10-10 M!!! Dextran support Glass wall Gold film Biacore Prof. Guillermo Orellana (UCM, Espanha) – Curso SENSORES ÓPTICOS QUÍMICOS – UEL/IAPAR – Londrina, PR – 22-23/032012 B. INTERFEROMETRY I = I0(1 + cos ) = 2/ L(nsen- nreff) L: interaction length SENSITIVE PHASE DIELECTRIC COATING u1 uo u u2 REFERENCE ARM . Mach-Zehnder interferometer . Based on constructive & destructive wave interference The input light is divided in TWO BRANCHES: - REFERENCE arm, protected from the surrounding medium - SAMPLE arm SENSIBLE phase ANALYTE modifies refraction index of the CLADDING phase Recombination of light beams change of INTERFERENCE PATTERN Prof. Guillermo Orellana (UCM, Espanha) – Curso SENSORES ÓPTICOS QUÍMICOS – UEL/IAPAR – Londrina, PR – 22-23/032012 Buffer & protective layers Core, n1 Kao and Hockham suggest in 1966 the use of glass “optical fibers” as transmission medium for telecommunications Keck and Schultz (Corning labs) invented the modern optical fiber (1970) Guide able to carryy the light g at long distances with minimal losses n1 > n2 Cladding, n2 Core: physical support of the radiation Cladding: helps confinement of radiation into the fiber Prof. Guillermo Orellana (UCM, Espanha) – Curso SENSORES ÓPTICOS QUÍMICOS – UEL/IAPAR – Londrina, PR – 22-23/032012 PROPAGATION OF LIGHT WITHIN THE OPTICAL FIBER (ray theory) Incident Critical angle Critical angle C C Reflected Incident Refracted i > c there is transmission by total reflection n0 n2 n1 n1 > n2 > n0 ´ 1 0 0 acceptance angle (maximum angle) N A = sen 0 = (n N.A. ( 12 - n22)1/2 ; sen C = n2/n / 1 Prof. Guillermo Orellana (UCM, Espanha) – Curso SENSORES ÓPTICOS QUÍMICOS – UEL/IAPAR – Londrina, PR – 22-23/032012 OPTICAL FIBER TYPES Silica fibers Glass fibers Plastic fiber IR-transmitting fibers: • Fluoride fibers • Chalcogenide g fibers f (As2S3) • Silver halide fibers 200 nm 1.9 m 380 nm 1.9 m 400 nm 1.2 m 1.5 m 4.5 m 3 m 11 m 4 m 20 m (low OH) (hi h OH) (high Prof. Guillermo Orellana (UCM, Espanha) – Curso SENSORES ÓPTICOS QUÍMICOS – UEL/IAPAR – Londrina, PR – 22-23/032012 EVANESCENT WAVE (latin: evanescer) • A small part of the guided light penetrates a tiny distance into the fiber cladding; its intensity decays exponentially from the core/cladding interface (evanescent wave) • The penetration distance, distance f(, f( n1, n2, polarization), polarization) is in the order of the propagating radiation wavelength (similar size to manyy macromolecules,, e.g. g antibodies). ) n2 n1 dp Eo E ´ Prof. Guillermo Orellana (UCM, Espanha) – Curso SENSORES ÓPTICOS QUÍMICOS – UEL/IAPAR – Londrina, PR – 22-23/032012 FIBEROPTIC SENSOR TYPES EXTRINSIC SENSORS The sensing element (reagent phase), phase) i.e. the component that undergoes modification of its optical properties, is external to th fib the fiber 1st GENERATION: The optical change of the analyte itself is measured (PASIVE SENSORS) 2nd GENERATION: The optical change of a reagent phase (immobilized indicator) is measured (ACTIVE SENSORS) 3rd GENERATION: Combines the reagent phase with a recognition element of biological origin (e.g. enzyme, antibody, cell,...) ( (BIOSENSORS) ) The optical fiber is just a wave guide Prof. Guillermo Orellana (UCM, Espanha) – Curso SENSORES ÓPTICOS QUÍMICOS – UEL/IAPAR – Londrina, PR – 22-23/032012 INTRINSIC SENSORS The optical fiber itself has the sensing role because one of its properties is modified modified. No N change h iin the h optical i l properties i off either i h the h analyte or a reagent phase is measured, but the effect of these ones on the propagating light (refraction index of the cladding, absorption of light in the evanescent field, interference core...)) in FBG,, chemically-sensitive y Layer with receptor element The optical fiber is both a wave guide and transducer Prof. Guillermo Orellana (UCM, Espanha) – Curso SENSORES ÓPTICOS QUÍMICOS – UEL/IAPAR – Londrina, PR – 22-23/032012 FIBEROPTIC SENSING SCHEMES WAND PROBE FLOW type vs PROBE type Allow optimization Easy replacement of the h reagent phase h Accelerate mass FLOW-THROUGH FLOW THROUGH transfer kinetics May be constructed without optical fiber Prof. Guillermo Orellana (UCM, Espanha) – Curso SENSORES ÓPTICOS QUÍMICOS – UEL/IAPAR – Londrina, PR – 22-23/032012 FIBEROPTIC SENSING SCHEMES 1 Point sensor 1. Opto electronics Fiber Sensitive tip M(t) Procesing electronics Measurand field M(t) Output M(t) 2. Distributed Opto electronics Measurand field M(t) Fiber Procesing g electronics 3. Quasi-distributed Output M(t) M Measurand d fi field ld M(t) Opto electronics Procesing electronics M(t) Output p M(t) ( ) M(t) M(z,t) Fiberr F z Sensitized regions M(z,t) Prof. Guillermo Orellana (UCM, Espanha) – Curso SENSORES ÓPTICOS QUÍMICOS – UEL/IAPAR – Londrina, PR – 22-23/032012 FIBEROPTIC SENSOR CONFIGURATION Smaller size Lower cost Higher interference input/output light Single Si l fiber ABSORBANCE Higher discrimination input/output light Double fiber Collection losses Single fiber REFLECTANCE FLUORESCENCE RAMAN Prof. Guillermo Orellana (UCM, Espanha) – Curso SENSORES ÓPTICOS QUÍMICOS – UEL/IAPAR – Londrina, PR – 22-23/032012 FIBEROPTIC SENSOR CONFIGURATION Fluorescence Cladding Core • Efficient overlapp photoexcited sample/fluorescence acceptance cone • Small size (e.g. catheter) Excitation beam SAMPLE SINGLE FIBER • Intrinsic fluorescence and Raman scattering of the fiber • More difficult separation input/output light • Indicator photobleaching Simultaneous transmission of the light from the source to the sensitive iti tip ti and d off the th modified difi d radiation di ti to t th the d detector t t Prof. Guillermo Orellana (UCM, Espanha) – Curso SENSORES ÓPTICOS QUÍMICOS – UEL/IAPAR – Londrina, PR – 22-23/032012 FIBEROPTIC SENSOR CONFIGURATION Dp • • Larger size • Less collection efficiency • Critical arreangement of excitation/collection • Lowers background absorption, fluorescence and Raman scattering from the light guide: sensitivity fibers More expensive Fiber bundle ( (two fi fibers shown) Prof. Guillermo Orellana (UCM, Espanha) – Curso SENSORES ÓPTICOS QUÍMICOS – UEL/IAPAR – Londrina, PR – 22-23/032012 REAGENT PHASE location A) At the fiber distal end Prof. Guillermo Orellana (UCM, Espanha) – Curso SENSORES ÓPTICOS QUÍMICOS – UEL/IAPAR – Londrina, PR – 22-23/032012 REAGENT PHASE location B) At the fiber side n2 n3 n3>n1>n2 n1 •Analyte-permeable cladding (technology intensive) C) In the evanescent field Reagent phase Hollow waveguide (capillary sensors) Prof. Guillermo Orellana (UCM, Espanha) – Curso SENSORES ÓPTICOS QUÍMICOS – UEL/IAPAR – Londrina, PR – 22-23/032012 REAGENT PHASE components “Active” functional groups for immobilization INDICATOR Keep reactivity towards the analyte Photostability SUPPORT (MEMBRANE) Rigid and transparent to light High mechanical and bacterial resistance Favorable analyte-indicator interaction Low reflectance/emission background High kinetics of mass transfer Selectivity Isolation from ambient light Prof. Guillermo Orellana (UCM, Espanha) – Curso SENSORES ÓPTICOS QUÍMICOS – UEL/IAPAR – Londrina, PR – 22-23/032012 IMMOBILIZATION PROCEDURES (I) High g stabilityy Adsorption COVALENT Complex PHYSICAL Activation A ti ti off supportt Indicator functionalization Active group(s) must remain I l i Inclusion Fast ELECTROSTATIC Simple Reproducible Accesible active groups Indicator wash-out Ionic strength effects (support & interaction) Prof. Guillermo Orellana (UCM, Espanha) – Curso SENSORES ÓPTICOS QUÍMICOS – UEL/IAPAR – Londrina, PR – 22-23/032012 IMMOBILIZATION PROCEDURES (II) ENTRAPMENT: e.g ENTRAPMENT: e.g silica SOL‐ SOL‐GEL MATERIALS Hydrolysis OCH3 H3CO Si OCH3 + 4 H2O OCH3 H+ OH OH SiOH + 4 (CH3OH) OH Condensation OH OH OH Si OH + OH Si OH OH OH OCH3 OH OH Si OH + H3CO Si OCH3 OCH3 OH OH OH OH Si O Si OH + H2O OH OH OH OH OH Si O Si OH +(CH3OH) OH OH Gelification, aging and drying Pore size si e Channel communication Time Temperature Catalyst Morphology Prof. Guillermo Orellana (UCM, Espanha) – Curso SENSORES ÓPTICOS QUÍMICOS – UEL/IAPAR – Londrina, PR – 22-23/032012 Optochemical sensors: Main application fields Process control E i Environmental t l analysis l i Clinical ((bio)chemistry ) y Prof. Guillermo Orellana (UCM, Espanha) – Curso SENSORES ÓPTICOS QUÍMICOS – UEL/IAPAR – Londrina, PR – 22-23/032012 STAGES OF INDICATORINDICATOR-BASED SENSOR DEVELOPMENT 1 SELECTION OF THE COLORIMETRIC OR LUMINESCENT 1. INDICADOR WHOSE OPTICAL PROPERTIES ARE MODIFIED IN THE PRESENCE OF ANALYTE. 2. FABRICATION OF THE SENSITIVE PHASE (SUPPORT, MEMBRANE, IMMOBILIZATION PROCEDURE). DESIGN OF THE MOST APPROPRIATE SENSING SCHEME. 5. APLICATION AND VALIDATION OF THE OPTODE TO THE TARGET ANALYSIS. 4. SPECTROSCOPIC AND ANALYTICAL CHARACTERIZATION OF THE SENSOR. 3. Prof. Guillermo Orellana (UCM, Espanha) – Curso SENSORES ÓPTICOS QUÍMICOS – UEL/IAPAR – Londrina, PR – 22-23/032012 3. Sensor arrays and exchangeable h d Chemometrics. heads. Ch t i 2. Composition 2 C iti of f sensing membranes: New polymer and antibiofouling materials. 4. Automatic serial manufacturing Miniaturization, manufacturing. Miniaturization NANOtechnology. Lab-in-a-chip vs. chip-in-a-lab. 1. New 1 N indicator i di t d dyes, (bi (bio)chemical ) h i l recognition elements. Molecularly imprinted polymers. Novel transduction mechanisms (photochemistry). Prof. Guillermo Orellana (UCM, Espanha) – Curso SENSORES ÓPTICOS QUÍMICOS – UEL/IAPAR – Londrina, PR – 22-23/032012 Un BIOSENSOR es un dispositivo analítico que incorpora un material biológico g ((e.g. g tejido, j , microorganismo, g , enzima,, anticuerpo, ácido nucleico, etc.) asociado a, o integrado en, un transductor físicoquímico (óptico, electroquímico, térmico, piezoeléctrico i lé t i o magnético). éti ) BIOSELECTIVE Membrane LAYER (Biosens. Bioelectron. 2001, 16:121-131) Exclusion/ protection Signal g capture and processing h h Data OPTICAL TRANSDUCER ANALYTE Interferents SAMPLE SELECTIVE RECOGNITION EVENT ENERGY TRANSDUCTION SIGNAL PROCESSING READOUT Prof. Guillermo Orellana (UCM, Espanha) – Curso SENSORES ÓPTICOS QUÍMICOS – UEL/IAPAR – Londrina, PR – 22-23/032012 Dependiendo de la naturaleza de la reacción bioquímica de reconocimiento pueden clasificarse en: A B A • SENSORES BIOCATALÍTICOS - También denominados sensores metabólicos. Basados en una reacción catalizada l d que origina un cambio b en la l naturaleza l química de las especies involucradas (analito y otras). Biológico: enzimas aisladas, aisladas células, células tejidos (Biomimético: Polímeros de impronta molecular (MIPs)) • SENSORES DE BIOAFINIDAD - Basados en interacciones específicas entre el analito y el bioreceptor. No hay conversión del analito. Biológico: anticuerpo, ácidos nucleicos (DNA/RNA), receptores (Bi i éti (Biomimético: P lí Polímeros i impronta t molecular l l (MIPs), (MIP ) oligopétidos, li étid oligonucleótidos, li l ótid aptámeros) Prof. Guillermo Orellana (UCM, Espanha) – Curso SENSORES ÓPTICOS QUÍMICOS – UEL/IAPAR – Londrina, PR – 22-23/032012 PRINCIPIO DE MEDIDA (A) El analito se convierte en un PRODUCTO con propiedades ÓPTICAS características (o INDUCE un cambio en una señal óptica: pH, desactivación fluor.,…). (B) V Variación i ió de d llas propiedades i d d ÓPTICAS de la ENZIMA en su reacción con el analito (C) El analito INHIBE una reacción enzimática que produce/consume un producto con propiedades ÓPTICAS ANALITO FENOL (O2) ENZIMA PPO (Tirox.) LACTATO LMO PESTICIDAS AChE Prof. Guillermo Orellana (UCM, Espanha) – Curso SENSORES ÓPTICOS QUÍMICOS – UEL/IAPAR – Londrina, PR – 22-23/032012 O2 NH3 pH CO2 Desactivación Oxidasa luminiscencia Glucosa,colina colesterol Lactato, fenol Variación pH Hidrolasa Urea Variación pH pH Glucosa, urea p penicilinas pesticidas Variación pH Descarboxilasa Glutamato TRANSDUCTOR SUS SUS Enzima Biocatalizador PRO PRO Muestra Prof. Guillermo Orellana (UCM, Espanha) – Curso SENSORES ÓPTICOS QUÍMICOS – UEL/IAPAR – Londrina, PR – 22-23/032012 EJEMPLO: pesticidas AChE Acetilcolina + H2O Ác. Acético + Colina Transductor químico de pH Inhibidores de la AChe: Carbamatos Organofosforados Indicador de tipo ftaleína Cl HO OH Intensa absorción en el visible Elevada estabilidad fotoquímica Cl O O S O Inmovilización relativamente sencilla a través de los grupos fenólicos a través de los grupos fenólicos pKa = 4.8 (amarillo) ‐ 6.4 (violeta) ROJO DE CLORO CLOROFENOL ENOL Biosens. Bioelectron. 2000, 14, 895 Prof. Guillermo Orellana (UCM, Espanha) – Curso SENSORES ÓPTICOS QUÍMICOS – UEL/IAPAR – Londrina, PR – 22-23/032012 N N N OCOCH3 2+ Ru N N emmax = 610 nm em = 0.02 = 0.58 s Inhibidores de la AChe: Carbamatos Organofosforados N Inhibidor Substrato H2O AChE N N N 2+ Ru N N Buffer OH N ENZIMA D emmax = 695 nm em = 0.002 = 0.15 s Orellana et al. Afinidad 2007, 64, 257–264 Prof. Guillermo Orellana (UCM, Espanha) – Curso SENSORES ÓPTICOS QUÍMICOS – UEL/IAPAR – Londrina, PR – 22-23/032012 ANTICUERPOS 16 nm Zona de unión del antígeno Zona de unión del antigeno Región 12 nm variable Cadena ligera Región VH CH1 Región variable de la cadena ligera VL Región variable de la cadena ligera Región constante de la cadena ligera CL Fab CH2 Región constante de la cadena pesada Fc constante CH2 Cadena pesada Heterodímeros con cuatro cadenas polipeptídicas: dos cadenas pesadas idénticas y dos cadenas ligeras idénticas Fuente: Dr. M.P. Marco (CSIC) Barcelona, Spain Prof. Guillermo Orellana (UCM, Espanha) – Curso SENSORES ÓPTICOS QUÍMICOS – UEL/IAPAR – Londrina, PR – 22-23/032012 ANTICUERPOS Interacciones hidrofóbicas Enlace de hidrógeno Fuerzas de van der Waals Interacciones electrostáticas Anticuerpo antígeno Anticuerpo-antígeno Prof. Guillermo Orellana (UCM, Espanha) – Curso SENSORES ÓPTICOS QUÍMICOS – UEL/IAPAR – Londrina, PR – 22-23/032012 ANTICUERPOS Antígeno marcado Anticuerpo anti-analito Transductor Transductor Respuesta inversamente Proporcional a la concentración de analito Prof. Guillermo Orellana (UCM, Espanha) – Curso SENSORES ÓPTICOS QUÍMICOS – UEL/IAPAR – Londrina, PR – 22-23/032012 Detección óptica directa (sin trazador). La propia i molécula lé l origina i i la l señal ñ l óptica. ó i Ensayo en fase heterogenea Competitivo No competitivo Detección óptica p indirecta. Se requiere un trazador o reacciones acopladas para originar el efecto óptico. Ensayo en fase heterogenea Competitivo p No competitivo Prof. Guillermo Orellana (UCM, Espanha) – Curso SENSORES ÓPTICOS QUÍMICOS – UEL/IAPAR – Londrina, PR – 22-23/032012 H H N O H S O CH 3 N S HO CH 3 N O CH 3 O H N CH 3 S Cl CH 3 N COOH N CH 3 O H S N O H N CH 3 CH 3 H NH 2 H S N CH 3 CH 3 O COOH Cloxacilina O H CH 3 H COOH Oxacilina H N N O CH 3 COOH O H N H O Cl CH 3 O O N N CH 3 A Amoxicilina i ili O H N H S NH 2 Penicilina V Penicilina G H H COOH COOH Cl H CH 3 O O H H N O A Ampicilina i ili O H S N O Dicloxacilina H N CH 3 CH 3 COOH OC 2 H 5 H H S N O Nafcilina CH 3 CH 3 COOH Prof. Guillermo Orellana (UCM, Espanha) – Curso SENSORES ÓPTICOS QUÍMICOS – UEL/IAPAR – Londrina, PR – 22-23/032012 DERIVADOS DEL PIRENO DERIVADOS DEL DANSILO O H H H S N CH3 N PAAPO O CH3 ( )3 COOH PBAP N H H H S N NH N PAAM O CH3 O O N CH3 COOH DAP COOH CH3 CH3 COOH O O H H H S N ( )3 NH O N O H H H S N CH3 O CH3 O PBAM COOH H H H S N NH N O PAAX S NH N O CH3 CH3 COOH DAM O O S CH3 O HO N CH3 O O O H H H S N H H H S N N CH3 CH3 COOH G. Orellana et al. Patente ES 2197811; Anal. Chem. 2006 Prof. Guillermo Orellana (UCM, Espanha) – Curso SENSORES ÓPTICOS QUÍMICOS – UEL/IAPAR – Londrina, PR – 22-23/032012 Curva de calibrado 1.2 Ecuación de ajuste A Amin (B B ) max Amin Señal normalizada = SN = i b ( B0 B ) [analito ] 1 IC 50 Señal normallizada (SN) 1.0 0.8 0.6 0.4 02 0.2 0.0 0.000001 0.0 0.0001 0.001 0.01 0.1 1 10 100 [PENG], g mL -1 Características Analíticas IC C50 30 ng mL-1 LD 2.4 ng mL-1 ID (6.02 – 191) ng mL-1 r 0.998 (n = 5) Moreno-Bondi, Orellana, et al., J. Agric. Food Chem. 2005, 53, 6635 Prof. Guillermo Orellana (UCM, Espanha) – Curso SENSORES ÓPTICOS QUÍMICOS – UEL/IAPAR – Londrina, PR – 22-23/032012 Catedrático de Universidad Prof. Guillermo Orellana (UCM, Espanha) – Curso SENSORES ÓPTICOS QUÍMICOS – UEL/IAPAR – Londrina, PR – 22-23/032012