Teoria dos Jogos
Prof. João Carlos
[email protected]
Objetivos
1. Definir o que é um jogo e delinear sua potencialidade
no processo de interação estratégica
2. Tratar especificamente da modalidade de Jogos Não-
cooperativos (Estáticos e Dinâmicos) em estratégias
puras com informação completa.
2
Jogo: Teoria da Decisão Interativa
• Mas-Collel et. al. (1995) definem um jogo como “uma
representação formal de uma situação onde um
número de indivíduos interagem em um cenário de
interdependência estratégica” (p.219), i.e., o bem-estar
de cada um depende não apenas das próprias ações,
mas também das ações dos demais envolvidos. Assim,
a ação ótima em geral dependerá da expectativa
sobre o que os demais jogadores irão fazer.
3
Terminologia básica do jogo
a) Jogador: é o agente econômico que busca obter o
melhor resultado possível no processo de interação
estratégica (maximização da utilidade).
b) Ação (decisão ou movimento): é a escolha do
jogador. Cada jogador tem um conjunto de ações
possíveis, ou seja:
➨ Jogadores ( j ) = 1, 2, ..., n
➨ Conjunto de ações do j-ésimo jogador Cj = { cj }
c) Recompensa (pay-off): resultado decorrente do fim do
jogo. É a utilidade que cada jogador atribui as suas
estratégias quando tomadas interativamente.
4
Tipos de Jogos
• Não-cooperativos:
Analisa a decisão de cada jogador sem um acordo
prévio.
• Cooperativos:
Analisa as possibilidades onde alguns ou todos os
jogadores chegam a um acordo sobre que decisão
tomar.
5
Jogos não-cooperativos
• Podem ser divididos ainda em:
a) Estáticos (ou Simultâneos): situação onde cada
jogador toma sua decisão desconhecendo as
decisões dos demais jogadores, ou seja, cada agente
(jogador) ignora as decisões dos demais, no momento
de tomada de sua decisão, sem se preocupar com as
conseqüências futuras de sua escolha.
a.1) Estratégias puras: o jogador escolhe uma
estratégia para jogar do seu conjunto estratégico.
a.2) Estratégias
mistas:
o
jogador
atribui
probabilidades de cada estratégia ser escolhida.
6
Jogos não-cooperativos
b) Seqüenciais (ou dinâmicos): é o caso em que um
jogador conhece a decisão do outro antes de realizar
sua própria escolha, ou seja, os jogadores realizam seus
movimentos em uma ordem predeterminada.
*
Observação:
O jogador seqüencial tem mais informações que o
jogador inicial, ou seja, na decisão seqüencial o
jogador que se move inicialmente, e que não finaliza o
jogo, tem menos informações no momento de decidir.
7
Jogos não-cooperativos
• Os jogos segundo o tipo informação pode ser dividido
em:
a) Informação completa: os jogadores conhecem as
conseqüências dos jogos, ou seja, as recompensas
(pay-offs) dos jogadores são de conhecimento comum
(common knowledge).
b) Informação incompleta: pelo menos um jogador
desconhece
as
conseqüências
da
interação
estratégica. Isto quer dizer que as características dos
jogadores não são de conhecimento comum.
8
Resolução do Jogo Estático
• Jogo Estático de informação completa e estratégias
puras:
a) Eliminação
interativa
de
estratégias
estritamente
dominadas (não resolve todos os jogos); e
b) Equilíbrio de Nash, ou seja, equilíbrio dado pela
combinação estratégica que representa a melhor
resposta possível de cada um dos jogadores às
estratégias dos demais jogadores (conceito mais
geral).
9
Resolução do Jogo Estático
• Observações:
a) As estratégias (linha e coluna) que sobram, através da
eliminação das estratégias estritamente dominadas
são chamadas de estratégias racionalizáveis.
b) A hipótese (simplificadora) do conhecimento comum
indica que todos os fatos (informações) relevantes
para o jogo são mutuamente conhecidos denotando
o caráter de informação completa do jogo (os pay-offs
são de conhecimento comum).
10
Resolução do Jogo Estático
• Observações:
c) Quando a situação de pelo menos um agente
melhora, sem que a situação de nenhum dos outros
piore, diz-se que houve uma melhoria paretiana, ou
uma melhoria no sentido de Pareto.
d) Ou seja, se em uma dada situação não for possível
melhorar a situação de um agente sem piorar a
condição do outro, diz-se que essa situação é um
ótimo de Pareto, o que significa que os ganhos de
eficiência não são mais possíveis, dadas as condições
estabelecidas.
e) Nem todo equilíbrio de Nash é Pareto eficiente.
11
Jogos Estáticos ou Simultâneos
• Exemplo: “o dilema dos prisioneiros”
Situação em que dois ladrões foram pegos pela polícia
por serem suspeitos de praticar um crime. Para obter a
confissão o delegado coloca cada um dos suspeitos
em salas separadas, argumentando as conseqüências
que se seguirão às ações que eles poderão tomar.
12
Jogos Estáticos ou Simultâneos
a) Se nenhum confessar, ambos serão condenados a
uma pena menor e passarão 1 mês na prisão.
b) Se os dois confessarem, ambos irão para a cadeia por
6 meses.
c) Se um confessar, mas o outro não, aquele que
confessou será liberado imediatamente (0 mês), mas o
outro será condenado por 9 meses de prisão, 6 meses
pelo crime e 3 meses por omissão a justiça.
13
Jogos Estáticos ou Simultâneos
• Forma matricial (normal ou estratégica)
Estratégias
Jogador coluna
Suspeito 2
Estratégias
Confessar Não confessar
Confessar
(-6,-6)
(0,-9)
Não confessar
(-9,0)
(-1,-1)
Suspeito 1
Jogador linha
Pay-offs (recompensa de cada jogador dada a
escolha do outro)
14
Jogos Estáticos ou Simultâneos
• Representação
Suspeito 2
Equilíbrio de
Nash
Confessar Não confessar
Confessar
(-6,-6)
(0,-9)
Não confessar
(-9,0)
(-1,-1)
Suspeito 1
Situação de melhoria
paretiana
15
Jogos Estáticos ou Simultâneos
•
Aspectos importantes da forma normal:
a) No momento da decisão cada jogador ignora a
decisão do outro.
b) Os jogadores consideram apenas as conseqüências
imediatas de suas ações, ou seja, não levam em
conta potenciais desdobramentos de suas decisões.
16
Jogos Dinâmicos ou Seqüenciais
• Neste caso, os jogadores não ignoram as decisões dos
demais, ou seja, o processo de interação estratégica
se desenrola por meio de ações e respostas sucessivas
(característica de grandes empresas que detêm saúde
financeira e longa vida econômica).
• As
escolhas
presentes
exigem
considerar
as
conseqüências futuras.
17
Resolução do Jogo Dinâmico
• Método da indução reversa para identificação do
equilíbrio de Nash perfeito em subjogo.
• A análise do jogo é de trás para frente, ou seja, dos nós
terminais, onde estão os pay-offs até o nó inicial do
subjogo total, sempre procurando identificar as
melhores opções para cada jogador.
• O conceito do E. N., em jogos seqüenciais, deve
considerar que os jogadores utilizarão as informações
disponíveis no momento de suas jogadas visando o
melhor resultado possível, até porque eles são
racionais e considerarão todos os desdobramentos
possíveis do jogo.
18
Resolução do Jogo Dinâmico
• Forma seqüencial (estendida ou árvore de jogos):
Nó sucessor
Jogador B
mo
Ra
1
.1
o1
Ram
Ramo
1.2
Nó Terminal ou final (XA; XB)
Nó Terminal ou final (X’A; X’B)
Pay-offs
Nó inicial
(raiz principal)
Jogador A
Ra
mo
2
.1
o2
Ram
Nó sucessor Ramo
2.2
Jogador B
Nó Terminal ou final (X”A; X”B)
Nó Terminal ou final (X’”A; X’”B)
19
Resolução do Jogo Dinâmico
• Observações:
a) Subjogo é a parte de um jogo na forma extensiva
segundo as condições:
a.1) Ele sempre se inicia em um único nó de decisão;
a.2) Um subjogo contém sempre todos os nós que se
seguem ao nó no qual ele se iniciou (incluindo o nó
final); e
a.3) Se um subjogo contém qualquer parte de um
conjunto de informação, ele conterá todos os nós do
conjunto de informação.
b) O princípio da indução reversa não implica que a
combinação
de
estratégias
selecionadas
20
desencadeará um ótimo de Pareto.
Resolução do Jogo Dinâmico
• Estrutura geral (subjogos e conjunto de informações):
Subjogo 3
A
a1
b1
B
a2
A
A
b2
B
Subjogo 2
Subjogo 1
Conj. de informação
unitário (subjogo de
informação perfeita)
Conj. de
informação
não unitário
(subjogo de
informação
imperfeita)
21
Resolução do Jogo Dinâmico
• Um equilíbrio de Nash perfeito em subjogo (equilíbrio
perfeito de Nash) permite identificar quando uma
ameaça (ou promessa) de outro jogador deve, ou
não, ser levada a sério. Tal fato acaba por ter grande
importância nos processos de interação estratégica.
22
Jogos Dinâmicos ou Seqüenciais
• Exemplo:
A figura abaixo representa um jogo entre a inovadora
(Embraer) e a líder (Bombardier), onde a Embraer
decide antes se vai ou não lançar o seu novo jato
regional (ERJ-145) e, a partir daí, a Bombardier toma a
decisão de manter ou reduzir o preço de seu jato
regional (CRJ-100/200).
23
Jogos Dinâmicos ou Seqüenciais
• Representação
Líder
Bombardier
Reduz
145
J
R
E
ça
n
a
Inovadora L
Embraer
Nã
o la
nça
e
ém pr
Mant
ço
(4,1)
preço
(2,2)
ER
J-1
45
Líder
Bombardier
ém
Mant
Reduz
preço
preço
Equilíbrio de
Nash perfeito em
subjogo
(1,4)
(1,3)
24
Jogos Dinâmicos ou Seqüenciais
• Caso a Embraer decida lançar o ERJ-145 e a
Bombardier reduza o preço de seu modelo, cada
fabricante receberá $ 2 milhões, uma vez que o
mercado será disputado acirradamente.
25
Jogos Dinâmicos ou Seqüenciais
• Por outro lado, se nessas circunstâncias a Bombardier
decidir manter inalterado o preço de sua aeronave,
suas vendas se reduzirão consideravelmente e seus
lucros cairão para $ 1 milhão, enquanto que a Embraer
ocupará o mercado e verá seu lucro aumentar para $
4 milhões (supondo que os consumidores tenham um
grande interesse por novidades, o que obriga a
fabricante
estabelecida
a
competir
com
novos
modelos, ou por meio de redução significativa de
preços).
26
Jogos Dinâmicos ou Seqüenciais
• A outra possibilidade é que a Embraer decida não
lançar o seu modelo. Nesse caso, a decisão da
Bombardier de reduzir ou não o preço de sua
aeronave vai afetar apenas os seus lucros ($ 3 milhões
em um caso e $ 4 milhões em outro).
• Atentar que a Bombardier sempre decide depois da
Embraer.
27
Considerações Finais

1.
2.
3.

4.

5.
6.

7.
8.
Objetivo geral da apresentação:
Definição de jogo.
Terminologia básica do jogo (Jogador, Estratégia e pay-off).
Tipos de jogos (Cooperativos e Não-cooperativos).
Objetivo específico:
Jogos Não-cooperativos (Estáticos e Dinâmicos) em
estratégias puras com informação completa.
Aspectos teóricos e metodológicos relacionado à resolução:
Jogos estáticos (simultâneos).
Jogos dinâmicos (seqüencial).
Exemplos:
Dilema dos Prisioneiros.
Um Novo Lançamento.
28
Download

Jogos Não-cooperativos (Estáticos e Dinâmicos) em estratégias