Teste da chama O teste de chama ou prova da chama é um procedimento utilizado em Química para identificar alguns cátions através do fornecimento de energia calorífica aos respectivos compostos, baseado no espectro de emissão característico para cada cátion. O teste envolve a introdução da amostra em uma chama e a observação da cor resultante. As amostras geralmente são manuseadas com um fio de platina previamente limpo com ácido clorídrico para retirar resíduos de analitos anteriores. O teste de chama é baseado no fato de que quando uma certa quantidade de energia é fornecida a um determinado elemento químico (no caso da chama, energia em forma de calor), alguns elétrons da última camada de valência absorvem esta energia passando para um nível de energia mais elevado, produzindo o que chamamos de estado excitado. Quando um desses elétrons excitados retorna ao estado fundamental, ele libera a energia recebida anteriormente em forma de radiação. Cada elemento libera a radiação em um comprimento de onda característico, pois a quantidade de energia necessária para excitar um elétron é única para cada elemento. A radiação liberada por alguns elementos possui comprimento de onda na faixa do espectrovisível, ou seja, o olho humano é capaz de enxergá-las através de cores. Assim, é possível identificar a presença de certos elementos devido à cor característica que eles emitem quando aquecidos numa chama. A temperatura da chama do bico de Bünsen é suficiente para excitar uma quantidade de elétrons de certos elementos que emitem luz ao retornarem ao estado fundamental de cor e intensidade, que podem ser detectados com considerável certeza e sensibilidade através da observação visual da chama. O teste de chama é rápido e fácil de ser feito, e não requer nenhum equipamento que não seja encontrado normalmente num laboratório de química. Porém, a quantidade de elementos detectáveis é pequena e existe uma dificuldade em detectar concentrações baixas de alguns elementos, enquanto que outros elementos produzem cores muito fortes que tendem a mascarar sinais mais fracos. O sódio, que é um componente ou contaminante comum em muitos compostos, produz uma cor amarela intensa no teste de chama que tende a dominar sobre as outras cores. Por isso, a cor da chama geralmente é observada através de um vidro de cobalto azul para filtrar o amarelo produzido pelo sódio e permitir a visualização de cores produzidas por outros íons metálicos. O teste de chama apenas fornece informação qualitativa. Dados quantitativos, sobre a proporção dos elementos na amostra, podem ser obtidos por técnicas relacionadas à fotometria de chama ou espectroscopia de emissão. APLICAÇÕES DO MODELO DE BOHR -Teste da chama Teste da chama com CuSO4: uma das mais importantes propriedades dos elétrons é que suas energias são "quantizadas",ou seja, um elétron ocupa sempre um nível energético bem definido e não um valor qualquer de energia. Se no entanto um elétron for submetido a um fonte de enrgia adequada (calor, luz, etc.), pode sofrer uma mudança de um nível mais baixo para outro de energia mais alto (excitação). O estado excitado é um estado meta-estável (de curtíssima duração) e, portanto, o elétron retorna imediatamente ao seu estado fundamental. A energia ganha durante a excitação é então emitida na forma de radiação visível do espectro eletromagnético que o olho humano é capaz de detectar ou não. Como o elemento emite uma radiação característica, ela pode ser usada como método analítico -Fogos de artificio FOGOS DE ARTIFÍCIO: Os fogos de artifício modernos empregam perclorato, substâncias orgânicas como amido ou açúcar, produtos do petróleo e pequenas quantidades de metais para dar cor. O funcionamento fundamenta-se na excitação dos elétrons que, ao retornarem a sua órbita original, emitem luz com cores diferentes. Aqui, uma exibição de fogos de artifício na cidade de Nova York. -Luminosos e lâmpadas (neônio e lâmpadas de vapor de Na ou Hg) LUMINOSOS: A imagem mostra como brilham as luzes de néon na noite de Las Vegas (EUA). As lâmpadas de néon são usadas na arte, na publicidade e até em balizas de aviação. Para fabricá-las, enche-se com gás néon, a baixa pressão, tubos de vidro dos quais todo o ar foi retirado. Ao aplicar eletricidade, uma corrente flui através do gás entre os dois eletrodos fechados dentro do tubo. O néon forma uma banda luminosa entre os dois eletrodos. (Neônio – luz vermelha, Argônio – luz azul, Neônio + gás carbônico – luz violeta). -Fluorescência e Fosforescência: Luminescência é a emissão de luz causada por certos materiais que absorvem energia e podem emiti-la em forma de luz visível. Se o intervalo entre absorção e emissão é curto (ocorre imediatamente), o processo se denomina fluorescência; quando o intervalo é longo (ocorre em alguns segundos ou algumas horas), fosforescência. As telas das televisões são recobertas por materiais fluorescentes, que brilham ao serem estimulados por um raio catódico. A fotoluminescência se produz quando determinados materiais são irradiados com luz visível ou ultravioleta. Fluorescência se define como as propriedades das substâncias de adquirirem luminescência ao serem submetidas aos raios ultravioletas, ou seja, quando são iluminadas. O melhor exemplo prático da aplicação da fluorescência é a sinalização de trânsito, você já reparou que nas rodovias existem placas que se iluminam quando os faróis do carro vão de encontro a elas. Este efeito permite visualizarmos o que está escrito nas placas, imagine se não existisse esta propriedade? Como as placas seriam lidas à noite? Mas quais substâncias são responsáveis por este fenômeno químico? O Tetracianoplatinato de Bário e Sulfeto de Zinco (ZnS). A excitação dos elétrons produz energia capaz de gerar luz. Os interruptores feitos com material fosforescente são visíveis no escuro graças ao retorno gradual dos elétrons excitados. Fosforescência é observada quando uma substância possui luminescência própria, por exemplo, os mostradores de relógio -Raio Laser O raio laser é um tipo de radiação eletromagnética visível ao olho humano. O laser hoje é muito aplicado como, por exemplo, nas cirurgias médicas, em pesquisas científicas, na holografia, nos leitores de CD e DVD como também no laser pointer utilizado para apresentação de slides. Na indústria o laser de dióxido de carbono tem sido muito utilizado, pois possibilita um processo rápido de corte e solda de materiais -Bioluminescência: a luz dos vaga-lumes. O vaga-lume é um inseto coleóptero que possui emissões luminosas devido aos órgãos fosforescentes localizados na parte inferior do abdômen. Essas emissões luminosas são chamadas de bioluminescência e acontecem devido a reações químicas onde a luciferina é oxidada pelo oxigênio nuclear produzindo oxiluciferina que perde energia fazendo com que o inseto emita luz. Na reação química, cerca de 95% aproximadamente da energia produzida transforma-se em luz e somente 5% aproximadamente se transforma em calor. O tecido que emite a luz é ligado na traquéia e no cérebro dando ao inseto total controle sobre sua luz. Anote o nome da substância, a sua fórmula, a coloração metal na chama e o cátion correspondente no quadro a seguir: Nome Fórmula Cor da chama Cátion 02. Explique o mecanismo de emissão de luz pelo material aquecido na chama (use a teoria de Bohr) 03. Porque os elementos químicos emitem um espectro descontínuo e não um espectro contínuo ao serem aquecidos? 04. Consultando a tabela anterior, determine qual elemento sofre transição eletrônica mais energética e qual sofre a menos energética. Justifique: Cátion Lítio Sódio Potássio Bário Cálcio Cobre Linhas Espectrais (comprimento de onda em nm) 680,8 589,6 e 589,0 410,9 e 408,5 535,5 665,4 468,5