Reconstrução de imagens 3D Paulo Roberto da Fonseca Filho Dep. Física e Biofísica - IBB – UNESP [email protected] Objetivos • Apresentar alguns conceitos de reconstrução de imagens • Apresentar a ferramenta In Vesalius • Utilizar o In Vesalius em alguns exames de tomografia computadorizada 2 Fonseca, P.R. - Reconstrução de imagens 3D Sumário Motivação - Diagnóstico por imagens Panorama das imagens 3D Imagens digitais O que é uma imagem digital Reconstrução Exemplos de reconstrução Tomografia computadorizada Princípios físicos Formação de imagens Exemplos de imagens 3 Fonseca, P.R. - Reconstrução de imagens 3D InVesalius Apresentação Principais recursos Reconstruindo Exemplo exemplos com o pessoal Motivação “Uma imagem vale mais que mil palavras” 4 Fonseca, P.R. - Reconstrução de imagens 3D Diagnóstico por imagem Radiação ionizante Raios-X convencional US Mamografia MRI / fMRI Fluoroscopia Tomografia Computadorizada Medicina nuclear PET /CT SPECT 5 Radiação não-ionizante Fonseca, P.R. - Reconstrução de imagens 3D Raios-X convencional 6 Fonseca, P.R. - Reconstrução de imagens 3D Mamografia CT 7 Fonseca, P.R. - Reconstrução de imagens 3D PET/CT MRI 8 Fonseca, P.R. - Reconstrução de imagens 3D US Total de procedimentos com CT nos Estados Unidos 9 Fonseca, P.R. - Reconstrução de imagens 3D IMV Benchmark Report on CT, 2006 Parte “teórica” "Não há nada de novo na terra. Tudo já foi feito antes” (Arthur C. Doyle) 10 Fonseca, P.R. - Reconstrução de imagens 3D Imagens digitais 11 Fonseca, P.R. - Reconstrução de imagens 3D Imagens digitais Resultado Domínio do problema Aquisição Base de conhecimento Pré-processamento Segmentação 12 Fonseca, P.R. - Reconstrução de imagens 3D Representação e descrição Reconhecimento e interpretação Aquisição 13 Fonseca, P.R. - Reconstrução de imagens 3D Formação Imagens digitais são discretizadas • no espaço e no tempo • coordenadas x, y, z • limitados pela resolução do sistema • no brilho • intensidade dos pixels picture elements • limitados pela “precisão” dos dados “Vetor 2D de amostras” (Funkhouser 2000) n , m f x, y 14 Sistema de aquisição Fonseca, P.R. - Reconstrução de imagens 3D + g n , m Filtros restauradores fˆ n , m Formação Tópicos Especiais em Biometria 15 x-ray Transmission through the body Nuclear magnetic resonance induction Gamma ray emission from within the body Ultrasound echoes Formando uma imagem... 17 Fonseca, P.R. - Reconstrução de imagens 3D ... digital 18 Fonseca, P.R. - Reconstrução de imagens 3D Pré-processamento O pré-processamento tem a função de “preparar” a imagem para um procedimento posterior (segmentação, restauração etc). O realce inclui: Processamento ponto a ponto Filtragem espacial 19 Equalização de histograma Suavização (média, mediana) Filtragem no domínio da freqüência Passa-alta Passa-baixa Fonseca, P.R. - Reconstrução de imagens 3D Matlab 20 Fonseca, P.R. - Reconstrução de imagens 3D Segmentação Retirar objetos ou características de interesse de uma imagem a partir de limiarização, detecção de descontinuidades ou similaridades. Por morfologia, Tópicos Especiais em Biometria 21 Filtragem 22 Processamento no domínio do espaço Filtro de média Tópicos Especiais em Biometria 23 Processamento no domínio do espaço Filtro de mediana Tópicos Especiais em Biometria 24 Espectro de Fourier Círculos com raios iguais a 18,43,78,152 contêm 93,95,99,99,5% da potência da imagem 25 Aplicações da TF para a Física Médica Um pouco de “brincadeira” 26 Albert Einstein (Ulm, 14 de Março de 1879 — Princeton, 18 de Abril de 1955) foi o físico que propôs a teoria da relatividade. Ganhou o Prémio Nobel da Física de 1921 pela correta explicação do Efeito fotoeléctrico; no entanto, o prémio só foi anunciado em 1922. O seu trabalho teórico sugeriu a possibilidade da criação de uma bomba atómica, apesar de ter sido contra seu desenvolvimento como arma de destruição em massa. Após a formulação da teoria da relatividade em Junho de 1905, Einstein tornou-se famoso mundialmente, na época algo de pouco comum para um cientista. Nos seus últimos anos, a sua fama excedeu a de qualquer outro cientista na história, e na cultura popular, Einstein tornou-se um sinónimo de alguém com uma grande inteligência e um grande gênio. A sua face é uma d as mais conihecidas em todo o mundo. Em sua honra, foi atribuído o seu nome a uma unidade usada na fotoquímica, o einstein, bem como a um elemento químico, o Einstênio. Foi um dos maiores génios da Física, tendo o seu QI estimado em cerca de 240. Algumas fontes informam um suposto resultado de 158, provavelmente limitado pelo teto do teste. Fonte: Wikipaedia Aplicações da TF para a Física Médica Filtro passa-baixa Diminuição da freqüência de corte 27 Aplicações da TF para a Física Médica Filtro passa-baixa Diminuição da freqüência de corte 28 Aplicações da TF para a Física Médica Tomografia Computadorizada 29 Fonseca, P.R. - Reconstrução de imagens 3D Imagens tomográficas Uma imagem CT 2D corresponde a um secção do paciente (3D) A espessura dessa “fatia” é de 1 a 10 mm Aproximadamente uniforme Cada pixel da imagem 2D corresponte a um elemento de volume (voxel) do paciente Cada feixe registrado é uma medida de transmissão atrés do passiente ao longo de uma linha I t I0e x ln( I 0 / I t ) x Compute Xray attenuation coeff. , (x,y) as follows: Beers law for xray attenuation in non uniform media is where the z axis is parallel to the X rays. Compute : Take the one dimensional Fourier transform, P(L ,q) of p(q, l) with respect to l. The results are values of the two dimensional Fourier transform of (x,y), at points along a line through the origin and at an angle q with the Ky axis in the 2D Fourier domain. Repeat for all angles q from 0 to 360. Interpolate the Fourier domain data from its polar form to a rectangular grid. The inverse 2D Fourier transform is ( x,y). 32 P(L ,q) Número CT ou unidades Hounsfield Número CT(x,y) em cada pixe, (x,y) CT ( x , y ) 1, 000 ( x , y ) water varia entre –1,000 e +3,000 –1,000 = ar –300 a –100 = tecido mole water – 200 = pulmão 0 = água + 50 = músculo +3,000 < osso e áreas com contraste Número CT É quantitativo CT mede densidade óssea com precisão Pode ser usado para estimar risco de fratura, por exemplo Com elevada resolução espacial e grande contraste CT pode ser usada para determinar dimensões de lesões Como tudo começou.... Original "Siretom" dedicated head CT scanner, circa 1974 35 Fonseca, P.R. - Reconstrução de imagens 3D Circa 1975, in the early days of the CT scan. A present-day scan, showing a six-fold increase in detail (images courtesy Siemens Medical Systems and Imaginis.com) … e onde estamos…. Specifications First CT (circa Modern CT 1970) Scanner (2001) Time to acquire one CT image 4-5 minutes 0.5 seconds Pixel size 3 mm x 3 mm 0.5 mm x 0.5 mm Number of pixels in an image 64,000 256,000 Table Data: http://www.physicscentral.com/action/action-02-3.html Aquisição Ao conjunto de feixes que são transmitidos através do paciente com mesma orientação denomina-se projeção Dois tipos de projeção são usados: Parallel beam geometry Fan beam geometry Feixe divergente 1a geração: Somente 2 detectores NaI lento “Parallel ray” “pencil beam” baixo espalhamento 160 feixes x 180 proj. FOV de 24 cm 4,5 min/scan 1,5 min reconstrução 2a geração Conjuto de 30 detectores mais radiação espalhada é detectada 600 feixes x 540 proj. 18 s/slice O mais rápido 3a geração Mais de 800 detectores O ângulo do “fan beam” cobre todo paciente Não é necessário translação Tubo e detectores rotacionam juntos Sistemas mais novos chegaram a 0,5 s/slice 4a geração Elimina alguns artefatos da geração anterior 4.800 detectores estacionários 5a geração Desenvolvida especifcamente para imagens CT do coração 50 ms/slice vídeos do coração batendo http://www.gemedicalsystems.com/rad/nm_p et/products/pet_sys/discoveryst_home.html# 6a geração Helicoidal: adquire imagem enquanto a mesa move Menor tempo para uma aquisição completa Menor uso de contraste 7a geração Múltiplos conjuntos de detectores Espaçamento maior no colimador Mais dados para reconstrução das imagens Com apenas um conjunto de detectores, a resolução é determinada pela abertura do colimador Com múltiplos detectores, a espessura do corte (slice) é determinada pelas dimensões do detector Reconstruindo uma imagem CT 46 Fonseca, P.R. - Reconstrução de imagens 3D Princípios Imagens planares de raios-X reduzem o paciente (3D) a uma projeção 2D A densidade em um dado ponto é resultado da atenuação do feixe de raiosX desde o ponto focal até o detector Informação do eixo paralelo ao feixe de raios-X é perdida Com duas imagens planares permitem localizar com precisão a posição de um dado objeto que apareca em ambas imagens 48 Fonseca, P.R. - Reconstrução de imagens 3D Reconstrução Radon (1917) provou que uma imagem de um objeto desconhecido pode ser produzida se existirem um número infinito de projeções desse objeto. Reconstrução tomográfica Existem muitos algoritmos para reconstrução Filtered backprojection mais comumente utilizado reconstroi utilizando um “procedimento inverso” à aquisição valor de é “espalhado” ao longo do caminho que percorreu durante a aquisição dados de diversos feixes são retroprojetados em uma matriz, formando a imagem Sinograma Armazena os dados antes da reconstrução Objetos nos limites do FOV geram uma senóide no sinograma Uma CT de 3ª geração com falha num detector apresentaria uma linha vertical no sinograma Representação Feixes são presentados horizontalmente projetções verticalmente 1a e 2a gerações usavam 28800 e 324000 pontos Imagens atuais (512 x 512) de um CT circular contém cerca de 0,2 Megapixels CTs em desenvolvimento devem usar até 0,8 Megapixels N.º feixes afeta componente radial da resolução espacial N.º projeções afeta componente “angular” Número de feixes Número de projeções Ocorre aliasing Interpolação Os algoritmos de reconstrução não consideram casos de “escaneamento” helicoidal Antes da reconstrução, os dados helicoidais são interpolados em uma série de imagens planares Com dados helicoidais, as imagens podem ser reconstruídas em qualquer posição dentro do “scan”, (pode diminiur um pouco a dose) retroprojeção Retroprojeção filtrada Os dados são filtrados antes de serem retroprojetados na matriz de imagem Isso envolve a convolução de uma “máscara” Diferentes máscaras são usadas conforme a aplicação clínica “apresentação” da imagem 59 Fonseca, P.R. - Reconstrução de imagens 3D Podem ser aplicadas técnicas de realce Podem ser recontruídas outras “visualizações” a partir de uma aquisição (considerando alguma perda de resolução) Seleção de volumes ou superfícies permite sofisticadas visualizações 3D Left, automated analysis of infused CT-brain by GE software; right, 3D polp imaging Imagem multi-slice 63 64 Imagens de CT multi-slice 65 Angiografia 66 Parte “prática” “experiência não é o que se fez, mas o que se faz com aquilo que se fez” (Aldous Huxley) 67 Fonseca, P.R. - Reconstrução de imagens 3D In Vesalius® 68 Fonseca, P.R. - Reconstrução de imagens 3D Sobre o software InVesalius é um software público para área de saúde que visa auxiliar o diagnóstico e o planejamento cirúrgico. A partir de imagens em duas dimensões (2D) obtidas através de equipamentos de tomografia computadorizada ou ressonância magnética, o programa permite criar modelos virtuais em três dimensões (3D) correspondentes às estruturas anatômicas dos pacientes em acompanhamento médico. O software tem demonstrado grande versatilidade e vem contribuindo com diversas áreas dentre as quais medicina, odontologia, veterinária, arqueologia e engenharia. 69 Fonseca, P.R. - Reconstrução de imagens 3D www.softwarepublico.gov.br 70 Fonseca, P.R. - Reconstrução de imagens 3D Principais recursos Importação de arquivos DICOM Visualização 3D Visualizacao 2D e 3D Visualizacao 2D Câmera endoscópica Editando fatias (para remoção de artefatos / ruídos) Segmentação e geração de STL para Prototipagem Rápida 71 Fonseca, P.R. - Reconstrução de imagens 3D Agradecimentos • À Comissão organizadora da Jornada • Prof. André Costa Neto • Prof.ª Susy Campos • Ao Laboratório de Biomagnetismo – IBB UNESP • Prof. José Ricardo A. Miranda • À FAPESP 72 Fonseca, P.R. - Reconstrução de imagens 3D “O futuro não é o que tememos. É o que ousamos” (Carlos Lacerda) Paulo Roberto da Fonseca Filho [email protected] 73 Fonseca, P.R. - Reconstrução de imagens 3D Referências “The Basics of MRI” by JP Hornak http://www.cis.rit.edu/htbooks/mri/ 74 Fonseca, P.R. - Reconstrução de imagens 3D Spectrum What a CT scan looks like to a radiologist http://www.stmichaelshospital.com/content/programs/me dical_imaging/ct_scan/index.asp Which CT Scanner is best? Axial v. Helical scanners Axial scanners Longer time to scan Danger in misregistration of scanner Helical scanners Quicker scan time Images for overlapping slices can be generated More complicated image reconstruction Single-slice vs. Multi-slice detectors Single-slice detectors Slow exam times Multi-slice detectors Much quicker exam times Up to 4 slices in 0.5 seconds Soon to be 8 or even 16 detectors Conclusions CT is not very exciting from a physics point of view (… didn’t you think the Saha chapter on CT was facinating?) However, it is the most popular “modern” imaging technique: available at over 30,000 world locations, including over 6,000 health care centers in the US (many with multiple CT machines) New uses of CT are constantly being developed. Recently, smaller CT setups are being used in the OR to evaluate surgeries as they progress. Better computer techniques will also enhance the value of CT studies.