COLÓIDES
QUÍMICA – FRENTE 2
1- CONCEITO.
Solução é toda e qualquer mistura homogênea, seus componentes (soluto e
solvente) não podem ser separados por decantação ou filtração, em razão de as
partículas do soluto serem muito pequenas. Já uma dispersão, mistura heterogênea,
apresenta partículas grandes o suficiente para serem separadas pelos métodos citados,
por exemplo, grãos de areia misturados à água, partículas de poeira dispersas no ar.
Existe, no entanto, um terceiro tipo de mistura, heterogênea, cujos constituintes não se
separam por gravidade (decantação) nem com o uso de filtros comuns, mas podem ser
separados por filtros com poros extremamente pequenos e por centrífugas com motores
muito potentes. Essa mistura apresenta ao menos duas fases diferentes, sendo uma delas
formada por partículas finamente divididas, com diâmetro médio entre 1 e 1000
nanometros (1nm = 10-9 m) espalhadas num meio contínuo (denominado meio de
dispersão) e é chamada COLÓIDE (do grego kólla, cola + eidos, forma). A palavra foi
introduzida pelo cientista escocês Thomas Graham, em 1861.
2- PROPRIEDADES.
As partículas do dispersante, especialmente se na fase gasosa ou liquida, estão se
chocando constantemente com as partículas do disperso. Por essa razão, as partículas do
disperso não se depositam no fundo do recipiente por gravidade (não decantam) e
acabam adquirindo um movimento de ziguezague ininterrupto. Esse movimento foi
descrito pelo botânico escocês Robert Brown, ao analisar uma suspensão de grãos de
pólen em água, razão pela qual é chamado de MOVIMENTO BROWNIANO.
Como as partículas dispersas apresentam tamanho próximo ao do comprimento
de onda da luz visível, essas dispersam fortemente a luz, permitindo, por exemplo, que
observemos gotículas de água em suspensão no ar numa manhã com nevoeiro. Tal
efeito é denominado EFEITO TYNDALL. Aliás, o efeito Tyndall permite a
diferenciação entre um colóide e uma solução, pois essa última não dispersa a luz
visível.
3- CLASSIFICAÇÃO.
De acordo com as fases dispersa e de dispersão, os colóides são classificados:
COLÓIDE
Fase dispersa Fase de dispersão
Exemplo
Aerossol líquido
líquido
gás
neblina,desodorante
Aerossol sólido
sólido
gás
poeira, fumaça
Espuma
gás
líquido
espuma de sabão
Espuma sólida
gás
sólido
isopor®, poliuretana
Emulsão
líquido
líquido
leite, manteiga
Emulsão sólida
líquido
sólido
margarina, pérola
Sol
sólido
líquido
pasta de dente, tinta
Sol sólido
sólido
sólido
plástico pigmentado
1
Os princípios relacionados com os diferentes sistemas coloidais baseiam-se em
propriedades comuns a todos: tamanho e elevada razão área/volume de partículas. Uma
vez que a área de superfície da fase dispersa é elevada devido ao pequeno tamanho das
partículas, as propriedades da interface entre as duas fases determinam o
comportamento dos diferentes sistemas coloidais. Em soluções verdadeiras de
macromoléculas ou em dispersões coloidais de partículas finas, o solvente pode ser
retido pela configuração da cadeia macromolecular ou das partículas. Quando todo o
solvente é imobilizado nesse processo, o colóide enrijece e é chamado de GEL.
A transformação da fase gel (aspecto sólido) em fase sol (aspecto líquido) pela
adição de dispergente é denominada peptização (do grego peptos, digerido), a
transformação em sentido contrário é chamada pectização ( do grego pektos, coalhado).
4- ESTABILIDADE DOS COLÓIDES.
A estabilidade dos colóides depende fundamentalmente das propriedades da fase
dispersa e suas interações com a fase de dispersão: se as partículas dispersas têm pouca
afinidade com a fase dispersante, o colóide é chamado LIOFÓBICO, se a afinidade é
grande, LIOFÍLICO. O termo “lio” refere-se ao dispersante, enquanto “fóbico” (do
grego, ter medo) e “fílico” (do grego, ter afinidade por). Os colóides liofílicos são mais
estáveis e fáceis de preparar, ao contrário dos liofóbicos. Um exemplo comum de
sistema liofílico é o sabão disperso em água.
Muitos colóides líquidos são estabilizados pela adição de SURFACTANTES (do
inglês surface active agents), moléculas que possuem uma região liofílica e uma
liofóbica (são anfifílicos).
Exemplos comuns desse tipo de substância são os sabões (sais de ácidos
carboxílicos de cadeia longa – graxos) e os detergentes (sais de ácidos sulfônicos de
cadeia longa), o mecanismo de estabilização está na formação de MICELAS. Nas
micelas normais, as moléculas do surfactante envolvem a substância hidrofóbica (óleo,
por exemplo), criando uma barreira mecânica e impedindo que as moléculas se juntem
quando há colisões entre si.
2
Nas micelas invertidas, as moléculas do surfactante envolvem a substância
hidrofílica (água, por exemplo), gerando efeito semelhante.
Graças à formação das micelas que os sabões e detergentes dispersam as
gorduras na água; a estabilidade do leite se deve à caseína e a da maionese à lecitina
presente na gema do ovo (ambas proteínas). Por outro lado, a adição de enzimas
presentes no “coalho” destroem as micelas de caseína, permitindo que as moléculas se
aglutinem, formando o queijo, após a extração do soro. Os surfactantes também têm um
papel importante na estabilização de espumas líquidas, pois suas moléculas diminuem a
tensão superficial da água. Dessa forma, a água pode distribuir-se por películas finas,
em vez de se aglomerar num volume o mais compacto possível e assim minimizar o
contato com o ar. Isso explica porque as bolhas de sabão são tão estáveis.
5- ALGUNS EXERCÍCIOS
1) (FUVEST) Azeite e vinagre, quando misturados, separam-se logo em duas camadas.
Porém, adicionando-se gema de ovo e agitando-se a mistura, obtém-se a maionese, que
é uma dispersão coloidal. Nesse caso, a gema de ovo atua como um agente
a) emulsificador.
b) hidrolisante.
c) oxidante.
d) redutor.
e) catalisador.
ALTERNATIVA “A”: A lecitina presente na gema do ovo é o surfactante, permitindo
que se forme a emulsão.
2) (ITA) Considere os sistemas apresentados a seguir:
I. Creme de leite.
II. Maionese comercial.
III. Óleo de soja.
IV. Gasolina.
V. Poliestireno expandido.
Destes, são classificados como sistemas coloidais
a) apenas I e II.
b) apenas I, II e III.
c) apenas II e V.
d) apenas I, II e V.
e) apenas III e IV.
ALTERNATIVA “D”: Poliestireno expandido é comercializado sob o nome isopor®.
3
3) (UFES) Quando se dispersam, em água, moléculas ou íons, que têm, em sua
estrutura, extremidades hidrofóbicas e hidrofílicas, a partir de uma determinada
concentração, há agregação e formação de partículas coloidais, denominadas micelas.
Tal propriedade é típica de moléculas de
a) lipídio.
b) aminoácido.
c) hidrocarboneto alifático. e) hidrogênio.
d) sabão.
ALTERNATIVA D.
4) (UNICAMP) Hoje em dia, com o rádio, o computador e o telefone celular, a
comunicação entre pessoas à distância é algo quase que "banalizado". No entanto, nem
sempre foi assim. Por exemplo, algumas tribos de índios norte americanas utilizavam
códigos com fumaça produzida pela queima de madeira para se comunicarem à
distância. A fumaça é visível devido à dispersão da luz que sobre ela incide.
a) Considerando que a fumaça seja constituída pelo conjunto de substâncias emitidas no
processo de queima da madeira, quantos "estados da matéria" ali comparecem?
Justifique.
a) Temos dois "estados da matéria", pois a fumaça é uma dispersão coloidal de fuligem
(carbono sólido) em gases liberados na combustão (CO2 , CO, H2O etc).
b) Pesar a fumaça é difícil, porém, "para se determinar a massa de fumaça formada na
queima de uma certa quantidade de madeira, basta subtrair a massa de cinzas da massa
inicial de madeira". Você concorda com a afirmação que está entre aspas? Responda
sim ou não e justifique.
b) Não. De acordo com a Lei de Lavoisier, num sistema fechado, a soma das massas
dos reagentes é igual à soma das massas dos produtos. Neste caso o sistema está aberto
e não se leva em conta a massa de oxigênio, presente no ar, que vai reagir com a
madeira.
5) (ITA) Considere os seguintes sais:
I. Al(NO3)3
II. NaCl
III. ZnCl2
IV. CaCl2
Assinale a opção que apresenta o(s) sal(is) que causa(m) a desestabilização de uma
suspensão coloidal estável de sulfeto de arsênio (As2S3) em água.
a) Nenhum dos sais relacionados.
b) Apenas o sal I.
c) Apenas os sais I e II.
d) Apenas os sais II, III e IV.
e) Todos os sais.
ALTERNATIVA “E”: O fato de as partículas do disperso possuírem a mesma carga
elétrica e, portanto, sofrerem repulsão, evita que elas formem aglomerados e sofram
precipitação. As cargas elétricas iguais mantêm o colóide estável. Se, de algum modo,
eliminarmos a carga elétrica das partículas do colóide, o que pode ser feito facilmente
4
pela adição de um eletrólito, as partículas do disperso irão se precipitar e o colóide
será destruído.
6) (SJRP – JUNDIAÍ) As partículas de um colóide hidrófobo podem ser separadas de
uma dispersão aquosa (sol) por todos os métodos abaixo exceto:
a) adição à solução de um eletrólito apropriado.
b) filtração através de papel de filtro comum.
c) ultracentrifugação.
d) coagulação.
e) diálise.
ALTERNATIVA “B”: Somente com os chamados ultrafiltros (filtros com poros de
tamanho muito reduzido) é possível separar os constituintes de um colóide. Diálise é o
processo pelo qual partículas maiores são retidas por uma membrana semipermeável,
enquanto as menores passam.
5
Download

1 COLÓIDES QUÍMICA – FRENTE 2 1