Integrais Imediatos – (a,b,c são constantes) x6 x2 x6 + 4 + 8x + C = + 2x 2 + 8x + C 6 2 2 1) 5 5 ∫ (3x + 4x + 8)dx = 3∫ x dx + 4 ∫ xdx + ∫ 8dx = 3 2) dx x −3+1 x −2 1 −3 = x dx = + C = +C = − 2 +C ∫ x3 ∫ −3 + 1 −2 2x 3) 4 4 ∫ ax dx = a ∫ x dx = a x 4 +1 1 + C = ax 5 + C 4 +1 5 4) 2a b − 2 + 3c dx = x x ∫ ∫ 2a b 1 dx + ∫ − 2 dx + ∫ 3c dx = 2a ∫ dx − b ∫ x −2 dx + 3c ∫ 1dx x x x = 2a ln x − b x −2 +1 b + 3cx + C = 2a ln x + + 3cx + C −2 + 1 x 5) ∫ (5x − 2) 235 1 1 (5x − 2) 235 +1 (5x − 2)236 235 dx = ∫ 5(5x − 2) dx = +C = +C 5 5 ( 235 + 1) 1180 u = 5x − 2 u'= 5 6) 10 ∫ (8x + 3) dx = 1 (8x + 3)11 10 8 ( 8x + 3 ) dx = +C 8∫ 88 u = 8x + 3 u'= 8 7) 3 2 6 3 ∫ (2x − 4) dx = ∫ (4x − 16 x + 16 )dx = 8) 25 ∫ (6 x − 2) dx = 9) 2 ∫ (x + 4x7 − 4x 4 + 16 x + C 7 1 (6 x − 2) 26 25 6 ( 6 x − 2 ) dx = +C 6∫ 156 1 x3 1 2 −2 ) dx = ( x + x ) dx = − +C ∫ x2 3 x 1 +1 − 1 +1 3 1 1 1 x 2 x 2 x 2 x 2 2 3 −1 10) ∫ ( x + )dx = ∫ ( x 2 + x 2 )dx = + +C = + +C = x +2 x +C 3 1 1 +1 3 x − 1 +1 2 2 2 2 ( 2 + 5x dx = ∫ ( 2 + 5x ) 2 dx = 1 11) ∫ 12) ∫t 13) ∫ (1 − x) 14) ∫ (2t 2 ) ( ) 1 1 2 5 ( 2 + 5x ) 2 dx = (2 + 5x)3 + C ∫ 5 15 2 dt = 2 ∫ t −2 dt = − + C t 2 x dx = ∫ ( x − x x ) dx = ∫ ( x + 1) 2 dt = ∫ (4t 4 + 4t 2 + 1) dt = 2 1 2 3 − x 2 ) dx = 2 3 2 5 x − x +C 3 5 4 5 4 3 t + t +t +C 5 3 15) ( ) − x2 ( −3 ) x3 − x2 − 3 x3 −2 dx = + ∫ x2 ∫ x 2 x 2 + x 2 dx = ∫ x − 1 − 3x dx = x2 x −1 x2 1 x 3 − 2x 2 + 6 = − x−3 +C = − x+3 +C = +C 2 −1 2 x 2x 16) 17) x 3 + 5x 2 − 4 4 x3 + 10x 2 + 8 dx = x + 5 − dx = +C ∫ x2 ∫ x2 2x ∫ t3 a +t 4 ( dt = ∫ t 3 a 4 + t 4 4 ) −1 dt = 2 ( 1 4t 3 a 4 + t 4 ∫ 4 ) −1 2 dt = 1 4 4 a +t +C 2 18) 2 ∫ 2 ( a 3 − x 3 )3 x 2 3 1 3 u=a −x − 1 2 2 dx = ∫ x 3 (a 3 − x 3 )3 dx = − 2 2 3 2 − 31 23 3 23 3 3 3 4 − x ( a − x ) dx = − ( a − x ) +C ∫ 2 3 8 2 3 2 1 2 −1 2 − u ' = − x3 = − x 3 3 3 19) ∫ 3ay dy = a ∫ 3 y dy = ay 20) ∫ 2 2 3 +C axdx = ∫ a xdx = a ∫ xdx = 2x ax +C 3 3 1 1 1 1 1 2 2 21) ∫ ( 2x + )dx = ∫ ( 2 x + )dx = (2x) + (2x) + C 3 2x 2 x 22) 3x ∫ 1− x 2 ( dx = 3 ∫ x 1 − x 2 ) 1 2 dx = 3 ( 1 −2x 1 − x 2 ∫ −2 ) 1 2 dx = − 3 1 − x 2 + C (a + bt )2 1 11 (a + bt )3 2 2 23) ∫ dt = ∫ (a + bt ) dt = b(a + bt ) dt = +C 2 2 2b∫ 6b 24) ( a − x )2 1 1 2 dx = −2 ∫ − ( a − x ) 2 dx = − ( a − x )3 + C ∫ 2 x 3 x u= a− x = a−x 1 2 1 −1 1 u'= − x 2 = − 2 2 x 25) ( ∫ ) x (3x − 2)dx = ∫ 3x x − 2 x dx = 6 52 4 32 x − x +C 5 3 26) 3 − 2 3 2 1 − 1 1 2 3 3 ∫ t (1 + 2t ) dt = 6 ∫ 6t (1 + 2t ) 3 dt = 2 (1 + 2t ) 3 + C u = 1 + 2t 3 2 u ' = 6t 2 27) ∫( 28) ∫ 3 a − x ) 2 dx = ∫ (a − 2 a x + x)dx = ax − ( 1 − x 2 x dx = ∫ x 1 − x 2 ) 1 3 dx = 4 1 x ax + x 2 + C 3 2 ( 1 −2x 1 − x 2 −2 ∫ ) 1 3 4 3 dx = − (1 − x 2 ) 3 + C 8 29) ∫ x ( a − x ) 2 dx = ∫ x (a − 2 a x + x)dx = ∫ (a x − 2 ax + x x )dx = = 2 32 2 5 ax − x 2 a + x 2 + C 3 5 30) x2 + 1 ∫ x 3 + 3x ( )( dx = ∫ x 2 + 1 x 3 + 3x = ( ) −1 )( 2 1 3x 2 + 3 x 3 + 3x ∫ 3 dx = ) −1 2 ( )( ) 1 1 3 x 2 + 1 x 3 + 3x − 2 dx = ∫ 3 dx = 2 3 x + 3x + C 3 u = x 3 + 3x u ' = 3x 2 + 3 31) 2 + ln x 1 1 ln 2 x dx = 2 dx + xdx = = 2 x + +C ln ln ∫ x ∫x ∫x 2 u = ln x 1 x u'= − 3 32) 2 2 2 ∫ (a + b x ) 2 x dx = 33) ∫ (2t 2 3 − 1 1 2 2 2 2 2 2b x ( a + b x ) dx = − +C 2 ∫ 2b b2 a 2 + b2 x 2 + 1) 2 dt = ∫ (4t 4 + 4t 2 + 1)dt = 4 5 4 3 t + t +t +C 5 3 1 1 a6 x a6 x 6x 34) ∫ a dx = ∫ 6a dx = +C = +C 6 6 ln a ln a6 6x 35) ∫ (e x + 1)3 e x dx = ∫ e x (e x + 1)3 dx = 1 x (e + 1)4 + C 4 u = ex + 1 u ' = ex 36) 2x ∫ 2 dx = 1 1 22 x 22 x 2x 2 2 dx = + C = +C 2∫ 2 ln 2 ln 4 ( ) 37) 1 1 a 3 x −6 x 3 x 2 −6 x 3 x 2 −6 x ∫ a ( x − 1) dx = 6 ∫ 6 ( x − 1) a dx = 6 ∫ (6 x − 6 ) a dx = 6 ln a + C u = 3x 2 − 6 x u ' = 6x −6 2 3 x 2 −6 x 38) ∫e 4x dx = 1 1 4e4 x dx = e4 x + C ∫ 4 4 39) ∫e 5 x2 xdx = 2 2 1 1 10xe5 x dx = e5 x + C ∫ 10 10 40) 2x dx = ln( x 2 + 3) + C +3 u = x2 + 3 u ' = 2x ∫x 2 41) ∫ 4x x 2 +1 dx = ( ) ( 1 8x 1 dx = ln 4x 2 + 1 + C = ln 4x 2 + 1 2 ∫ 8 4x + 1 8 ) 1 8 + C = ln 8 4x 2 + 1 + C u = 4x 2 + 1 u ' = 8x 42) x2 1 9x 2 1 dx = dx = ln(3x 3 + 4) + C 3 ∫ 3x3 + 4 ∫ 9 3x + 4 9 3 u = 3x + 4 u ' = 9x 2 43) ( ) x 1 2x 1 dx = ∫ 2 dx = ln x 2 + 4 + C = ln x 2 + 4 + C +4 2 x +4 2 2 u = x +4 ∫x 2 u ' = 2x ex 1 be x 1 44) ∫ dx = ∫ dx = ln(a + be x ) + C x x a + be b a + be b 45) x+2 ∫ x + 1 dx = ∫ x +1+1 x +1 1 1 dx = ∫ + dx = ∫ 1 + dx = x + ln( x + 1) + C x +1 x +1 x+1 x +1 46) 3 5 x+ x+4 1 x+4 1 1 5 1 ∫ 2x + 3 dx = 2 ∫ 3 dx = 2 ∫ 32 + 2 3 dx = 2 ∫ 1 + 2 3 dx = x+ x+ x+ x+ 2 2 2 2 1 5 3 x 5 2x + 3 x 5 = x + ln( x + ) + C = + ln( ) + C = + ( ln(2x + 3) − ln 2 ) + C = 2 2 2 2 4 2 2 4 x 5 = + ln(2x + 3) + C 2 4 47) e2 x 1 2e 2 x 1 dx = dx = ln(e 2 x + 1) + C 2x ∫ e2 x + 1 ∫ 2 e +1 2 48) (e x + 2) x ∫ e x + 2x dx = ln(e + 2x) + C 1 1 ex 1 1 49) ∫ 2 dx = − ∫ − 2 e x dx = − e x + C x x 3 1 1 50) ∫ (1 + t ) t dt = − ∫ −t (1 + t ) dt = − 1 + + C 3 t −1 2 −2 −2 −1 2 51) ∫ 1+ x 1 dx = ∫ 1+ x x x ( u = 1+ x = 1+ x u'= 1 ) 1 2 dx = 2 ∫ 1 2 x ( 1+ x ) 1 2 3 4 dx = (1 + x ) 2 + C 3 2 1 − 12 1 x = 2 2 x − x2 2 1 1 2 −2xe − x dx = − e − x + C ∫ 2 2 52) ∫ xe 53) ∫ x (e 54) ∫ a e dx = ∫ ( ae ) 55) ∫ sen5x dx = 5 ∫ 5sen5x dx = − 5 cos 5x + C x2 dx = − + 2) dx = ∫ ( xe x + 2x) dx = 2 x x 1 2 1 1 2 2xe x dx + ∫ 2x dx = e x + x 2 + C ∫ 2 2 ( ae ) + C = a x e x + C = a x e x + C ln ( ae ) ln e + ln a 1 + ln a x x dx = 1 56) ∫ x sen ( 3x ) dx = 12 ∫ 12x sen ( 3x ) dx = 57) ∫ sen(2x + 1) dx = 2 ∫ 2sen(2x + 1) dx = − 2 cos(2x + 1) + C 3 1 4 3 4 1 − ( ) 1 cos 3x 4 + C 12 1 58) ∫ sen x 1 dx = 2 ∫ sen x dx = − 2 cos x + C x 2 x u= x=x u'= 1 2 1 − 12 1 x = 2 2 x 1 1 59) ∫ cos ( 8x ) dx = 8 ∫ 8 cos ( 8x ) dx = 8 sen ( 8x ) + C 60) ∫ cos(2x + 4) dx = 2 ∫ 2 cos(2x + 4) dx = 2 sen(2x + 4) + C 1 1 61) ∫ cos x 1 cos xdx = 2sen x + C dx = 2 ∫ x 2 x u= x=x u'= 62) 1 2 1 − 12 1 x = 2 2 x 1 ∫ cos(3x − 1) dx = 3 ∫ 3 cos(3x − 1) dx = 1 sen(3x − 1) + C 3 63) ∫ tg (5x 2 ( ) 1 1 1 10x tg (5x 2 ) dx = − ln cos(5x 2 ) + C = ln cos −1 (5x 2 ) + C = ∫ 10 10 10 1 1 1 = ln + C = ln sec(5x 2 ) + C 2 10 cos(5x ) 10 ) x dx = 1 1 64) ∫ cot g (5x + 2) dx = 5 ∫ 5 cot g (5x + 2) dx = 5 ln sen(5x + 2) + C 65) ∫ cot g (5x) dx = 5 ∫ 5 cot g (5x) dx = 1 1 ln sen(5x) + C 5 senx + cos x senx cos x dx = ∫ + dx = ∫ ( tgx + 1 ) dx = x + ln sec x + C cos x cos x cos x 66) ∫ 67) ∫ sec x.senx = ∫ 68) ∫ sec ( 2x ) dx dx dx 1 senx cos x =∫ cos x dx = ∫ cot gx dx = ln senx + C senx 1 1 2 sec ( 2x ) dx = ln sec ( 2x ) + tg ( 2x ) + C ∫ 2 2 = 69) ∫ sec x 1 dx = 2 ∫ sec x dx = 2 ln sec x + tg x + C x 2 x u= x=x u'= 1 2 1 − 12 1 x = 2 2 x 1 1 3 cos sec(3x) dx = ln cos sec 3x − cot g3x + C ∫ 3 3 70) ∫ cos sec(3x) dx = 71) ∫ sec ( 4x ) dx 1 1 4 sec2 ( 4x ) dx = tg ( 4x ) + C ∫ 4 4 2 = 72) tg 2 ( x ) 1 2 2 1 sen 2 ( x ) 1 2 2 2 ∫ sen ( x ) dx = ∫ sen ( x ) tg ( x ) dx = ∫ sen ( x ) cos ( x ) dx = ∫ cos ( x ) dx = = ∫ sec ( x ) dx = tg ( x ) + C 2 2 73) ∫ sec ( 2ax ) dx 74) ∫ cos ( 3x ) 2 dx 2 = = 1 1 2a sec 2 ( 2ax ) dx = tg ( 2ax ) + C ∫ 2a 2a 1 1 3 sec2 ( 3x ) dx = tg ( 3x ) + C ∫ 3 3 75) ( 1 − cos x ) dx 1 − cos x 1 − cos x dx = ∫ dx = 2 x sen 2 x ∫ 1 + cos x = ∫ (1 + cos x )(1 − cos x ) dx = ∫ 1 − cos ( ) 1 cos x − dx = ∫ cos sec 2 ( x ) − cot g ( x ) cos sec ( x ) dx = 2 sen x sen 2 x = − cot g ( x ) + cos sec ( x ) + C =∫ 76) dx 1 1 ∫ sen ( 5x ) = ∫ cos sec ( 5x ) dx = 5 ∫ 5 cos sec ( 5x ) dx = − 5 cot g ( 5x ) + C 77) ∫ sec(2x).tg ( 2x ) dx 2 2 2 = 1 1 2 sec(2x).tg ( 2x ) dx = sec ( 2x ) + C ∫ 2 2 78) ( ) 2 2 2 ∫ ( tg ( 2x ) + sec ( 2x ) ) dx = ∫ tg ( 2x ) + 2tg ( 2x ) sec ( 2x ) + sec ( 2x ) dx = ( ) = ∫ −1 + sec2 ( 2x ) + 2tg ( 2x ) sec ( 2x ) + sec2 ( 2x ) dx = 2 sen ( 2x ) sen ( 2x ) 1 2 dx = = ∫ sec ( 2x ) − 1 + 2 dx = ∫ sec ( 2x ) − 1 + 2 2 cos 2x cos 2x ( ) ( ) cos ( 2x ) ( ) = ∫ sec2 ( 2x ) − 1 + 2sen ( 2x ) cos −2 ( 2x ) dx = ∫ sec2 ( 2x ) dx − ∫ 1dx + ∫ 2sen ( 2x ) cos −2 ( 2 x ) dx = Cálculos auxiliares (cos−1 ( 2x )) = −1cos−2 ( 2x ) (cos ( 2x ))' = −1cos−2 ( 2x ) ( −2sen ( 2x )) = ' = cos −2 ( 2x ) ( 2sen ( 2x ) ) = 2sen ( 2x ) cos −2 ( 2x ) logo, ∫ sec 2 2x dx − 1dx + 2sen 2x cos −2 2x dx =tg 2x − x + cos −1 2x + C = ( ) ( ) ( ) ( ) ( ) ∫ ∫ = tg ( 2x ) − x + sec ( 2x ) + C 79) ∫ (tg ( 2x ) − 1) 2 dx = ∫ (tg 2 ( 2x ) − 2tg ( 2x ) + 1) dx = ∫ (sec 2 ( 2x ) − 1 − 2tg ( 2x ) + 1) dx = = 1 1 2 sec2 ( 2x ) dx − ∫ 2tg ( 2x ) dx = tg ( 2x ) + ln cos ( 2x ) + C ∫ 2 2 sen ( 4x ) 2sen ( 2x ) cos ( 2x ) 80) ∫ cos ( 2x ) dx = ∫ 81) ∫ cos 82) ∫ cos sec(2x) cot g ( 2x ) dx 83) ∫ sen x cos x dx = ∫ cos x sen x dx cos ( 2x ) dx = ∫ 2sen ( 2x ) dx = − cos ( 2x ) + C senx senx 1 dx = ∫ dx = ∫ tgx sec x dx = sec x + C 2 x cos x cos x 2 = 1 1 2 cos sec(2x) cot g ( 2x ) dx = − cos sec ( 2x ) + C ∫ 2 2 2 = 1 sen 3 x + C 3 84) ∫ (1 + cos x ) 1 1 + cos x dx = ∫ dx = ∫ dx = 1 − cos x (1 − cos x )(1 + cos x ) 1 − cos 2 x =∫ 1 + cos x 1 cos x dx = ∫ dx + ∫ dx = ∫ cos sec2 xdx + ∫ cos xsen−2 xdx = 2 2 2 sen x sen x sen x = ∫ cos sec 2 xdx + ∫ cos xsen −2 xdx = − cot gx − 1 + C = − cot gx − cos sec x + C cos x 85) ∫ 1 1 − senx 1 − senx 1 − senx dx = ∫ dx = ∫ dx = ∫ dx = 1 + senx ( 1 + senx )( 1 − senx ) 1 − sen2 x cos2 x 1 senx 1 senx = ∫ − dx = ∫ dx − ∫ dx = 2 2 2 2 cos x cos x cos x cos x 1 senx = ∫ sec2 xdx − ∫ dx = ∫ sec2 xdx − ∫ sec x tgxdx = tgx − sec x + C cos x cos x 86) ∫ 1 − cos x .senx dx = ∫ senx ( 1 − cos x ) 2 dx = 1 3 2 (1 − cos x) 2 + C 3 u = 1 − cos x u ' = senx 87) ( ) ∫ sen ( x ) dx = ∫ cot g ( x ) cos sec ( x ) dx = cos x 3 2 1 − cos sec2 ( x ) + C 2 88) ∫e 3 cos( 2 x ) sen ( 2x ) dx = u = 3 cos ( 2x ) 1 1 3 cos 2 x 3 cos 2 x 6 sen ( 2x ) e ( ) dx = − e ( ) + C ∫ 6 6 u ' = −6 sen ( 2x ) 89) ∫e senx cos x dx = ∫ cos x e senx dx = e senx + C u = senx u ' = cos x 90) ∫e tgx sec 2 x dx = ∫ sec 2 x etgx dx = etgx + C u = tgx u ' = sec 2 x 91) ∫e cos( 2 x ) sen ( 2x ) dx = − u = cos ( 2x ) 1 1 −2sen ( 2x ) ecos( 2 x ) dx = − ecos( 2 x ) + C ∫ 2 2 u ' = −2sen ( 2x ) 92) senx ∫ 1 − cos x dx = ln 1 − cos x + C u = 1 − cos x u ' = senx 93) ∫ sec ( 2x ) tg ( 2x ) 3 sec ( 2x ) − a u = 3 sec ( 2x ) − a dx = u ' = 6 sec ( 2x ) tg ( 2x ) 1 6 sec ( 2x ) tg ( 2x ) 1 dx = ln 3 sec 2x − a + C ∫ 6 3 sec ( 2x ) − a 6 94) sec ( x ) tg ( x ) ∫ a + b sec ( x ) dx = u = a + b sec ( x ) 1 b sec ( x ) tg ( x ) 1 dx = ln a + b sec ( x ) + C ∫ b a + b sec ( x ) b u ' = b sec ( x ) tg ( x ) 95) sec2 x ∫ 1 + tgx dx = ln 1 + tgx + C u = 1 + tgx u ' = sec2 x 96) ∫ cos ( ax ) b + sen ( ax ) dx = 1 2 a cos ( ax ) b + sen ( ax ) dx = b + senax + C ∫ a a u = b + sen ( ax ) u ' = a cos ( ax ) 97) sec2 x ∫ 1 + tg 2 x dx = arctg (tgx) + C 98) (1 + x )3 1 (1 + x )4 3 dx = 2 ( 1 + x ) dx = +C ∫ x ∫2 x 2 u= x=x u'= 1 2 1 − 12 1 x = 2 2 x 99) ∫ (t 2 t −2 1 dt = ∫ 2 ( t − 2 ) (t 2 − 4t + 3) −3 dt = 3 − 4t + 3) 2 1 −1 = ∫ ( 4t − 4 ) (t 2 − 4t + 3)−3 dt = 2 +C 2 4 (t − 4t + 3) 2 u = t 2 − 4t + 3 u ' = 2t − 4 100) xdx 3 x2 3 = arctg +C ∫ x4 + 3 6 3 101) ∫ 9x dx 1 3x − 4 = ln +C 24 3x + 4 − 16 2