Revista ISSN 1806-1877 nº 63 - Junho de 2011
Artigos brasileiros
da Bienal Paris 2010
e do XI EDAO
Calendário de eventos
2011
Junho
Setembro
20 – São Paulo – SP
Workshop Internacional
sobre Cabos Elétricos
Comitê de Estudo B1
1 e 2 - Brasília – DF
Curso de Linhas de Transmissão
em Corrente Contínua
Comitê de Estudo B2
Outubro
26 a 28 – rio de janeiro – RJ
curso sobre dinâmica de
sistemas de potência
Comitê de Estudo C2
23 a 26 – Florianópolis - SC
XXI SNPTEE - Seminário Nacional de
Produção e Transmissão de Energia
Elétrica
Julho
25 a 27 - Belém - PA
II SIGAMT – Seminário Internacional de
Gerenciamento de Ativos, Manutenção
da Transmissão e Desempenho do Sistema
Elétrico
Comitê de Estudo C4
Agosto
3 e 4 – Rio de Janeiro - RJ
Workshop – Superação de Disjuntores
por Tensão de restabelecimento
Transitória - TRT
Comitê de Estudo A3
14 a 17 – Curitiba - PR
IX SIMPASE - Simpósio de Automação de
Sistemas Elétricos
Para mais informações
[email protected] • Tel.: (21) 2556-5929
A biblioteca on-line do CIGRÉ está disponível em www.e-cigre.org
São mais de 6.000 títulos de publicações do CIGRÉ, incluindo: ELECTRA,
Brochuras Técnicas, Sessões Técnicas e Simpósios.
Os sócios do CIGRÉ-Brasil têm acesso gratuito a 2.000 títulos para
download. E descontos nas demais publicações.
EletroEvolução - Sistemas de potência
ISSN 1806-1877 - nº 63 - Junho de 2011
Revista ISSN 1806-1877 nº 63 - Junho de 2011
sumário
Artigos brasileiros
da Bienal Paris 2010
e do XI EDAO
Conselho editorial:
Saulo José Nascimento Cisneiros (PR) – CIGRÉ/ONS
João Guedes de Campos Barros – CEPEL
Maria Alzira Noli Silveira – EPE
Paulo Gomes – ONS
José Sidnei Colombo Martini – USP/POLI
José Wenderley Marangon Lima – UNIFEI
Hélio Moreira Valgas – ENERGY CHOICE
João Batista Guimarães Ferreira da Silva – DAMP ELECTRIC
Paulo Cesar Fernandez – CEs A/ELETROBRÁS
Ruy Carlos Ramos de Menezes – CEs B/UFRGS
Luiz Augusto Barroso – CEs C/PSR
Orsino Oliveira Filho – CEs D/CEPEL
Luiz Carlos Leal Cherchiglia (ex-PR) – CONSULTOR
projeto gráfico e edição:
Flávia Guimarães
impressão:
Rona Editora
tiragem:
1.000 exemplares
eletroevolução – sistemas de potência
é publicada pelo Comitê Nacional Brasileiro de Produção e
Transmissão de Energia Elétrica (CIGRÉ-Brasil)
diretoria cigré-brasil:
Antônio Varejão de Godoy
Diretor Presidente
Josias Matos de Araújo
Diretor 1º Vice-presidente
Saulo José Nascimento Cisneiros
Diretor 2º Vice-presidente
Antonio Simões Pires
Diretor Financeiro
Sérgio do Espírito Santo
Diretor Administrativo
endereço:
CIGRÉ-Brasil
Praia do Flamengo, 66 – Bloco B – Sala 408 – Flamengo
Rio de Janeiro – RJ – CEP 22210-903 – Tel: (21) 2556.5929
2
4
6
14
Calendário de Eventos
editorial
notícias
bienal paris 2010
System for Integration of Protection
and Control Devices
18
bienal paris 2010
28
bienal paris 2010
36
bienal paris 2010
43
bienal paris 2010
49
bienal paris 2010
55
bienal paris 2010
60
XI EDAO
67
XI EDAO
75
Lista dos Comitês de Estudo
Representantes Brasileiros
[email protected]
On Uncertainties of Reliability Indices
Large Scale iIntegration of Renewable Sources
in the Brazilian Bulk Power System
Brazilian Power System: Criteria, Operating
Standard Metrics and Performance Indicators
Analysis of Socio-environmental Costs in the
Operational Phase of Hydropower Projects in Brazil
Procedures to Evaluate Socio-Environmental Costs
during the Planning Phase of Transmission Systems
A Telecommunications Mobile Unit for
Transmission Lines Emergency Scenarios
Sistema de Diagnóstico de Perturbações
em Tempo Real
Desenvolvimento de Método para
Aperfeiçoamento de Operadores através da Imersão
em Ambiente de Simulação
editorial
COMPROMISSO COM O CIGRÉ
de várias exitosas gestões do Cigré Brasil,
que transformaram o Comitê Brasileiro no
maior e mais importante comitê nacional
de todo o Cigré.
A experiência adquirida ao participar
das duas últimas gestões da Entidade,
a liderança e a qualificação técnica dos
meus colegas de Diretoria reconhecida no
Brasil e no mundo, certamente solidifica
nossa crença de que os desafios serão
superados ao longo dos próximos quatro
anos.
A aquisição da sede própria e a
Dia 28 de abril, em Assembléia Geral
do Cigré-Brasil, foi eleita a atual Diretoria conseguinte instalação do Cigré nesse
para o mandato de quatro anos. Esta prédio, a organização do arcabouço
nossa Instituição tem por missão produzir normativo que faz a rotina da Entidade
e compartilhar o conhecimento nos operar com segurança são metas já
segmentos de transmissão e geração de cumpridas e permitirão que esta nova
energia elétrica do Setor Elétrico Brasileiro. Gestão percorra cinco novas diretrizes:
A missão de presidir o Cigré Brasil
constitui-se em um desafio extremamente
estimulante. Há três grandes aspectos
que o tornam ainda maior: (a) o ambiente
do Setor que, mesmo sendo competitivo,
tem demandado a produção cada vez
mais intensa de novos conhecimentos
que viabilizem o suporte de energia ao
crescimento econômico do país; (b) a
necessidade de realmente integrar a
cultura, a maturidade e o conhecimento
de duas diferentes gerações de
profissionais, os antigos, de “cabelos prata”
e os novos, verdadeiros“ artesões das
redes sociais” e, finalmente, (c) a sucessão
4
ELETROEVOLUÇÃO JUNHO 2011
1. Elaborar o Planejamento Estratégico
para o período 2011-2015.
2. Dar continuidade ao trabalho de
profissionalização da GESTÃO do CIGRÉ
– Brasil, ampliando e diversificando a
captação de recursos.
3. Programar e estimular o uso da
TECNOLOGIA DIGITAL na GESTÃO
ADMINISTRATIVA e TÉCNICA do CIGRÉ–
Brasil.
4. Continuar a aproximar o Cigré-Brasil
das principais organizações, entidades
e empresas do Setor Elétrico, das
Universidades e da Sociedade em
geral.
editorial
5. Dar continuidade à ampliação das para a produção do conhecimento
atividades técnicas e científicas do essencial ao Setor Elétrico Brasileiro.
Cigré-Brasil no Brasil e no mundo.
Finalmente, reafirmamos nossa
Para percorrer os caminhos que certeza de que nossos objetivos serão
conduzam à implementação destas atingidos, pois não representam o sonho
cinco diretrizes será necessário controlar do Presidente, mas de todos aqueles
e melhorar a rotina do dia a dia, através que fazem o Cigré Brasil, sobretudo dos
da avaliação periódica dos indicadores Comitês de Estudo, dos Conselhos de
de desempenho do Comitê Técnico e Administração e Fiscal, e da Diretoria,
dos indicadores financeiros da Entidade. onde todos, por princípio, acreditam
Além do que, será fundamental criar e praticam a construção coletiva do
indicadores de gestão administrativa conhecimento!
e da gestão do próprio Cigré, que
mensurem os resultados e, não apenas,
Antonio Varejao de Godoy
o esforço da gestão. Nosso objetivo será
Presidente
desenvolver a Gestão que agora se inicia
buscando uma aproximação, cada vez
maior, com os princípios de gestão da
FNQ (Fundação Nacional da Qualidade),
baseado no Modelo de Excelência na
Gestão (MEG) e com a consciência e a
experiência de que sem medir, não se
gerencia.
Além da busca constante da
melhoria da rotina, a estratégia
desta gestão estará suportada na
estruturação de uma visão para o Cigré
sustentável, próximo do Setor Elétrico
e da Sociedade, fundamental para
alavancar o crescimento do Setor e do
País. Nosso sonho é trazer para o Cigré,
na comemoração dos seus 40 anos de
existência, as linhas futuras de uma
Entidade sustentável e indispensável
ELETROEVOLUÇÃO JUNHO 2011
5
notícias
Comitê de Estudo A3
A Reunião anual de 2011 do SC A3 será realizada em Viena, Áustria,
atendendo a convite formal feito pelo Comitê Nacional da Áustria, junto com
um Colóquio Técnico e um Tutorial, na primeira semana de setembro de 2011.
Estão programadas também reuniões de Working Groups do SC A3. Foi definida a
participação de 2 representantes do CE A3 (Jorge Amon e Paulo Fernandez) como
membros na Comissão Organizadora dos eventos associados à reunião anual de
2011 do SC A3, e também na comissão avaliadora dos resumos de artigos a serem
apresentados no Colóquio Técnico. O Colóquio Técnico tem os seguintes temas
preferenciais: HV equipment for new network conditions, Life-management of HV
equipment e Sustainable technologies, impact on/of environment.
O CE A3 do Cigré Brasil teve os seguintes artigos aprovados para este
evento: Series Capacitor - Brazilian experience with series compensation of
transmission lines (A. C. Carvalho, H. Pessoa Oliveira, A. D’Ajuz, P. Guimarães
Peixoto); Determination of requirements for short circuit currents with delayed
zeros through digital computer simulations using the ATP program (J. Amon. F.,
P. C. Fernandez, R. A. A.Gonçalves); Brazilian successful experience in the Usage of
Current Limiting Reactors for Short Circuit Limitation (J. Amom F., P. C. Fernandez, E.
H. Rose, A. D´Ajuz, A. Castanheira); On-line Insulation Diagnostics for Surge Arresters
By Partial Discharge Measurement (A. Tomaz, H. Amorim, A. Levy, J. A. Rodrigues, T.
Baptista) e Overstress - Criteria for tracking transmission equipment overstress (A.
C. Carvalho, R. Tenorio, M. Waldron, M. Escoto, N. Lemaitre, S. Moroni).
Comitê de Estudo C5
Está em elaboração o primeiro livro editado pelo Cigré-Brasil, titulado “Mercados,
Economia e Regulação do Setor de Energia”. O livro é o resultado de contribuições
realizadas pelos membros do CE C5 e terá 14 capítulos cobrindo temas da regulação,
economia e mercados de energia elétrica. A previsão de lançamento é para o inicio
do segundo semestre de 2011.
O CE C5 realizou em 1o de Abril sua 1a reunião de trabalho de 2011, onde foram
discutidas a criação de novos grupos de trabalho e a realização de Workshop ainda
em 2011. A 2a reunião de trabalho ainda será agendada e ocorrerá no final de 2011.
Durante os dias 9 e 10 novembro 2011, o SC C5 realizará um Colloquium sobre
mercados e regulação em Sydney, Austrália, onde também ocorrerão reuniões dos
grupos de trabalho e a reunião anual do SC.
6
ELETROEVOLUÇÃO JUNHO 2011
notícias
Comitê de Estudos B4
Elos de Corrente Contínua e Eletrônica de Potência –
promove Workshop sobre Desempenho e Requisitos de
Projetos de Elos de Corrente Contínua
Nos dias 22 e 23 de março de 2011 foi realizado
no Centro de Convenções da Bolsa do Rio, localizado
no centro da cidade do Rio de Janeiro, o Workshop
sobre Desempenho e Requisitos de Projetos de Elos de
Corrente Contínua. Este encontro, realizado pelo CE B4,
recebeu o patrocínio da ABB, Alstom Grid e Siemens, e
contou com o apoio da Eletrobras Furnas.
Com a proximidade do leilão dos corredores de
transmissão associados aos novos projetos de geração
remota na região Amazônica, em que a tecnologia
de transmissão em HVDC se apresenta como a mais
econômica e adequada, o CE B4 julgou que seria oportuno
promover uma discussão mais profunda sobre esse tema,
aproveitando-se a experiência operativa do elo HVDC de
Itaipu ao longo de quase três décadas de operação bemsucedida, e também da experiência mais recente adquirida
no projeto dos elos em HVDC do Projeto do Rio Madeira.
Neste contexto, o presente workshop se propôs a
compartilhar experiências, através de palestras técnicas
e mesas redondas. Foram discutidos diversos tópicos,
entre os quais critérios e metodologias de análise no
planejamento e operação, marcos regulatórios envolvidos
com HVDC, confiabilidade, disponibilidade e desempenho
receber a adesão de diversos participantes de outros
de elos HVDC inseridos no sistema interligado, contribuindo
países latino-americanos, e mesmo de países europeus.
para a disseminação de conhecimentos e a utilização de
experiências bem sucedidas em projetos futuros.
Originalmente o evento seria realizado no auditório de
Furnas (Botafogo, Rio de Janeiro), mas por motivo de força
participantes,
maior nas vésperas do evento, sua realização foi transferida
representando 46 diferentes empresas ou instituições.
para o Centro de Convenções da Bolsa do Rio, que dispunha
Esta diversidade de entidades garantiu um rico debate
de auditório igualmente confortável. Esse imprevisto de
entre os principais agentes envolvidos em transmissão
última hora permitiu que todos os inscritos participassem
em HVDC. Em princípio este seria um evento dirigido
do evento, mesmo aqueles que estavam em lista de espera,
ao público brasileiro. No entanto, foi uma grata surpresa
face à menor capacidade do auditório de Furnas.
Foram
inscritos
cerca
de
210
ELETROEVOLUÇÃO JUNHO 2011
7
notícias
demais, que atuam no Brasil, foram: Antônio Guarini
(ONS), Antonio Ricardo Carvalho (Cepel), Benjamin
Bijarano (IEMadeira), Cesar Ribeiro Zani (Furnas), Dalton
Brasil (ONS), Dourival Carvalho Jr (EPE), Fernando Cattan
Jusan (Furnas), Gabriel Doyle (Aneel), João Barros
(Cepel), John Graham (ABB), José Jardini (USP/J2), Luiz
Felipe Willcox (Cepel), Manfredo Lima (Chesf ), Márcio
Szechtman (Dual), Mario Lemes (Siemens), Nilo José
de Macedo (Furnas), Paulo Gomes (ONS), Paulo César
Esmeraldo (EPE), Sérgio do Espírito Santo (Furnas).
O workshop foi estruturado em 4 blocos distribuídos ao
longo dos dois dias do evento. O primeiro consistiu de um
bloco introdutório com uma visão panorâmica da aplicação
no Brasil e no mundo, na área do planejamento e operação,
além de temas regulatórios envolvendo o HVDC.
O
segundo bloco cobriu assuntos relativos a confiabilidade e
disponibilidade de instalações em HVDC. No terceiro foram
discutidas questões associadas a filtros CA e CC, flutuações
de tensão e compensação reativa. Por último percorreu-se
os tópicos ligados a desempenho e interação de elos HVDC
com os sistemas interligados. Ao final de cada bloco, eram
realizadas mesas-redondas sobre o respectivo tema, o que
permitiu se realizar frutíferas discussões com a expressiva
O evento foi aberto pelo Coordenador do CE B4, Sérgio
do Espirito Santo (Furnas), juntamente com o Secretário
do CE B4, Wo Wei Ping (Cepel), e, representando o CigréBrasil, Paulo César Esmeraldo (EPE).
Foram realizadas 20 sessões técnicas, entre palestras
e mesas redondas, divididas em 4 blocos, em que
participaram 20 especialistas brasileiros e 5 estrangeiros.
Estavam reunidos os mais destacados profissionais
atuantes na área do HVDC no âmbito mundial como
palestrantes e debatedores, dentre os quais vieram do
exterior: André Canelhas (Alstom Grid), Dag Soerangr
(Siemens), Ji Xiaotong (SGCC-China), Nigel Shore (ABB),
Song Shengli (SGCC-China), Victor Lescale (ABB). Os
8
ELETROEVOLUÇÃO JUNHO 2011
notícias
participação dos profissionais na platéia.
Ao final do primeiro dia, os participantes puderam se
reunir no jantar de confraternização, realizado no restaurante
Porcão Rio’s (localizado no Flamengo), que contou com cerca
de 160 presentes, estendendo assim a oportunidade de
travar maiores contatos profissionais e pessoais.
No último dia foram sorteados diversos brindes
para os participantes presentes: 2 netbooks LG, 5 livros
da Alstom Grid “HVDC – Connecting to the future”
(oferecimento da Alstom Grid), 2 livros do Jos Arrillaga
(“Flexible Power Transmission: The HVDC Options”) e
5 exemplares da Brochura Técnica 001 do Cigré-Brasil
(“Interligações HVDC por Conversores com Capacitores
de Comutação (CCC) - GT B4-34”). Aliás, este último foi
a primeira brochura produzida pelo Cigré-Brasil, e por
ora a única impressa, resultado de um longo trabalho
produzido pelo GT coordenado pelo João Barros (Cepel).
Pelos relatos dos participantes ao final do evento,
juntamente com as opiniões manifestadas nas Fichas de
Avaliação, o evento atingiu seu objetivo ao disseminar
o conhecimento associado com a tecnologia do HVDC,
atendendo assim as expectativas dos participantes.
Neste workshop em particular desejou-se buscar a
experiência nos projetos anteriores e atuais (Itaipu e
Madeira), para melhorias em futuros empreendimentos
em HVDC. O CE B4 está convicto de que foi dado mais
um passo para um entendimento mais profundo do
HVDC em geral, e a comunidade envolvida está mais
bem preparada para uma possível transmissão HVDC
associada a usina de Belo Monte em especial.
Foram retornadas 71 Fichas de Avaliação, com média
geral de 4,3 (máximo de 5).
As apresentações foram disponibilizadas na internet
imediatamente após o evento, e posteriormente, serão
novamente distribuídas num DVD, juntamente com os
vídeos de todas as apresentações técnicas do evento.
Para divulgação, foi criado o website para o evento
- http://www.cigre.org.br/hvdc - através do qual
as inscrições foram realizadas, e onde estão postadas
notícias do mesmo, assim como os registros fotográficos.
ELETROEVOLUÇÃO JUNHO 2011
9
notícias
Comitê Técnico do Cigré realiza Excelente Reunião no Brasil
No período de 28 de março a 1º de abril de 2011
o CIGRÉ-Brasil com muito orgulho e satisfação foi
anfitrião da reunião anual do Comitê Técnico do CIGRÉ.
O Comitê Técnico do CIGRÉ é composto pelos 16
Coordenadores dos Comitês de Estudo internacionais
do CIGRÉ, pelo seu Coordenador o engenheiro
Klaus Fröhlich, por representantes do Conselho de
Administração, pelo atual Secretário Geral engenheiro
François Meslier e pelo Secretário Geral anterior Jean
Kowal.
A reunião do Comitê Técnico é de grande
importância para a nossa Instituição, pois é nela que
se realiza a Coordenação dos trabalhos dos Comitês
de Estudo, definindo estratégias e metas, bem como
aperfeiçoando a geração e o compartilhamento do
conhecimento, pilar básico e maior razão da existência
do CIGRÉ.
A reunião foi realizada no hotel Marina na cidade
do Rio de Janeiro e contou com 23 participantes. No
10
ELETROEVOLUÇÃO JUNHO 2011
dia 28 de março foram realizadas visitas técnicas a
Usina de Itaipu e a subestação de Foz do Iguaçu de
Furnas e, no dia 1º de abril, visitas a sede do CIGRÉ-Brasil
a aos laboratórios do Cepel na ilha do Fundão.
Adicionalmente o CIGRÉ-Brasil ofereceu um
jantar de confraternização no dia 30 de março e um
jantar seguido de show folclórico no dia 31 de março,
oportunidades essas que encantaram os visitantes com
a tradicional hospitalidade e cordialidade brasileiras.
Durante o coquetel de boas vindas realizado no dia
29 de março o CIGRÉ-Brasil, por meio de seu Presidente
o engenheiro José Henrique Machado Fernandes,
entregou ao secretário Geral e ao Coordenador do
Comitê Técnico, placas de agradecimento a essa visita
tão especial.
A visita dos membros do Comitê Técnico a sede
do CIGRÉ-Brasil e ao Cepel contou com a honrosa
participação do engenheiro André Merlin Presidente
do CIGRÉ, o qual foi também homenageado com uma
notícias
placa em agradecimento a sua visita ao Brasil e ao seu
importante apoio às iniciativas do Comitê Nacional
Brasileiro.
Por meio dessa visita os participantes puderam
conhecer o nosso escritório central, o nosso quadro
de funcionárias e as inúmeras atividades por nós
desenvolvidas.
Sem dúvida os ilustres visitantes ficaram bem
impressionados e bastante satisfeitos em melhor
conhecerem o trabalho desenvolvido pelo CIGRÉ-
Brasil, tendo manifestado em diversas oportunidades
as respectivas satisfações e reconhecimentos.
Por fim a Diretoria do CIGRÉ-Brasil agradece ao
grande apoio recebido dos associados Erli Ferreira
Figueiredo e Marcio Szechtman, membros do Comitê
Organizador da reunião do Comitê Técnico, as
empresas Itaipu, Furnas e Cepel, pelas excelentes visitas
técnicas proporcionadas, bem como as funcionárias da
secretaria Flávia e Natasha pelo profissionalismo e pela
qualidade do trabalho desenvolvido.
José Antônio Jardini é
o novo sócio Honorário do Cigré-Brasil
No dia 28 de abril passado, no Rio de Janeiro,
realizou-se o jantar em homenagem ao novo
Sócio Honorário do CIGRÉ-Brasil, o engenheiro e
Professor José Antonio Jardini.
Durante o jantar, que contou com a presença
da Diretoria Executiva, de membros do Conselho
de Administração e de Sócios Honorários do
CIGRÉ-Brasil, o nosso Presidente José Henrique
Machado Fernandes, manifestou sua satisfação
pela escolha do professor Jardini e aproveitou a
oportunidade para agradecer, em nome do CIGRÉBrasil, os relevantes serviços prestados por ele em
favor de nossa Entidade.
Na homenagem, o Professor Jardini foi
agraciado com o título de Sócio Honorário
recebendo uma placa comemorativa com os
dizeres:
“O CIGRÉ-Brasil, em reconhecimento aos
relevantes serviços prestados pelo engenheiro
JOSÉ ANTONIO JARDINI em prol da entidade e do
desenvolvimento da ciência, outorga-lhe o título
de SÓCIO HONORÁRIO”.
Em seguida o homenageado proferiu um
pequeno discurso sobre a sua trajetória de
participação no CIGRÉ, ao longo de sua vida,
ressaltando com grande orgulho e satisfação
a importância de nossa Entidade para o seu
desenvolvimento e crescimento profissional,
como também pessoal.
Adicionalmente o engenheiro e Professor
Jardini ressaltou que “É uma grande satisfação
participar de um grupo de pessoas que tem por
objetivo uma sempre melhor engenharia. O CIGRÉ
nos dá esta oportunidade. Tem sido e continuará a
ser uma grande honra trabalhar com aqueles que
movimentam esta maquina”.
ELETROEVOLUÇÃO JUNHO 2011
11
notícias
DIRETORIA DO CIGRÉ-BRASIL DO PERÍODO 2007/2001
ENCERRA MANDATO E NOVA DIRETORIA É ELEITA
No dia 29 de abril de 2011 foi realizada a 36ª Assembléia Geral Ordinária do CIGRÉ-Brasil. Essa
Assembléia marcou o encerramento do mandato da Diretoria que conduziu o CIGRÉ-Brasil no período
de março de 2007 a abril de 2011.
Nessa Assembléia ocorreu também a eleição da Diretoria para o período de maio de 2011 a abril de
2015, composta pelos seguintes engenheiros:
• Presidente: Antonio Varejão de Godoy
• 1º Vice-Presidente: Josias Matos de Araújo
• 2º Vice-Presidente: Saulo José Nascimento Cisneiros
• Diretor Financeiro: Antônio Simões Pires
• Diretor Administrativo: Sérgio do Espírito Santo
Após o encerramento da Assembléia Geral ocorreu a cerimônia de inclusão da foto do Presidente
José Henrique Machado Fernandes na Galeria dos Presidentes.
Adicionalmente houve a inauguração da Galeria das Diretorias, como uma justa homenagem
àqueles que, de forma voluntária, participaram da Diretoria do período 2007 a 2011, e proporcionaram
uma grande contribuição para a disseminação do ideal do CIGRÉ de geração e compartilhamento do
conhecimento no campo da eletricidade, bem como para o engrandecimento do CIGRÉ-Brasil.
12
ELETROEVOLUÇÃO JUNHO 2011
notícias
II Seminário Internacional de Gerenciamento de Ativos,
Manutenção da Transmissão e Desempenho
do Sistema Elétrico - SIGAMT
25 a 27/julho de 2011 - Belém do Pará - Brasil
No período de 25 a 27/07/2011 será realizado na cidade de BELÉM, Estado do Pará,
no Teatro Maria Sylvia Nunes da Estação das Docas, o II SIGAMT, promoção do
CIGRE-BRASIL e CIER/BRACIER e organização da Eletrobras Eletronorte.
Destinado aos profissionais atuantes nas áreas de gerenciamento de ativos, manutenção e
desempenho do sistema elétrico do segmento de transmissão, ligados às empresas nacionais e
internacionais do setor elétrico. Está também aberto a fabricantes, fornecedores, órgãos reguladores,
centros de pesquisas, professores, pesquisadores, estudantes de universidades e outros envolvidos com
o tema.
O II SIGAMT abordará os seguintes temas aplicados ao Segmento Transmissão:
• Gerenciamento de Ativos e de Riscos.
• Novas Tecnologias, Metodologias e Ferramentas aplicadas na Gestão de Ativos.
• Gestão da Manutenção.
• Impactos Ambientais nos Resultados.
• Desempenho do Sistema Elétrico.
O II SIGAMT representa uma excelente oportunidade para a troca de experiências e intercâmbio
técnico-científico entre os participantes nacionais e internacionais, além de permitir o debate do cenário
atual e futuro de gerenciamento de ativos e de riscos e manutenção da transmissão. (ASCOM BRACIER,
31/05)
Contacto: [email protected]
ELETROEVOLUÇÃO JUNHO 2011
13
bienal paris 2010
Artigo B5-101 apresentado na Bienal Paris 2010
System for Integration of Protection
and Control Devices
G.A. ARRUDA
J.F. MESQUITA
I.P. SIQUEIRA
J.C. LIMA
S.G. CAUPONI
Companhia Hidro Elétrica do
São Francisco - CHESF
SUMMARY - CHESF is one of the largest and most important utilities
in Brazil. It is responsible for the generation and transmission of power for
nearly 50 million people in Northeast Brazil. CHESF’s power system comprises
97 substations and 18,232 km of transmission lines, 96 % in the levels of
230 and 500 kV, covering approximately 1,200,000 km2. Many substations
are located far away from the maintenance centers, bringing difficulties
when an immediate action is needed in the field. One of the ideas is to
decentralize the maintenance process as much as possible. On the other
hand, this involves many organizational difficulties as well as high costs.
Intelligent Electronic Devices (IED) have been largely used for a number
of applications in the area of Protection, Control and Automation. IEDs
incorporate themselves a number of new features such as the supervision
of trip logics and voltage/current analog inputs, therefore contributing for
the minimization of hidden failures. New IED features are also important for
relay selectivity studies as well as for supervision and post fault analysis.
Accessing information from IEDs is still difficult. In many situations it is
necessary to move specialized personnel to the substations for this purpose
causing last minute problems and inconveniences like expenditures not
previously planned.
Post fault analysis and improvements in relay coordination studies have
been performed using the resources available so far, sometimes leading to
incomplete conclusions or even reissuing new analyses.
Depending on the situation the response time becomes a very
important point of the process of Disturbance Analysis. It is a requirement
as per the rules of the Brazilian Grid Procedures that Power Companies
respond promptly, and also provide appropriate documentation regarding
disturbances in the power system. Usually the most important information
comes from the protective devices.
CHESF has strongly invested on telecommunication infrastructure,
linking all its facilities with high capacity data transport, therefore providing
basic conditions for the design and the implementation of the System for
Integration of Protection and Control Devices, which will give support to the
maintenance and operation of the power transmission system.
This article describes the characteristics of the solution being
implemented by CHESF, which aims to integrate all IEDs by providing
suitable conditions for remote access of fault data and parameterization.
Incorporating new features of investigation and supervision, the basic
principle of this System is to provide greater flexibility to the maintenance
and disturbance analysis teams.
KEYWORDS - IED, protection, disturbance analysis, database, COMTRADE,
integration, WEB, intranet, protection devices.
14
ELETROEVOLUÇÃO JUNHO 2011
bienal paris 2010
1.0 SOLUTION
The main purpose of the System for Integration of
Protection and Control Devices is to provide a way for
remotely communicate with protection devices,so that
data will be collected and used for various purposes
such as disturbance analysis and post fault evaluation
of relay performance. The possibility of changing
settings remotely without the onus of sending a crew
to the field is another plus. Additionally, the System
provides alternative tools for the maintenance such
as high definition video transmission data, allowing,
when required, video conferences and more detailed
discussions. The System incorporates other features
like ambient information of temperature and humidity
at the relay houses and outside cubicles, making it
possible to monitor the environmental conditions to
which most important protection and control devices
are submitted.
By the time of its conception, four years ago, this
project was unique in Brazil. Recently, a similar idea
has been reported by another Brazilian Utility.
Considering the variety of IEDs the System has
the ability to communicate with all of them despite
the different protocols and access modes provided
by the manufactures.
Developed under WEB functionality, the System
provides data already collected for viewing from
any workstation connected to the intranet with the
possibility of being integrated with the Internet in
the near future. These features incorporate the best
techniques for information protection such as user
authentication, VPN, Firewall, etc.
The System has an Automatic Module for
collection of oscillography and internal events
from IEDs, using mechanisms for monitoring and
alarming, pointing out possible inconsistencies on
the collected data or communication failures.
Through the Search Module, using WEB interface,
one can view collected data for the preparation of
graphs, statistics and other reports.
There is also the Parameter Audit Module, which
is used by the maintenance teams as a supporting
tool, which automatically performs a comparison
between the internal parameters of the IED and
the order of production issued by the protection
engineer. This action can be performed after every
downloading or changing of parameters in the IED.
Other Modules provide the following features:
storage data of protection and control devices,
database management, lists of alarms and events,
System administration, and SMS and email messages.
2.0 SYSTEM ARCHITECTURE
The System for Integration of Protection
and Control Devices consists of three distinct
blocks, installed at the Central Station (Recife),
Regional Stations (Salvador, Maceió, Sobradinho,
Recife, Fortaleza and Teresina) and Local Stations
(substations).
Each Local Station (Figure 1) has a Concentrator,
installed with hardware and configuration compatible
to an industrial PC, for communication with various
Terminal Servers, which in turn communicate with a
maximum of 20 IEDs. Galvanic isolation and electric/
optical converters are included. The Terminal Server
is installed preferably in the same physical location of
the devices being monitored (relay houses or control
room). The Concentrator and Terminal Server are
connected to the same substation local area network
(ethernet). Software, specific to each manufacturer is
installed in the Concentrator with proprietary protocols
for communication with all devices being monitored.
Figure 1
The firewall installed as a gateway for the local
network is implemented through hardware (industrial
PC), running the application under Linux, and free to
migrate to other operational systems but also having
tools that facilitate the manipulation of rules.
ELETROEVOLUÇÃO JUNHO 2011
15
bienal paris 2010
Parameterization Consoles, which allow for the
parameterization of digital devices, are housed in the
Regional Stations (Figure 2). From these Consoles as
well as from any machine connected to the intranet is
possible to access all the data collected by the System.
The main task of the Consoles installed at the
Regional Stations is to provide direct connection to
all IEDs in their areas of responsibility. This connection
is accomplished through the use of an open VPN for
communication with a certain IED. This communication
is done similarly to that performed at the front door
of the IED. For that, specific software is installed for all
existing IED models in each Regional Station.
Figure 2
The Central Station (Figure 3) is comprised of
four servers: Primary Server, Secondary Server, Web
Server and Contingency Server. The Primary and
Secondary Servers are mirrored and contain the
System Database. The Web Server provides the
interface for the user and has the Contingency
Server as “hot standby”. The Parameterization
Console has the same characteristics as those
installed at the Regional Stations, but with larger
action, accessing all substations of the Power
Transmission System.
3.0 FUNCTIONAL DESCRIPTION OF THE SYSTEM
The System for Integration of Protection and
Control Devices provides information collected from
substations in a centralized fashion and offers several
features for supervision, where the main ones are
described below:
AUTOMATIC DATA COLLECTION MODULE
This module is responsible for the automatic
collection of oscillography, list of events and
parameterization of the devices being monitored and
environmental information (temperature and humidity)
of relay houses. The set of applications is installed in the
Local Concentrator computer, making use of specific
software from the manufacturers of the IEDs.
The automatic communication with the IEDs is
accomplished through a script (“robot-software”) that
automatically opens the communication software
and send commands (sequence of clicks) to perform
the desired action. A command for an automatic data
collection may be performed by a scheduled scan or
by an immediate request from the IED right after its
operation, indicating the existence of new events.
Oscillography is converted to the IEEE COMTRADE
format and then sent to the Central Station. The
events are available in the form of text file or CSV
(Comma Separated Values) and then sent to the
Central Station. The parameterization is provided
in the form of text file for use in the Audit Module
and also as proprietary file format. Temperature and
humidity data are available in spreadsheet format,
which allow for the creation of graphs and statistics
to monitor the environment where IEDs are installed.
All data collected from the IEDs are sent to the
Central Station via a FTP server installed locally.
AUDIT MODULE
Figure 3
16
ELETROEVOLUÇÃO JUNHO 2011
This module runs at the Central Station and
aims to compare parameters of the devices being
supervised with the official Orders of Production (IED
settings) stored in the database server. If differences
occur, an alarm message is sent to a pre-defined list
of people. As a result, a text file is displayed pointing
out the differences one by one.
bienal paris 2010
VIDEO TRANSMISSION SYSTEM
The System for Integration of Protection and
Control Devices incorporates features for video
transmission with the primary goal of supporting
the maintenance crews in the field so that images
may be used in real time for discussions and
technical definitions. Image transmission uses a
private communication network that allows limiting
the bandwidth used, thus avoiding the collapse of
the telecommunication systems.
4.0 CONCLUSIONS
The System for Integration of Protection and
Control Devices is designed to help the maintenance
crews and the disturbance analysis team, allowing
them to access and to use data from the IEDs, thanks
to the development of digital technology. Fault
data (oscillography and events) and environmental
data (temperature and humidity) will be available
in a centralized fashion. Also periodic audits on the
parameterization files will be performed
The primary function is to access devices,providing
in a centralized fashion, fault data (oscillography and
events), environmental information and parameter
files audit.
The architecture of the System (Figure 4) provides
various forms of supervision of the process and
operation not yet fully explored. Currently the System
integrates 41 substations comprising about 1000
IEDs but is still growing due to new IEDs that will be
incorporated into the power stations as a result of an
on going process of retrofit and also by a continued
growth in the power sector.
Prompt responses required by society regarding
disturbance analysis and difficulties of accessing
records from IEDs prevented us not to use such
information in a number of situations, consequently
leading to incomplete reports and making it difficult
to visualize improvements on the protection
practices, setting calculation studies and new
functions that could be implemented on these
devices.
Moreover, the possibility to access IEDs remotely
has contributed for the speed of action of the
maintenance crews during programmed or urgent
interventions, especially for distant substations from
the maintenance centers.
A new feature that has been incorporated to the
System is the ability to provide live images from the
relay houses, allowing conditions for long distance
conferences during maintenance.
The System for Integration of Protection
and Control Devices became an important tool
for diagnosing protection performance during
disturbances in the Power Transmission System
and also for offering tools to optimize the work
performed by the maintenance crews.
5.0 BIBLIOGRAPHY
[1]Sistema de Integração de Dispositivos de Proteção,
Controle e Regulação (VIII STPC, Rio de Janeiro,
Brazil, 2005)
[2]Sistema de Integração de Dispositivos de Proteção
e Controle (Seminário APTEL, Rio de Janeiro, Brazil,
2009)
Figure 4 - Architecture
ELETROEVOLUÇÃO JUNHO 2011
17
bienal paris 2010
Artigo A1-301 apresentado na Bienal Paris 2010
On Uncertainties of Reliability Indices
F. CÂMARA NETO
FURNAS Centrais Elétricas
S.A., Rio de Janeiro
M.TH. SCHILLING
Fluminense Federal University
– UFF, Niterói
A.M. LEITE DA SILVA
Federal University of Itajubá –
UNIFEI, Itajubá
M.A.N. SILVEIRA
Empresa de Pesquisa
Energética – EPE,
Rio de Janeiro
A.M. REI
Centro de Pesquisas de
Energia Elétrica – CEPEL,
Rio de Janeiro
18
SUMMARY - This paper provides means for overcoming difficulties in
the conceptual interpretation of the reliability indices originated from typical
probabilistic adequacy analyses of transmission power systems. Initially,
one lists a set of factors that contributes for producing significant statistic
magnitudes of numerical values. Then, a referential paradigm is obtained
for the Brazilian Power System, according the methodology used in several
companies in Brazil. Taking as a reference the obtained standard, a series of
experiments are carried out, obtaining the variation range of the severity
index and a set of other traditional indices used in reliability analysis.
KEYWORDS - Adequacy analysis, Planning criteria, Reliability indices, Risk
analysis, Transmission reliability, Uncertainty and variability.
1. 0 INTRODUCTION
The recent restructuring of the Brazilian electrical energy sector, aimed
at stimulating competition between companies, was possible due to the
introduction of a free market, thus allowing the negotiation of the price of
purchase and sale of electric energy. The main goal of this new approach is to
assure the supply of the best quality electric energy for society at the lowest
cost. By following this new model, the governmental agencies responsible
for planning and operating the Brazilian Power System (BPS) should be able
to meet the increasing demand of energy by always seeking inexpensive
alternatives without risking system security.
In order to achieve this goal, it is important to define the necessary
conditions for an acceptable electric performance. The Brazilian electric
sector, so far, has been using the deterministic criteria “N-1” as reference. This
criterion forces the system to keep up with the demand by ensuring the
limits of suitable loading and voltage, in case of sudden loss of equipment.
The BPS, however, does not fully follow this deterministic criterion. A very
costly investment would be necessary to do so. In order to exemplify
this situation, it was verified that the extent of adherence to the criterion
“N-1” is around 90%. It means that 10% of all single contingencies in the
transmission network could suffer violations. The conventional deterministic
analysis suggests that the generators, transmission lines, and transformers
should be associated with probabilities one or zero that represent failure
state or normal operation. This consideration helps to identify a failure state,
which could bring catastrophic consequences to the system. However, the
probability of its occurrence would be very low, resulting, therefore, in an
acceptable risk level. On the other hand, for much less severe failures, but
with high probability of occurrence, the risk level might be unacceptable for
customers. In both cases, the conventional deterministic analysis ignores the
risk concept, resulting in unnecessarily expensive or even unsafe solutions.
The search for an efficient, secure, and inexpensive operational system
requires an adequate treatment for the reliability analysis. Based on the
ELETROEVOLUÇÃO JUNHO 2011
bienal paris 2010
background performance of the system, it is possible
to statistically anticipate future performance of the
network. This methodology, which incorporates the
random behavior of the equipment into the analysis,
not only allows the identification of the severity of a
state and its impact on the system behavior,but also the
probability of its occurrence. The proper combination
of event importance and probabilities creates indices,
which represent risky situations and are satisfactory
to determine the adequacy of the system. Contrary
to the well established load flow and stability studies,
the reliability analysis is in a process of consolidation
in terms of acceptable criteria. This situation creates
a barrier that prevents clearer understanding of the
results obtained by this approach. In addition to
the difficulty of interpreting the generated indices
through probabilistic analysis, it is added the large
numerical range (statistical amplitude) to which they
are submitted. In order to minimize this difficulty, this
paper investigates several factors that can impact
the numerical results of the reliability indices for the
BPS, depending on pre-specified assumptions and
conditions. The results achieved in the proposed work
will support the effective use of reliability analyses in
expansion and operation planning environments.
2.0 TYPOLOGY OF RELIABILITY STUDIES APPLIED
IN PLANNING
Reliability studies include a vast universe of
possibilities, which suggests the proposal of a
taxonomy aiming at forming a better understanding
of the obtained results. This activity is part of the
reliability monitoring process currently used in the
predictive reliability analysis performed in Brazil [1].
Two main study categories are encompassed: (i)
Regular studies routinely conducted each year; and (ii)
Special studies that are carried out as a result of an
ad-hoc demand.
Regular studies do not contemplate modeling
of uncertainties in the generation system. They do
include, however, three sub-types of studies: Reference,
Regional Voltage, and Class of Elements. Reference
studies are concerned with measuring the predicted
reliability levels in situations of single contingencies,
through an enumeration process involving only
transmission equipment, which represent the main
transmission network - MTN. In these studies, only
the heavy load levels (foreseen for the sequential
set of topologies established in the expansion and
reinforcements plan for the MTN) are evaluated. For
each given topology and corresponding load, an
operational point is adjusted within the required
adequacy criteria (no overloads and voltage/reactive
violations). The objective of such studies is to analyze
the chronological evolution of the global adequacy
risks in the Brazilian MTN. Reference studies will be
referred to throughout this paper. Regional Voltage
studies, on the other hand, are concerned with
measuring the predicted probabilistic reliability levels
in situations of single contingencies, by enumeration,
of only the transmission subsystems (transmission
lines - TL, network transformers - NT, border
transformers - BT) located in the North, Northeast,
Southeast, Central-West, and South regions of Brazil,
associated with a specific voltage level (230, 345, 440,
500, 525, and 765 kV). The objective of such studies
is to identify and compare regional weaknesses.
Finally, Class of Elements studies are concerned with
measuring the predicted reliability levels, using single
enumeration, of three separate sets: only transmission
lines, only network transformers, and only border
transformers. The objective of these studies is to
identify the degrees of responsibility of the different
classes of elements (TL, NT, and BT) in the totality of
the bulk transmission risk.
The so called Special studies are carried out
according to management convenience. Next, three
examples of these types of studies are described. As
a first example, there are transmission studies with
a probabilistic space identical to that adopted by
the Reference studies, i.e., without uncertainties in
generation and single contingency enumeration with
the following additional conditioning aspects: (i) by
focusing separately on medium and light load levels;
(ii) by focusing on a combination of all load levels
weighted by their respective probabilities; (iii) by
encompassing only a portion of the MTN associated
with each of the Brazilian states; (iv) by focusing on
operation points that reflect specific interchange
scenarios among electric areas, but distinct from
those taken as a reference. As a second example, there
are transmission studies with extended probabilistic
space in relation to that adopted in the Reference
ELETROEVOLUÇÃO JUNHO 2011
19
bienal paris 2010
studies, without uncertainties in generation and with
the following additional conditioning aspects: (i) by
representing non-MTN uncertainties – a portion of
the topology that is not considered to be part of the
MTN – (these evaluations are conducted by single
enumeration of all the state-space and also separately,
discriminated by segments that are the MTN and the
non-MTN); (ii) same as the previous one but selecting
states by Monte Carlo simulation (MCS); (iii) by
representing the uncertainties only in the non-MTN
(single enumeration); (iv) same as (iii) but using MCS.
Finally, as a third example, there are special studies
with extended probabilistic space in relation to that
adopted in the Reference studies, but including
uncertainties in generation equipment, i.e. the classical
composite reliability: (i) by considering both MTN
and generation system uncertainties, one full system
single enumeration and two partial enumerations,
the first one detailing only the MTN and the other
one focusing only on generation stations; (ii) same as
(i) but using a MCS; (iii) by considering uncertainties
in both the main and non-main transmission
network plus the generation system (one full system
single enumeration and three additional partial
enumerations detailing main transmission, non-main
transmission, and the generation); (iv) same as (iii) but
using MCS.
spatial aggregations such as loss of load probability
(LOLP), expected power or demand not supplied
(EPNS), and loss of load frequency (LOLF). Additional
secondary indices such as expected energy not
supplied (EENS), loss of load expectation (LOLE), and
loss of load duration (LOLD) are obtained as well. The
system problem probability index (SPP) is the direct
result of accounting for occurring failure modes,
before the application of remedial measures. It is also
quite common to use an approximate calculation
of interruption costs associated with the expected
energy not supplied.
4. 0 FACTORS AFFECTING RELIABILITY INDICES
The numerical values of reliability indices are
mainly affected by the following aspects: (i) modeling
hypotheses, (ii) statistical data uncertainties, and (iii)
numerical algorithms and computational procedures.
This section will address only the Reference studies.
4.1Modeling of primary energy sources and
generation
In Brazil, the influence of primary hydraulic energy
sources in reliability studies may be taken into account
by defining suitable probabilities to different possible
dispatch scenarios. However, in the Reference studies
previously mentioned, an initial base-case dispatch is
conveniently adjusted,between the lowest and highest
3. 0 FAILURE MODES AND RELIABILITY INDICES
limits allowed for each generating unit, in order to
Currently, probabilistic reliability studies performed eliminate reliability base-case violations. This dispatch
in Brazil consider only two kinds of failure modes: (i) is set with unitary probability. In this perspective,
continuity and (ii) adequacy.The first one is recognized primary hydraulic sources do not contribute to stateas the nonexistence of voltage at measuring points, space probabilistic values used in the Reference study.
lack of supply continuity, the formation of islands, When the influence of energy sources uncertainties is
the presence of generation deficits, etc. The second explicitly considered, the analysis falls into the Special
one indicates the occurrence of overloads in circuits, studies category. In the Reference study, generation
voltage violations, violations of reactive power uncertainties are ignored. Therefore, even though
generation limits, violations of active power at swing represented in its totality, the generation system
buses, violations of maximum allowable interchange does not contribute to the probabilistic state-space.
limits between areas, etc. Security failure modes [2], Therefore, each generator unit is deterministically
associated with dynamic phenomenon, have not yet represented in an individualized manner. The static
been treated on a regular basis by Brazilian companies. compensators are similarly treated.
Severity (SEV) measured in system-minutes [34.2Modeling of network topology
5] is one of the most popular probabilistic reliability
Probabilistic modeling of topology may include
indices used by companies in Brazil. Other traditional
primary indices are also calculated under various representation of nodes (i.e. substations) and
20
ELETROEVOLUÇÃO JUNHO 2011
bienal paris 2010
branches (i.e. lines, transformers, and shunt elements).
Notwithstanding, since topology uncertainties are the
main cause for the explosive growth of the probabilistic
state-space, modeling is kept as simple as possible.
Therefore, in Reference studies, several relevant
aspects are chosen to be consciously ignored, such
as: transmission common mode failures, dependent
simultaneous
transmission
failures, network
reconfigurations due to special protection schemes,
etc. All transmission lines and transformers, which are
originally represented in the base-case power flow,
are maintained in the Reference studies. However,
uncertainties are attributed only to elements of the
MTN. In this context, all lines in the main transmission
network contribute to the probabilistic state-space.
All other transmission lines outside MTN (i.e., 138, 88,
69, 44, 34.5, and 13.8 kV) are treated in a deterministic
manner. Treatment of these uncertainties is based on
the classic modeling of Markov chains with two states
and all of the traditional conditioning factors such
as constant transition intensities, as well as disregard
of aging, regeneration, and trends. Failure rates
(occurrences/year) and mean repair times (hours) are
those given in Table I.
As previously mentioned, transmission elements
are classified under four main categories: lines,
network transformers, border transformers, and
special elements such as series capacitors, thyristor
controlled series capacitors (TCSC), and series reactors.
Regarding the latter, they are treated in a deterministic
manner. In particular, TCSC are converted into
equivalent capacitors, due to modeling constraints
of the software used in the analysis. It should be also
noted that the Brazilian grid has two DC links, which
are also taken into account deterministically, in the
Reference studies, by equivalent power injections,
represented by fictitious generation. The stochastic
modeling of two-wind transformers does not present
particularities. However, even though generation
units are individualized, corresponding step-up
transformers, when represented, are not submitted
to the same treatment as other transformers, since
uncertainties are not ascribed to them. This choice is
taken aiming at minimizing the combinatorial growth
of the probabilistic state-space. An exception to this
rule applies when the step-up transformer is identified
as a BT. Three-wind transformers are represented
by a star connection to which only to the highest
level voltage branch an uncertainty is assigned. To
summarize, in the context of the Reference studies,
all border and network transformers contribute to
the probabilistic state-space. All other transformers
located outside the MTN are treated in a deterministic
manner. The stochastic modeling of shunt branches
(i.e., capacitors/reactors) is considered relevant
to reliability studies. However, in the Reference
studies, none of these elements contribute to the
composition of the probabilistic space. Finally, In the
Reference studies, the nodal topology (i.e. substation
arrangements) is also not explicitly treated. However,
the influence of faults at substations is partially
reflected in the TL parameters.
4.3 Load modeling
Modeling the load behavior accurately is a tough
but essential task for a sound probabilistic reliability
assessment. In the Reference studies, load is treated
by the pair of active (MW) and reactive (Mvar) power
values. As such, the yearly forecast of load spatial
aggregation is the same used in conventional power
flow studies, usually at buses operating at 13.8, 34.5, 69
and 138 kV. Although rare, other higher voltage levels
ELETROEVOLUÇÃO JUNHO 2011
21
bienal paris 2010
also have load connections, which may be of a special
kind or representing major consumers. For the purpose
of adequacy assessment, the great majority of loads in
the Brazilian system are modeled as constant power.
However, some loads in the North and Northeast
regions require the use of functional voltage modeling
(otherwise power flows will diverge). Usually, the annual
load curve is chronologically specified in clusters
representing heavy, medium, and light load levels. This
approach makes it viable the counting of frequencies
and durations of each level. This treatment also allows
the use of Markovian models for the chronological
load behavior. Finally, it is worth emphasizing that in
the Reference studies, heavy load levels are modeled
deterministically or, in other words, load does not
contribute to the construction of the probabilistic statespace. As previously mentioned, the full probabilistic
treatment of load is considered as a Special study.
4.4Modeling of operative practices
Further aspects associated with the operation
of power systems are recognizably pertinent to the
evaluation of probabilistic reliability; i.e. maintenance
modeling,
transformation
reserve,
rotating
reserve, special protection schemes, topological
reconfigurations such as the sectioning of buses,
etc. Among these aspects, only transmission line
and transformer capacities are considered in the
Reference studies conducted for the Brazilian system.
Therefore, data about MVA values defining long- and
short-term load carrying capacities, for both lines and
transformers, are duly required.
22
ELETROEVOLUÇÃO JUNHO 2011
4.5 Representation of uncertainties
In Reference studies, as well as most of Special
studies, the technique adopted for obtaining Brazilian
transmission lines failure rates is based on the
estimation of their lengths, combined with values
from Table I. The estimation of the approximate length
ℓ of transmission lines is based on the equation ℓ =
7.8 (X×B)1/2, where X represents the line reactance
in % and B represents the line susceptance in Mvar.
This artifice produces good results, except in the case
where underground cables are being considered.
However, very few cables are present in the Brazilian
MTN. Regarding transformers, the failure rate refers to
the equipment highest voltage and to the concept
of local transformation function (this means it does
not reflect the performance of each equipment, but
the local performance). This approach is adopted in
order to circumvent the problem caused by usual
transformers displacements, which are defined by
the prevailing maintenance strategies. As previously
mentioned, in a Reference study, uncertainties for
generators are not considered. However, for the
traditional
composite
transmission/generation
reliability studies previously mentioned, data from
Table II is used.
4.6 Procedures for obtaining the reliability
base-case
The reliability base-case should be individually
obtained for each load level. Suitable switching of
control equipments (i.e. shunt capacitors/reactors)
is one of the essential conditions for a successful
bienal paris 2010
simulation. To obtain a reliability case-base in a
Reference study, adequacy is the only relevant failure
mode. Normal limits, both for voltages and circuit
loadings, should be monitored at this stage. Loadings
are measured as current values. The continuity failure
mode is not relevant at this point, because the basecase does not consider contingencies of any kind. In
order to eliminate base-case existing violations, both
active and reactive power re-dispatching are allowed,
observing the generators actual upper and lower
limits, except at thermal plants, small hydro plants,
and the two existing nuclear power plants, where the
dispatch is fixed and identical to the initial power flow.
Equally allowed are variations from transformers on
line tap changers, also respecting their limits. Finally,
as a last resort to eliminate violations, a minimum load
curtailment is applied, calculated through an optimal
power flow (OPF) algorithm based on interior point
techniques. Owing to this procedure, the reliability
indices of the Reference studies may be associated
to an operating condition, which is distinct from
that one obtained with the original power flow tool.
However, when there are no violations in the original
power flow, it can be rightly accepted as a reliability
base-case, without any further change. A detailed
step-by-step description about this aspect will be
given next. It is necessary to comment first about two
concepts related with the nature of electrical areas.
Control regions or regions of influence are a reference
to the system regions or areas whose resources are
used to eliminate violations. Monitored regions or
regions of interest refer to the system regions or areas
whose specific performances should be monitored,
including circuit loadings, bus voltages, and active and
reactive power produced by generators. Performances
outside these regions are not accounted for, as
they may present violations that are not identified
and consequently will not be eliminated. Therefore,
reliability indices are accounted for only for load
curtailments in buses that belong to the monitored
regions. The procedure adopted in Brazil considers
that this region of interest will be always a sub-region
of the control region. It should be mentioned that, if
the monitored region is taken as smaller region than
the control region, bus load shedding outside the
monitored region will not be accounted for in the
calculation of reliability indices. In Brazil, this problem is
overcome by forcing the coincidence of both control
and monitored regions. Therefore, in the Reference
studies, all areas of the Brazilian electrical system
are called to act simultaneously as both control and
monitored regions.
The system under analysis must be initially
submitted to a traditional Newton-Raphson load flow
evaluation, with all controls activated. In the hypothesis
of obtaining a solution without violations,this result will
be considered as the reliability base-case. If, however,
voltage or load violations or violations of generation
limits are observed, the following actions should be
taken in the such preferential order: (a) adjustments in
the power flow base-case should be made in order to
manually eliminate all existing violations (this action
is based solely on the analyst’s experience); (b) when
the above-mentioned operation is not successful,
violations should be tentatively eliminated using an
OPF algorithm set to minimize any load shedding (the
solution eventually obtained must be submitted to a
validation criterion – currently, a solution is considered
valid if the amount of load shedding does not
exceed 0.5% of the system total load); (c) in extreme
situations, when the previous action (b) demonstrates
to be incapable of supplying an adequate solution, a
progressive relaxation of circuits loading and voltage
restrictions are allowed. At this stage, monitoring is
conducted using the normal loading limits (from an
electric current point of view) for transformers and
transmission lines and, normal voltages for buses
carrying loads, and active/reactive generation limits of
the swing buses.
4.7Composition of the probabilistic statespace
It is well known that the composition of the
probabilistic state-space heavily influences the
values of reliability indices. This means that reliability
indices are worthless unless the state-space is
strictly defined. In the Reference studies conducted
in the Brazilian system, the probabilistic state-space
is composed by the set of all AC TL in the main
transmission network (at this time, DC links are
still treated deterministically), as well as all BT and
NT. A state-space distinct from this configuration
characterizes a need for a Special study, which is
performed only by specific demand.
ELETROEVOLUÇÃO JUNHO 2011
23
bienal paris 2010
4.8 Numerical reliability evaluation
According to the procedure adopted by the
Brazilian independent system operator (ISO), the
evaluation of reliability requires the existence of
a power flow base-case, converged and without
violations. This is the so-called reliability base-case,
obtained in the pre-processing stage, as previously
mentioned. Conceptually speaking, the reliability
calculation is made up of three traditional steps
whose characteristics, adapted to the Brazilian system,
are commented as follows:
(a) Selection of system states: In a Reference
study, the selection is made by the enumeration of a
list of contingencies in TL, NT, and BT that coincides
exactly with the probabilistic state-space as previously
defined (1717 branches). In special evaluations, when
the selection of states is conducted through the
MCS technique, the following guidelines should be
observed: (i) Number of samples of 100,000 (single
lot); (ii) Tolerance (coefficient of variation) associated
with LOLP and EPNS indices: 3%; (iii) Use of a standard
initial seed – this is required so that all simulations can
be reproduced.
(b) Analysis of selected states: Each selected state
must be checked for the occurrence of any kind of
failure mode. In their absence, the corresponding state
is classified as a success state; otherwise it is classified
as a failure state. In this last case, efforts are made to
eliminate the failure through remedial measures,
which are part of the operational resources of the
electric system. The guidelines adopted in Brazil for
this stage of the analysis are mentioned as follows:
• Concerning occurring failure modes: in Reference
studies, failure modes are related to continuity, focused
on the formation of islands and power deficits and
adequacy, which includes violation of emergency
limits allowed for voltages and violation of the normal
limits allowed for lines and transformers loading, from
the point of view of the current flow. Up to quite
recently, in Brazil, monitoring normal loading limits, in
contingency situations, was justified not only because
of legal issues as well as because of an intentional
purpose of planning the system considering an
operational maneuver margin. However, due to the
increasing operational hurdles, this practice may soon
change;
• Concerning remedial measures: in Reference
24
ELETROEVOLUÇÃO JUNHO 2011
studies, only reactive power re-dispatching is allowed
(active power re-dispatching is inhibited). Variations
of transformers derivations, voltage adjustments
in controlled buses and, as a last resort, minimum
load shedding, calculated through an optimal
power flow algorithm, are also considered. Currently,
interconnection power flows are not treated as
control variables;
• Concerning control and monitored regions: in the
Reference study, similarly to the preprocessing stage,
all electric system areas are treated as both control
and monitored regions;
• Concerning state-space analysis validation:
in the reference study, the state-space analysis is
considered to be validated if a maximum of up to 3%
of all contingencies on the pre-defined list are unable
to attain convergence when processed through
the optimum power flow algorithm. This threshold
was defined based on practical experience with the
Brazilian system.
(c) Reliability indices evaluation: All states, where it
was necessary to use remedial measures to eliminate
failure modes, contribute to the evaluated reliability
indices. In the Reference study, tolerance adopted
for the enumeration process (in double precision) is
equal to 1.0 E-36 pu. All reliability indices are presented
with two significant decimals. Details related with the
computational tool currently used in Brazil are given
in [6].
5. 0 EVALUATING RELIABILITY INDEX UNCERTAINTIES
The Brazilian ISO has adopted the severity (i.e.
system minutes) index as a reference for diagnosing
predictive probabilistic risks in the MTN. Severity
[1] is a normalized index, given by the ratio of EENS
(MWh/year) by the system peak load (MW), with the
result converted into minutes per year. Taking into
consideration the set of premises and procedures
previously described, the Brazilian power system was
evaluated from a base case with monthly horizon,
which reproduces more accurately the actual load
and configuration of the system. In this work, the
month of April of 2009 is chosen. The reference risk
paradigm, identified as Case 1 in Table 3, is obtained
through the enumeration of single contingencies of
the MTN, without the re-dispatching of active power,
bienal paris 2010
only monitoring the normal active power limits of
the transmission branches and the emergency limits
of the bus voltage magnitudes under the heavy load
regime of analysis. Thus, the severity index of the
reference simulation is 38.80 minutes per year (see
Table III), considering a peak load of 66.15 GW.
5.1 Uncertainties due to parameter effects
In Case 2, it is noticed the influence of input
parameter modeling in the assessment of system
performance. As it can be seen in Table III, the variation
in the lines failure rate, given by the estimated length
based on the average reactance values by voltage
level, has reduced the severity index to 25.51 minutes.
This case illustrates how sensitive the reliability indices
are in respect to failure rates of the system. Case 1 is
indeed more real and accurate than Case 2.
monitoring of the apparent power over the normal
loading limit. On the other hand, in Case 12 (22.57 min.),
one can notice the gain obtained with the monitoring
of the apparent power over the emergency loading
limit. In these examples, one can see that the severity
index of the system can be reduced by 35% to 42%
due to monitoring.
5.4Uncertainties due to state-space
truncation
In Case 13 (185.03 min.), operational states are
selected through non-sequential MCS technique
which allows the simulation of multiple contingencies
according to their probabilities of occurrence. One
notices that the obtained result in this particular
situation is 4.77 times greater than the result as an
outcome of a single enumeration (Case 1: 38.80 min.).
5.2Uncertainties due to remedial measures
Cases 3 to 9 illustrate the influence of the inhibitions
of different corrective measures: optimization of the
active power dispatch (P), optimization of the tap
positioning (T), and optimization of the generation
voltage profile (V). While Case 1 (P: 38.80 min) had
only the active power re-dispatch inhibited, cases 3
(V: 21.15 min) and 4 (T: 22.84 min) had the inhibition
of optimization of the generation voltage profile and
of tapes positioning, respectively. Cases 5 (P, V: 24.50
min), 6 (P, T: 60.48 min), and 7 (V, T: 27.76 min) illustrated
double inhibition situations, noticing the expected
degradation of the severity index. Case 8 (P, V, T: 102.42
min) showed the extreme situation, without any
corrective measures. Case 9 (20.36 min) showed the
other extreme in which all corrective measures were
called upon to act. The difference between the results
of cases 8 and 9 indicates the margin of operational
maneuvering available in the system. Since in Case
5 the total of operative states withdrawn from the
statistics exceeded 3%, this result should be casted
aside.
5.5 Other analysis
Case 14 (19.79 min.) is the reproduction of Case 12
with the addition of the re-dispatch of active power
to the list of corrective measures, that is, all factors that
contribute for the reduction of the severity index in
the system are taken into consideration.
As the non-sequential MCS technique is not
considered as regular study, despite its importance
and efficiency, some results will be briefly presented to
verify the sensitivity of the severity index in comparison
to Case 13 (185.03 min.). In Case 15 (184.30 min.), the
length of the transmission lines was estimated based
on typical reactance values. Case 16 (104.30 min.)
reflects the addition of re-dispatch of active power to
the list of corrective measures. In Case 17 (118.00 min.),
the flow is monitored by the apparent power over the
loading emergency limit. In Case 18 (100.87 min.), the
flow is monitored by the apparent power over the
loading emergency limit with the addition of active
power re-dispatch to the list of corrective measures.
5.3Uncertainties due to monitoring practices
The use of the emergency transmission loading
capacity gives the system a considerable reduction
in the severity index, according to what was verified
in Case 10 (25.34 min). Another important reserve
to be used, highlighted in Case 11 (26.70 min), is the
The results presented in this work confirm that, as
a function of the modeling premises, uncertainties
representation, and assessment tools, the reliability
indices have their magnitudes strongly influenced.
Some of the uncertainties treated in this work have
indeed inherent stochastic characteristics (e.g.,
6. 0 CONCLUSION
ELETROEVOLUÇÃO JUNHO 2011
25
bienal paris 2010
equipment unavailability), others could be classified
as sources of variability (e.g., the use or not of redispatching function). In the paper, however, they
were all called as uncertainties.
In relation to the modeling of the power network,
the length estimation method for transmission lines,
as a function of the typical reactance (Case 2), caused a
significant difference in relation to the reference value
(Case 1). This is an important alert about the concern
that one must have in relation to input parameter
accuracy in reliability assessment studies. The results
were very similar when active power re-dispatching
was allowed (Case 9), if compared to the monitoring of
apparent power under the emergency limit (Case 12).
The combination of these premises did not produce
significant difference (Case 14), and, therefore, the
respective practices are equivalent. One suggests,
thus, that the monitoring of the flow be performed
by the apparent power under the emergency limit so
the system can be assessed with the same precision
as the traditional power flow studies.
For allowing only part of the real stochastic
26
ELETROEVOLUÇÃO JUNHO 2011
behavior of the transmission system, the state
enumeration technique has great limitations since it
evaluates only single contingencies for the Brazilian
system, given that the computational effort for the
simulation of high order contingencies is too high.
On the other hand, through the non-sequential
Monte Carlo simulation method, it becomes possible
to select the operative states by sampling. Thus, it is
possible to assess the real behavior of the system
when facing possible multiple contingencies.
Therefore, it is suggested that the results arising from
the enumeration technique be used only to assess
the “N-1” adequacy of the system. This procedure
provides a quantification of the percentage of single
contingencies that may cause load shedding.
Finally, bearing in mind all assumptions and
modeling aspects, the proper interpretation of the
results produced by reliability assessment studies is
the major task for power systems analysts. Therefore,
expansion, operation, and maintenance planning
criteria have to be carefully designed by planners and
engineers in order to provide adequate decisions.
bienal paris 2010
7.0 BIBLIOGRAPHY
[1]M.Th. Schilling, J.C.S. Souza, M.B. Coutto Filho,“Power
system probabilistic reliability assessment: current
procedures in Brazil” (IEEE Trans. on PWRS, vol. 23, no.
3, pp. 868-876, Aug. 2008).
[2]M.Th. Schilling, R. Billinton, M. Groetaers dos Santos,
“Bibliography on power systems probabilistic
security analysis 1968-2008” (Int. Journal of
Emerging Electric Power Systems, vol. 10, no. 3, pp.
1-48, 2009).
[3]C.C. Fong, R. Billinton, R.O. Gunderson, P.M. O’Neill, J.
Raksany, A.W. Schneider, B. Silverstein, “Bulk system
reliability - measurement and indices” (IEEE Trans.
on Power Systems, vol. 4, no. 3, pp. 829-835, Aug.
1989).
[4]Power System Reliability Analysis Application Guide,
(CIGRÉ Working Group 38-03, Paris, 1987).
[5]W.H. Winter, B.K. LeReverend, “Bulk electricity system
operational performance: measurement systems
and survey results” (CIGRÉ Working Group 39.05,
Paris, Jul. 1989).
[6]A.M. Rei, M.Th. Schilling, “Reliability assessment of
the Brazilian power system using enumeration and
Monte Carlo” (IEEE Trans. on Power Systems, vol. 23.,
no. 3, pp. 1480-1487, Aug. 2008).
ELETROEVOLUÇÃO JUNHO 2011
27
bienal paris 2010
Artigo C1-302 apresentado na Bienal Paris 2010
Large Scale iIntegration of Renewable Sources
in the Brazilian Bulk Power System
I. GÁRDOS
R.D. FURST
P. GOMES
A. BIANCO
Operador Nacional do Sistema
Elétrico — ONS
SUMMARY - The domestic electricity supply in Brazil is historically
based on hydraulic sources which today count for 75% of the national
power production. The inventoried hydroelectric potential lies mostly in the
Amazonic region — though faraway from the major load centres — being,
therefore, object of serious restrictions associated with the high investment
and complex environmental licensing regarding both generation and
transmission facilities. This prospect comes up as one important factor to
improve the participation of different sources in the energy matrix, with
emphasis on the new renewable, such as small hydro projects, wind farms
and biomass cogeneration plants.
This paper addresses the foremost issues related with the large
scale integration of new renewable sources in the Brazilian National
Interconnected Power System. A broad wind penetration is imminent,
but the biomass expansion has already demanded concrete actions, such
as the change in the regulatory framework and the joint effort on the
feasibility analyses that engaged the system operator, sugar cane producers,
transmission and distribution utilities and the government. This paper also
highlights the technical challenge to preserve the electrical security of the
Brazilian grid taking into account the pertinent requirements, the proposal
of transmission reinforcement and/or operational countermeasures on the
existing network and the seasonal nature effects of the biomass generation.
Regardless the expressive energetic benefit, nearly all of the biomass plants
in operation or to be integrated to the grid in the near future behave as
generators during the season and as small loads in the off season. This
seasonal behaviour imposes significant power flow variations to the HV and
EHV networks, potentially amplifying the operational difficulties to control
bus voltages and equipment loading. Similar effects are also expected in
the short-circuit levels of HV networks, rising the discussion around the
need of robust protection philosophies to withstand diverse conditions.
KEYWORDS - Renewable – Biomass – Wind Generation – Small Hydro
Plants – Grid Connection.
1. 0 INTRODUCTION
Renewable energy sources are in the basis of the Brazilian electric power
industry. In 2008 the national energy production reached 448.8 TWh, being
75% of this amount delivered by conventional hydraulic generation, i.e.
power plants with individual capacity exceeding 30 MW. The electricity
consumption in the country increased by an average annual rate of 5%
28
ELETROEVOLUÇÃO JUNHO 2011
bienal paris 2010
from 2001 to 2008 and an improved pace of 5.6% is
expected up to 2013. In turn, the policy for generation
expansion established by the government in 2004
consists in the auctioning of new energy assets,
which proved to be an attractive mechanism to new
power plants given that, between 2005 and 2008,
eleven public auctions were carried out resulting
in the total capacity of 22.6 GW scheduled to start
operation until 2013. These auctions are the major
procurement mechanism for distribution companies
to acquire energy to supply their captive consumers
through the celebration of long-term Power
Purchase Agreements.
The inventoried hydroelectric potential lies mostly
in the Amazonic region — though far away from the
major load centres — being, therefore, object of serious
restrictions associated with the high investment and
complex environmental licensing regarding both
generation and transmission facilities. This prospect
comes up as one important factor to improve the
participation of different sources in the energy matrix,
with emphasis on the so called alternative or new
renewable ones, such as small hydro projects, wind
farms and biomass cogeneration plants. The main
onshore wind potential within the Brazilian territory
lies in the Northeast, while the biomass and small
hydro plants are concentrated in the inner Southeast
and Central West regions.
This paper briefly addresses the current state of
the new renewable energy sources in Brazil, focusing
wind, small hydro and biomass power plants, from its
characterization to the experience to date and the
challenges that system planners and operators are
to be aware to accomplish a successful large scale
integration process.
2.0 NEW RENEWABLE ENERGY SOURCES IN BRAZIL
The commercial energy production of the new
renewable technologies in Brazil is currently based on
onshore wind farms, small hydro power plants (SHP)
and biomass cogeneration plants. The evolution of
the generating capacity on these energy sources
from 2001 to 2009 is depicted in Figure 1. It can be
observed that biomass and SHP increased 3.2 GW
and 2.1 GW, respectively, while the capacity on wind
power plants remains around 500 MW.
Figure 1 – Recent evolution of the generating
capacity on new renewable energy sources in Brazil
2.1 Expansion policies
Given the characteristics of the natural resources
in Brazil, hydroelectricity is to remain as the major
option for the expansion in the energy supply.
However, some government directives to increase
the diversification on renewable sources as a means
to enforce the security on the supply are being
followed since the early 2000´s.
PROINFA
In 2002, the government created the Incentive
Program for Alternative Sources of Electrical Energy
– PROINFA, having as its strategic objectives: (i)
diversification of the Brazilian energy matrix
improving the security of supply; (ii) valuation of
regional and local characteristics and potentialities
with job creation and development of skilled
labour force; and (iii) reduction of greenhouse
gases emission. The first phase of PROINFA aimed
to increase the generating capacity on wind, small
hydro and biomass power plants by 3300 MW up
to 2006, being 1100 MW for each of those sources.
To mention some key features of PROINFA, the
projects under the program must have a minimum
of 60% of national products, and the purchase of
the energy produced by those power plants would
be granted by 20-year contracts signed down by
Eletrobrás. A total of 144 power projects were
selected and, in the late 2009, 96 of the program
hired plants were in due operation, adding 2106
MW to the Brazilian interconnected system
generating capacity. There are approximately
450 MW yet to be added up to 2010 by 23 power
plants currently under construction.
ELETROEVOLUÇÃO JUNHO 2011
29
bienal paris 2010
Energy auction on alternative energy sources
(LFA)
The new rules for the Brazilian electric sector
established in 2004 strengthened a policy to
encourage the expansion of alternative electricity
sources and the competition with conventional
hydro generation. As a consequence, the first energy
auction on alternative sources was carried out in June
2007, adding 639 MW to the generating capacity of
the National Interconnected Power System (NIPS).
This supply expansion, being 542 MW on biomass
cogeneration and 97 MW on small hydro plants, is to
be in operation up to 2010.
Energy auction exclusively on biomass based
sources (LER_BIO)
In august 2008, the Ministry of Mines and Energy
carried out the first energy auction exclusively
focused on the biomass power generation. The
negotiated energy was scheduled to be delivered in
2009 and 2010 as a means to reinforce the overall
electricity supply until the start up of the Madeira
river power stations. A total of 321 MW average in 31
biomass plants were auctioned off, adding up 2380
MW to the generation capacity in the states of São
Paulo, Minas Gerais, Mato Grosso do Sul, Goiás and
Piauí.
Energy auction exclusively on wind based
sources (LER_WIND) [1]
In the late 2009, a wind-only auction similar to
that on biomass sources was carried out, resulting in
the acquisition of 1805.7 MW of generating capacity
from 71 wind power plants to start operation in 2012,
located both in the Brazilian Northeast (1619.7 MW)
and South (186 MW) regions.
2.2 Overview of the existing capacity on new
renewable sources
Out of the current generating capacity of 106
GW, 20.6 GW are associated with non renewable,
especially fossil, energy sources and 9.2 GW are in
new renewable ones. Table I outlines the location and
generating capacity of the different new renewable
sources in Brazil. It is worth mentioning that wind
power production sites are mainly in the coast of the
Brazilian Northeast region, while biomass and small
hydro plants are concentrated in the inner Southeast
and Central West regions.
30
ELETROEVOLUÇÃO JUNHO 2011
Biomass based cogeneration facilities, especially
sugar cane waste fired plants, are responsible for 61%
of the total installed capacity in the new renewable
sources. In the last years, the interest in sugar cane
biomass based cogeneration (combined heat and
power – CHP) has increased, especially as a result
of the boost in the Brazilian ethanol production
to supply both the domestic and foreign markets.
The production of sugar and ethanol from sugar
cane is a highly energy intensive process that, with
some improvements in its efficiency, can generate
impressive amounts of surplus electricity to be
injected in the grid. The key for such improvement
is the adoption of high pressure boilers and steam
turbine generators, being 82bar/480oC designs the
most common alternative to the old 22bar/300oC
ones. The state of São Paulo, whose agricultural
industry holds 60% of the national sugar cane
production, plays the major role in the biomass
based cogeneration. In addition, the state hosts
dense local distribution and regional transmission
systems well suited to dispose the energy surplus of
mid-sized CHP plants.
Small hydro plants are defined in Brazil both by
the installed capacity (1MW < Pinst ≤ 30MW) and
the reservoir area not larger than 3.0 sq.km, or up to
13.0 sq.km, depending on the fall height. In the early
2000’s, more than 30% of the total capacity in small
hydro plants were concentrated in the state of Minas
Gerais, then followed by São Paulo, Paraná and Santa
Catarina. However, along the decade an impressive
SHP expansion occurred, especially in the state of
Mato Grosso with 503 MW installed between 2002
and 2009 and almost 300 MW to start operation
before 2012.
The use of wind generation is quite recent
in Brazil, given that almost 98% of the current
installed capacity were integrated to the grid after
June 2006, as a consequence of PROINFA. However,
there are dozens of small wind turbines working in
isolated locations for various applications, such as
pumping, battery charging and rural electrification.
Thanks to the local atmospheric and topographical
characteristics that ensure the aerogenerators an
outstanding productivity, the highest concentration
of the grid connected wind power plants lies in the
coast of the Brazilian Northeast region, especially the
bienal paris 2010
state of Ceará which holds more than 50% of the auctioned their energy off in 2008 or before.
plants in operation, as shown in Table I. In general,
wind plants adopted the connection to local
Table II – Generating capacity of ongoing projects
distribution systems, either directly or by forming a to start operation until 2012
pool to share a common local step-up substation and
a line to the nearest grid facility. The exception is held
by two wind plants in the state of Ceará (Icaraizinho
– 26x2.1MW and Praia Formosa – 50x2.1MW), which
connected to the grid through the Sobral III 230 kV
substation, 120 kV away.
2.3 Ongoing projects and estimated potential
There is a number of wind, biomass and small
hydro power plants committed to start operation
until 2012 totalling 5.8 GW of capacity, as depicted
in Table II. It is important to notice that the projects
hired by the PROINFA must be completed in 2010.
The same is target expected to be accomplished
by most of the biomass and small hydro plants that
The estimated potential on new renewable
sources to come after 2012 is merely indicative. Some
experts in the sugar cane industry forecast a harvest
of 1 billion tons of cane in 2020, doubling-up the 496
million tons of season 2007-2008. Considering this
scenario, they also believe that from 2012 on, the
installed capacity may be increased by 2000 MW per
year, reaching 22 GW in 2020.
Table I – Generating capacity of new renewable energy sources in Brazil (BIG-ANEEL Dec./2009)
ELETROEVOLUÇÃO JUNHO 2011
31
bienal paris 2010
In 2001, the potential for onshore wind power
generation in Brazil was estimated as 143 GW
(272.2 TWh/year), for 50 m height and average
wind speeds equal or superior to 7 m/s. Taking into
account the technology evolution in this field over
the last years, an updated estimate at 100 m height
is to be released in 2010, what will probably reveal a
potential for onshore wind power generation many
times larger than the already known. However, the
offshore potential along the nearly 8,500 km long
Brazilian coast remains unknown.
3.0 BENEFITS TO POWER SYSTEM PLANNING
AND OPERATION
In addition to the well known mid and long-term
benefits made available to the environment and
economy from the adoption of renewable sources,
there are a number of features to be used from the
new renewable ones to provide the bulk power
system with enhanced flexibility. Some of these
features, which are briefly depicted below, are quite
evident in Brazil.
3.1 Energetic complementarity
The sugar cane biomass electricity production
is strongly correlated with the sugar cane
harvest season, which in the Brazilian Southeast
region occurs between April and October, also
corresponding to the dry period along which the
water reservoir levels decrease. Therefore sugar
cane biomass and conventional hydro power plants
complement each other as energy sources along
one year. As a measurable benefit from such seasonal
complementarity, it was estimated that each 1000
MW average produced by biomass plants between
April and October provides the Southeast dams
with an increase of 4% in the water storage reserves,
thus contributing to reduce both the risk of energy
deficit and the operational marginal costs. A similar
behaviour has been identified in the comparison
between conventional hydro and wind power
production in the Brazilian Northeast region.
3.2 Proximity to the load centres
Wind, small hydro and biomass plants are
relatively small size projects, leading to short
32
ELETROEVOLUÇÃO JUNHO 2011
construction times and low environmental
impact. Theoretically, they are well suited to be
placed close to the load centres, thus postponing
investments in the transmission system
expansion. However, the seasonal characteristic
of these sources must be taken into account,
given that during some months their power
production may be drastically reduced or even
turn to small loads, as most of the sugar cane
biomass plants in the off season.
3.3 Expected availability
The power delivered to the system by the sugar
cane biomass plants is approximately constant in
the sugar cane harvest season. This is a consequence
of the intense activity in the production of sugar
and ethanol, requiring large and permanent steam
supply which also drives the generators in the CHP
process.
4.0 MAIN CHALLENGES TO THE LARGE SCALE
INTEGRATION OF NEW RENEWABLE SOURCES
The access to the electrical grid is a right
guaranteed to any generation asset owner in Brazil.
It is founded in some principles of the electrical
sector model in force, involving non-discriminatory
treatment to users, compensation of the transport
costs, encouragement to new investment in the
supply expansion and tariff modicity as a directive
for the rational use of the electrical system facilities,
as well as the design of the grid expansion and
reinforcement.
One of the challenges to the integration of new
renewable sources faced so far was to establish
technical requirements in the Grid Code to be
fulfilled by the plants. Especially for the wind power
plants, many meetings with the manufacturers
were carried out in this stage, both to ensure
the compliance with the Grid Code technical
requirements and raise the information needed to
develop computer models to be used in the system
studies.
Along this section the principal concerns related
to the integration of new sources, renewable ones in
particular, are presented from a system operator point
of view.
bienal paris 2010
4.1 Impact on the grid expansion
The shallow connection concept is adopted in
Brazil, being the generator owner responsible for
building the last mile connectivity, if it comprises
transmission facilities used exclusively by that
power plant. Regardless the type of energy source
to access the grid, detailed analyses of the electrical
connection issues are routinely done, in which both
local and system-wide effects associated with the
introduction of that new element are determined.
The recommendations from such analyses (e.g.
construction of new lines, refurbishment of
existing facilities, reactive power compensation,
etc.) to guarantee the compliance of the system
performance with the Grid Code standards are taken
into account during the Three Year Consolidated
Plan assembly.
were supposed to start operation as follows: 66
until 2009, 31 in 2010 and the remaining up to 2012.
The connection to the grid for almost all the plants
was intended to be through the HV (mainly 138
kV and 88 kV) network that comprises the regional
transmission and distribution systems in the interior
of São Paulo. These systems, which are fed by the
Main Grid in several step-down (e.g. 440 kV to 138 kV)
substations are responsible for the supply of roughly
half of the state demand.
Steady state studies indicated that only few grid
reinforcements, other than those already designed to
be in operation within three years, would be necessary
as a consequence of the large scale integration of
biomass cogeneration in São Paulo. In some cases
remedial actions, such as network reconfiguration
and special protection schemes (e.g. tripping of some
biomass cogeneration plants after line outages),
Connection to the existing grid – few would be necessary to avoid bus under-voltages and
reinforcements needed
line/transformer overloads while the reinforcements
The first energy auction exclusively on the are not completely implemented. The studies also
biomass power generation (LER_BIO) raised the indicated that short-circuit currents in some 138 kV
interest of many ethanol producers, especially in the substations would increase significantly, resulting in
state of São Paulo, willing to make revenue on their the overrating of 38 circuit breakers.
energy surplus. Therefore, a potentially high number
The WG report [3] was taken by the biomass
of candidate cogeneration plants were identified, generation owners in the state of São Paulo as a valid
making necessary a coordinating effort in the technical reference to apply for the auction (LER_BIO).
analysis of the large scale integration of such sources These studies were brought up to date in November
to the grid. In October 2007 a multi-institutional 2008 to consider a fair (and reduced) estimate of the
working group comprising more than 25 skilled cogeneration to be connected to grid, including the
professionals on power system analysis was created auction results. Moreover, the analyses were extended
with the following assignments:
to consider improved estimates of cogeneration
• consolidate the estimate of biomass plants to connect the existing grid in the states of
cogeneration plants in São Paulo willing the grid Minas Gerais, Mato Grosso do Sul and Goiás. Table
connection within a 4-year horizon
III depicts the net injection and nameplate based
• determine the capacity of the existing/planned capacity amounts considered in this evaluation.
electrical system to allow the intended surplus
power injection by those plants
Table III – Biomass cogeneration to be connected
• identify the need of network (both transmission to the existing grid as estimated in 2008
and distribution) expansion or reinforcements to
accommodate the intended connections
• identify regulatory issues, especially those
related with the sharing of connection facilities.
A total of 103 biomass cogeneration plants,
Three biomass cogeneration plants were
either new or refurbished, were included in the WG
consolidated estimate, gathering a power surplus of considered in the state of Minas Gerais, all connected
4244 MW to be injected to the grid [2]. These plants to the 138 kV distribution grid in the western region,
ELETROEVOLUÇÃO JUNHO 2011
33
bienal paris 2010
known as Triangle, which neighbours the northern
São Paulo. In the state of Mato Grosso do Sul the
cogeneration plants are to be connected to the local
distribution and, in Goiás, three plants with ratings
above 100 MVA intended to inject its surplus power
to the Main Grid through new 230 kV substations.
Connection to the existing grid – expansion
needed
The state of Mato Grosso is almost three-times
larger in area than São Paulo but its power system
is by far less complex and meshed. Until the mid2000’s the southern Mato Grosso was crossed by a
230 kV corridor from East to West, having a 500 kV
transmission line running in parallel until the capital
Cuiabá, from where a 450 km single 230 kV line was
headed to the North. At that time, a hydroelectric
generation potential around 1500 MW was indicated
in the state of Mato Grosso, being 3/4 of this amount
based on 67 small hydro power plants to start
operation within a 3-year period. These new power
plants would be mostly located in the western/northwestern Mato Grosso, a region supplied by a single
138 kV distribution line. System planning studies
were then carried out to develop a transmission
expansion proposal based on 230 kV facilities
(including 230/138 kV substations) to strengthen the
major power corridors in the state of Mato Grosso
and, hence, transport the full production of the new
conventional and small hydro plants. Part of the new
230 kV grid is already in operation and the remaining
facilities are to be completed in the mid-2010. From
the initial hydroelectric expansion estimate of 1500
MW, approximately 550 MW on small hydro power
plants are in service or scheduled to start operation
up to 2011.
Development of a new grid
Simultaneously to the WG on the integration
of the biomass cogeneration plants in São Paulo, a
system planning study was carried out to determine
the grid expansion solution to allow the integration
of 31 biomass (2250 MW) and 4 small hydro plants
(65 MW) sparsely placed in the states of Mato Grosso
do Sul and Goiás [4]. The electrical grids in both states
are roughly comparable to that in Mato Grosso, i.e. the
existing transmission facilities are concentrated in a
34
ELETROEVOLUÇÃO JUNHO 2011
portion of the territory and the distribution system
is not robust enough to transport the intended
generation.
The solution developed by the planning studies
was the adoption of collector systems carefully placed
to minimize costs, both in investment and losses, thus
allowing the shared connection of as many power
plants as possible. In 2008 a decree established rules
for the shared generation connection, so they could
be a viable means to integrate pools of power plants,
especially those located in the Greenfield, though
far from the load centres and major transmission
corridors. This approach is being considered in
the integration of many of the wind power plants
auctioned off in December 2009 (LER_WIND).
4.2 Impact on the operational scheduling
Wind generation in particular is a concern for
the operational programming due to the difficulties
with the wind forecasting. In the Brazilian Northeast
region, the system operator receives the monthly
energy forecasting of each wind power plant
connected to the Main Grid, with a week to week
granularity. Based on the past production of each
wind farm, the information received from the wind
plant owner is consolidated and it is divided day to
day, for each 30 minutes. For now, in the South of
Brazil the wind forecast is used, as an auxiliary tool to
prepare the daily schedule.
Regarding the biomass generation, the seasonal
behaviour of this new renewable source comes as a
paramount concern, given that it imposes significant
power flow variations to the HV and EHV networks,
potentially amplifying the operational difficulties to
control bus voltages and equipment loading.
4.3 Impact on the system performance [5]
Given the disperse nature of the new renewable
sources, two basic aspects might be addressed
when the effect upon the system performance
is a concern: (i) new renewable sources shall
comply with the minimum protection and control
requirements to guarantee the operational security;
(ii) new renewable sources shall not be disconnected
from the grid during system disturbances leading
to frequency oscillations and voltage decline,
otherwise they could amplify the consequences of
the disturbance itself. Therefore, a permanent effort
bienal paris 2010
must be made to improve the requirements in the
Grid Code [6].
[4]J. Ludwig; T. Martins; L.M. Thomé; R. Chabar “O
Planejamento das Instalações Compartilhadas de
Geração (ICGs)” (XX SNPTEE – Seminário Nacional
5.0 CONCLUSION
de Produção e Transmissão de Energia Elétrica,
Recife, Brasil 22-25 November 2009) in Portuguese
The power industry in Brazil is highly based on [5]P. Gomes; A.C.B. Martins; C.R. Zani; S.L.A. Sardinha
renewable energy sources and this characteristic is
“Connection Requirements and Grid Codes for
to be maintained, with enhancing diversity, in the
Distributed Generation” (2009 CIGRE/IEEE PES
decades to come. The large scale integration of new
Joint Symposium - Integration of Wide-Scale
renewable energy sources to the grid has started,
Renewable Resources Into the Power Delivery
being biomass cogeneration and small hydro plants
System, Calgary, 29-31 July 2009)
the most demanding in terms of concrete actions [6]
Procedimentos de Rede. (ONS – Operador
so far. The acquired technical knowledge, both in
Nacional do Sistema Elétrico, www.ons.org.br) in
the particular characteristics of the new renewable
Portuguese.
sources and in the effects resulting of their
interaction with the bulk power system, is a key factor
for the successful integration process. Therefore, a
coordinated involvement of manufacturers, utilities,
system planning/operation experts and regulatory
agencies is needed as a means to improve rules
and requirements to afford an economic and safe
participation of the new renewable sources.
6.0 ACKNOWLEDGEMENT
The authors wish to express their appreciation
to Mr. Dalton O.C. Brasil, from ONS, for the valuable
discussions during the preparation of this paper.
7.0 BIBLIOGRAPHY
[1]Proposta para a Expansão da Geração Eólica no
Brasil. (EPE – Empresa de Pesquisa Energética Nota
Técnica PRE 01/2009, February 2009, www.epe.
gov.br) in Portuguese
[2]P. Gomes; I. Gárdos; R.D. Furst; S.L.A. Sardinha; C.G.
Martins; A. Bianco “Integração em Larga Escala
de Recursos Renováveis ao Sistema Interligado
Nacional” (XX SNPTEE – Seminário Nacional de
Produção e Transmissão de Energia Elétrica, Recife,
Brasil 22-25 November 2009) in Portuguese
[3]Integração dos Empreendimentos de Geração
a Biomassa no Estado de São Paulo. (ONS –
Operador Nacional do Sistema Elétrico Nota
Técnica 008/2008, January 2008) in Portuguese
ELETROEVOLUÇÃO JUNHO 2011
35
bienal paris 2010
Artigo C2-201 apresentado na Bienal Paris 2010
Brazilian Power System: Criteria, Operating
Standard Metrics and Performance Indicators
SAULO J. N. CISNEIROS
PAULO GOMES
DALTON O. C. BRASIL
SILVIA S. C. BRASIL
ONS – OPERADOR NACIONAL
DO SISTEMA ELÉTRICO
SUMMARY - The first part of the paper analyses Brazilian system security
principles and criteria in terms of the basic severity levels to be used in normal
conditions. Also analyzed are alternative criteria to be applied in special
situations or during specific configurations of power system installations
with the objective of increasing power system security, adequacy and
reliability.
The second part of the paper describes in detail the Operating Standard
Metrics and Performance Indicators of the Brazilian power system. These
indicators are established in the Grid Procedures and are approved by the
regulator. They represent a global measure of the security and adequacy of
the power system as well as a measure of the service provided by the bulk
power system at the specific points in terms of the continuity of supplied
energy.
The third part of the paper presents some of the experiences and results
obtained from the use of these indicators. The procedures, metrics and
indicators described in the paper are very important tools for balancing
the trade-off between transmission limits versus security and quality levels.
They have been used successfully in the Brazilian interconnected system to
evaluate and improve power system performance. Moreover, they provide
conditions for consistent application of the criteria defined, thus minimizing
the risk of unequal treatment for different customers.
The final part of the paper presents conclusions and remarks on the
role of the criteria, operating standard metrics and performance indicators
applied to the Brazilian power system, including the trade-off in the dilemma
between how to maximize transmission system limits and keep adequate
levels of security, adequacy and reliability.
KEYWORDS - Operating standard metrics - performance indicators criteria - transmission system limits - security - adequacy - reliability.
1. 0 INTRODUCTION
In the restructured environment, there are increasing market actor and
end consumer demands for better power system performance. In this
context, adequate criteria, operating standard metrics and performance
indicators applied to power system security, adequacy and reliability play
an important role in managing the power system risks for all of the players
involved. They contribute to balance the trade-off between transmission
limits versus security and quality levels, and they have been used to evaluate
and improve Brazilian power system performance. Performance Indicators
36
ELETROEVOLUÇÃO JUNHO 2011
bienal paris 2010
can be characterized in terms of security, adequacy
and reliability.
In terms of security, the indicators evaluate
the power system performance during abnormal
conditions in terms of its capacity to resist
contingencies. These performance indicators
calculate and present the robustness of the power
system to resist disturbances without cut of load,
as well as the severity level of each contingency
according to defined metrics.
In terms of adequacy, the indicators evaluate
the power system voltage and frequency
performance according to the principles presented
hereafter. Regarding voltage indicators, in normal
situations and in contingency cases, voltages in
the permanent state in the connection points of
the Basic Transmission Grid (230kV and above)
should observe the rules as defined directly by the
regulator according to the Adequate, Precarious and
Critical classification scheme. Concerning frequency
indicators, power system frequency should be
placed between the minimum and maximum value
interval under normal conditions and in case of
power system disturbances. The frequency should
return to the minimum and maximum value interval
no later than a defined time after exiting this interval.
In terms of reliability, the indicators evaluate the
service provided by the Basic Transmission Grid to
Distribution Companies and Free Consumers. These
indicators are calculated monthly and yearly, and
may be aggregated by System, Subsystem, Region,
State or Agent (Distribution Company or Free
Consumer). For every indicator a monthly and yearly
reference standard should be established based
on both the operational statistical data and the
implemented improvements to the power system.
These reference standards establish the limits that
should be respected for every indicator.
2. 0 POWER SYSTEM SECURITY CRITERIA
2.1. BASIC SYSTEM SECURITY CRITERION
The Brazilian power system is planned to resist
N-1 contingency severity level. N-1 is used as a basic
security criterion all over the Brazilian interconnected
system. After a N-1 contingency, the following
measures are adopted in order to reestablish the
N-1 basic security criterion: insert shunt and series
capacitors, remove shunt reactors, change load
tap of transformers, redispatch hydro generation,
redispatch and start thermal generation, reallocate
loads through sub-transmission and distribution
systems, open circuits, separate bus bars of power
system installations and make islands.
These operational measures are adopted as soon
as possible as defined in the Grid Procedures. There is
no defined time to reestablish the N-1 severity level
in the new situation after the single contingency. Cut
off load is not permitted at any time. If the measures
adopted are not sufficient to reach this objective,
power system defense plans have to be defined in
the operation planning studies to prevent blackouts
and reduce the impact on the power system to a
minimum in case of another N-1 contingency. In this
case, cut off load is permitted beyond the measures
adopted previously.
Criteria, standards and requests of security and
reliability are established in the grid procedures to
be considered in the configuration of generation
and transmission power plants. The highest level of
standards is used in the configuration of main and
strategic power system installations.
2.2. ADDITIONAL SYSTEM SECURITY CRITERIA
In the operational planning phase, N-2 severity
level is considered in the following contingencies
with the objective of increasing system security: (a)
outage of two single overhead lines on the same
pylons; (b) outage of two single overhead lines
on distinct pylons in the same corridor; (c) outage
of two single overhead lines on distinct pylons
in the same area where there is occurrence of
natural phenomena or bush-fire; or (d) loss of bus
bar section; in case of at least one of the following
situations: (a) there is high evidence of the possibility
of these kinds of contingency, proved by statistical
data; (b) there is high loss of load in the region or
area affected by the contingencies described above.
In the short term operational planning, with the
objective of evaluating and defining conditions for
scheduled outages, N-2 severity level is considered
in the following contingencies: (a) outage of two
single overhead lines on the same pylons; (b) outage
of two single overhead lines on distinct pylons or
ELETROEVOLUÇÃO JUNHO 2011
37
bienal paris 2010
two main equipments, when only one event can
cause these double outages; (c) outage of one
single overhead line, one main equipment, or bus
bar section, followed of circuit breaker failure, which
provoke these kinds of N-2 contingency, in case of
at least one of the following situations: (a) there is
high evidence of the possibility of these kinds of
contingency, proved by statistical data; (b) there is a
significant loss of load in the region or area affected
by the contingencies described above; (c) actuation
of special protection schemes.
After a N-2 contingency, the same measures
used in case of a N-1 contingency and described in
previous item 2.1 are adopted with the objective of
reestablishing the normal state of the power system
as soon as possible. There is no defined time for this.
Cut off load is not permitted at any time. In special
situations during short term operational planning,
cut off load can be permitted and made by special
protection schemes. In this new stage, power system
defense plans have to be defined in the operation
planning studies to prevent blackouts and reduce
the impact on the power system to a minimum in
case of a N-1 contingency. In this new case, cut off
load is permitted beyond the measures adopted
previously.
3.0 OPERATING STANDARD METRICS AND
PERFORMANCE INDICATORS
This part describes in detail the Operating
Standard Metrics and Performance Indicators of
the Brazilian power system. These indicators are
established in the Grid Procedures and must be
approved by the regulator.
3.1. OBJECTIVES OF PERFORMANCE INDICATORS
They represent a measure of the security,
adequacy and reliability of the power system as
well as a measure of the service provided by the
interconnected power system at the specific points
in terms of continuity and quality of the supplied
energy. The main objectives of the performance
indicators are:
• Provide clear measurements of security,
adequacy and reliability of the power system
performance.
38
ELETROEVOLUÇÃO JUNHO 2011
• Balance the dilemma: how to maximize
transmission system limits with adequate security
and quality levels.
• Indicate clear solutions for the management of
power system risks.
The service provided by the interconnected
power system is evaluated by performance
indicators calculated monthly and yearly, and
aggregated by System, Subsystem, Region, State or
Agent (Distribution Company or Free Consumer)
according to the case.
3.2.
THE
SECURITY
PERFORMANCE
INDICATORS
The security of the interconnected power system
is evaluated by performance indicators defined to
measure the robustness of the Basic Transmission
Grid related to the service provided to Distribution
Companies and Free Consumers. These indicators
are calculated monthly and yearly, and may be
aggregated by System, Subsystem or Region. For
every indicator a monthly and yearly reference
standard should be established based on both the
operational statistical data and the implemented
improvements to the power system. These reference
standards establish the limits that should be
respected for every indicator. The main security
performance indicators are described below.
3.2.1. Robustness of the Interconnected
Power System – RSIN
RSIN is the proportion between the number
of disturbances without loss of load and the
total number of disturbances occurred in the
interconnected power system in a specific time
period (month or year). The main objective of
this indicator is to evaluate the robustness of the
interconnected power system (basic transmission
grid) to resist disturbances without loss of load.
It is calculated by the formula below:
Where: NsccSIN = number of disturbances
without loss of load;
NtSIN = total number of disturbances.
bienal paris 2010
3.2.2. Robustness of the Interconnected Power
System for N-1 Contingency Severity Level – RMCS
RMCS is the proportion between the number of
disturbances caused by N-1 contingency severity
level without loss of load and the total number of
disturbances caused by N-1 contingency severity
level occurred in the basic transmission grid in a
specific month. The objective of this indicator is
evaluating de robustness of the basic transmission
grid to resist N-1 contingency severity level without
loss of load of Distribution Companies and Free
Consumers. The reference standard for this indicator
is 100%, because the Brazilian power system is
planned to resist N-1 contingency severity level.
It is calculated by the formula below:
Where:
NsccMCS = number of disturbances caused by N-1
contingency severity level without loss of load;
NtMCS = total number of disturbances caused by
N-1 contingency severity level.
3.3.THE ADEQUACY PERFORMANCE INDICATORS
The adequacy of the service provided by the
power system is evaluated by operating standard
metrics defined in order to measure the power
system voltage and frequency performance
according to the principles and criteria defined
below.
3.3.1. Voltage Standards
Regarding voltage indicators, in normal
situations and in contingency cases, voltages in the
permanent state in the connection points of the
Basic Transmission Grid (230kV and above) should
observe the rules as defined directly by the regulator
according to the following classification scheme:
• Adequate : 0.98 < V < 1.03 p.u.
• Precarious: 0.95 < V < 0.98 p.u. or 1.03 < V < 1.05 p.u.
• Critical : V < 0.95 p.u. or V > 1.05 p.u.
Voltages (V) in the connection points or load
points of the Primary Distribution Grid (below 230kV
and up to 1 kV) should observe the following levels
as defined by the regulator:
• Adequate : 0.95 < V < 1.03 p.u.
• Precarious: 0.90 < V < 0.95 p.u. or 1.03 < V < 1.05 p.u.
• Critical : V < 0.90 p.u. or V > 1.05 p.u.
Precarious and critical voltages are not accepted
during normal conditions; in these cases different
penalties shall be applied to those responsible.
Precarious voltages are accepted in contingency
cases; in case of permanent under voltage below
0.90 p.u., load shedding will be applied by means
of system protection schemes. During restoration
processes, voltages will be accepted in the 0.90-1.10
p.u. interval in all bus bars of the power system. A
voltage variation of 0.05 p.u. is the switching limit for
power system equipment such as shunt capacitors,
shunt reactors, etc.
3.3.2. Frequency Standards
Under normal conditions, the power system
frequency should be placed between 59.9 and
60.1 Hz. In case of power system disturbances, the
frequency should return to the 59.5-60.5 Hz interval
no later than 30 seconds after exiting this interval.
If generation is not sufficient to restore the loadgeneration balance, load shedding will be applied
in order to observe the following under-frequencies:
57.0 Hz as the minimum limit, with 57.5 Hz and 58.5
Hz for only 5 and 10 seconds, respectively. In case
of more severe disturbances, islands with thermal
power plants should be formed; the frequency in the
islands consisting only of hydro plants may reach the
minimum limit of 56.5 Hz.
In case of load loss disturbances, it could become
necessary to implement schemes for cutting off
generation in order to observe the following overfrequencies: 66.0 Hz as the maximum limit, with 63.5
and 62.0 Hz for only 10 and 30 seconds, respectively.
3.4. THE RELIABILITY PERFORMANCE
INDICATORS
The reliability of the interconnected power
system is evaluated by performance indicators
defined to measure the service provided by the
Basic Transmission Grid to Distribution Companies
and Free Consumers. These indicators are calculated
monthly and yearly, and may be aggregated
ELETROEVOLUÇÃO JUNHO 2011
39
bienal paris 2010
by System, Subsystem, Region, State or Agent
(Distribution Company or Free Consumer). For every
indicator a monthly and yearly reference standard
should be established based on both the operational
statistical data and the implemented improvements
to the power system. These reference standards
establish the limits that should be respected for
every indicator. The main reliability performance
indicators are described below.
4. 0 EXPERIENCES AND RESULTS OBTAINED
This part of the paper presents some of the
experiences and results obtained from the use of the
performance indicators.
4.1. THE SECURITY PERFORMANCE
INDICATORS
The figure below shows the results of the
indicator Robustness of the Interconnected Power
System – RSIN from 2002 until 2008.
3.4.1. Load Interruption Equivalent Duration
– DREQ
RSIN – Robustness of the Interconnected Power System
(%)
DREQ is the equivalent duration of all loads’
interruptions corresponding to the total load of the
specific area, where each duration has time equal
to or above 1 minute. The objective of this indicator
is evaluating the robustness of the interconnected
power system in terms of reliability and time of
recovering when submitted to a disturbance.
The figure below shows the results of the
It is expressed in minutes and calculated by the
indicator Robustness of the Interconnected Power
formula below:
System for N-1 Contingency Severity Level – RMCS
from 2002 until 2008.
Where: Pmax = maximum load demand occurred
in a specific month or year.
Pint = maximum load demand interrupted
in a disturbance “i”.
Tint = time of interruption of load in a
disturbance “i”.
4.4.2. Load Interruption Equivalent Frequency
– FREQ
FREQ is the number of times of loads’interruptions
corresponding to the total load of the specific area,
where each duration has time equal to or above 1
minute. The objective of this indicator is evaluating
the reliability of the interconnected power system.
It is calculated by the formula below:
RMCS – Robustness of the IPS for N-1 Contingency (%)
4.2. THE RELIABILITY PERFORMANCE
INDICATORS
The figure below shows the results of the indicator
Load Interruption Equivalent Duration – DREQ from
2000 until 2008.
DREQ – Load Interruption Equivalent Duration (minutes)
Where: Pmax = maximum load demand occurred
in a specific month.
Pint = maximum load demand interrupted
in a disturbance “i”.
40
ELETROEVOLUÇÃO JUNHO 2011
bienal paris 2010
FREQ – Load Interruption Equivalent Frequency
The figure below shows the results of the
indicator Load Interruption Equivalent Frequency –
FREQ from 2000 until 2008.
4.3. REMARKS ABOUT PEFORMANCE
INDICATORS
The results of the security (from 2002 until 2008)
and reliability (from 2000 until 2008) performance
indicators of the interconnected power system
when submitted to disturbances occurred at the
basic transmission grid show the important remarks
presented below.
a) The results of the Robustness of the
Interconnected Power System have been higher than
85%, which means less than 15% of the disturbances
in the interconnected power system have caused
loss of load of the Distribution Companies and Free
Consumers.
b) The results of the Robustness of the
Interconnected Power System for N-1 Contingency
Severity Level are very close to 100%, showing by
evidence that the interconnected power system can
resist single contingency without loss of load, as it is
planned.
c) The results of the Load Interruption Equivalent
Duration are around or less than 20 minutes per year.
The exception are the years 2002 and 2005 because
the following reasons. In January 2002 occurred a
blackout that impacted Southeast, Midwest and
South regions, what increased hardly the indicators
in 2002. In 2005, the South region rivers had a very
dry period and the interconnection between
Southeast and South regions was operated close
to the maximum limits. Consequently, the system
security level was reduced in this year.
d) In the same way, the results of the Load
Interruption Equivalent Frequency are around or less
than 0.5. The exception is the years 2002 and 2005
because the same reasons described above.
e) The Brazilian interconnected system is of
continental magnitude, the generation capacity
is prevailingly hydroelectric with big hydroplants
far from the load centers, and with several long
transmission lines (> 90,000 km). The demand from
2000 until 2008 increased almost 20% and reached
64,000 MW in 2008. The complexity of the power
system operation also has increased, but the results
of the performance indicators are very good in all
the period observed, except in the years 2002 and
2005.
f ) This is why the Brazilian transmission system
has had big evolution in the recent past years with
the following objectives: reinforce the regional
interconnections among the big regions, reinforce all
the Brazilian interconnected power system to resist
N-1 contingency severity level, and improve the old
and existing installations to obey new standards and
request defined by the Brazilian Grid Code. The final
objectives are increase power system security and
reliability and increase power system transmission
limits.
5.0 CONCLUSIONS AND REMARKS
a) The Brazilian power system is planned to resist
N-1 contingency severity levels. N-1 is used as a basic
security criterion. In the operational planning phase,
N-2 severity level is applied in case of specified
contingencies (defined in item 2.2) in order to
increase system security.
b) The Operating Standard Metrics and
Performance Indicators described in this paper are
very important tools for control the security and
reliability and management the power system risks.
They have been used successfully in the Brazilian
interconnected system to evaluate and improve
power system performance. Moreover, they provide
conditions for consistent application of the criteria
defined, thus minimizing the risk of unequal
treatment for different customers.
c) These Performance Indicators are very
consistent and simple. In this context simplicity is
most important than complexity, as well as to make
continuous follow up, analysis and conclusions of
the results obtained.
d) The results of the performance indicators are
very good in all the period observed, except in the
ELETROEVOLUÇÃO JUNHO 2011
41
bienal paris 2010
years 2002 and 2005, because the reasons described
in item 4.3.
e) The perspectives are maintaining the bases and
a permanent improving of the Brazilian Operating
Standard Metrics and Performance Indicators, and
especially improving the reference standards for
each one of the indicators.
6.0 BIBLIOGRAPHY
[1] Saulo J. N. Cisneiros, Brazilian System Operating
Standards, (Brazilian System Operator, 2003).
[2]
CIGRÉ JWG C2/C5-05, Electric Power System
Operating Standards: A Search for Justification,
(Cigré Paris Session, 2004).
[3]CIGRÉ JWG C2/C5-05, Congestion Management:
The System Operators Challenge to Balance
Transmission Transfer Capacity with an Acceptable
Security Level, (Symposium on Congestion
Management in a Market Environment, San
Antonio, Texas, 2005).
[4]
Saulo J. N. Cisneiros, Brazilian System Security
Standards: How to Maximize Transmission System
Limits with an Adequate Security Level, (Cigré
Paris Session, 2006).
[5] Saulo J. N. Cisneiros, Brazilian System Security
and Reliability: Criteria, Methods and Performance
Indicators, (Cigré Regional Meeting, Tallinn, Estonia,
2007).
[6] Silvia S. C. Brasil et all, Reports about Performance
Indicators (Brazilian System Operator - ONS)
[7] Brazilian Grid Procedures - Module 25 (Brazilian
System Operator - ONS) - www.ons.org.br.
42
ELETROEVOLUÇÃO JUNHO 2011
bienal paris 2010
Artigo C3-202 apresentado na Bienal Paris 2010
Analysis of Socio-environmental Costs in the
Operational Phase of Hydropower Projects in Brazil
SUMMARY - This paper presents some questions related to the
consideration of environmental costs at the operation phase of hydropower
plants. An exercise was done based on the expenses of CESP – Companhia
Energética de São Paulo in 5 hydropower plants during 2008 showing the
portion that can be appropriated as investments and what must be included
in the company budget, according to the actual Brazilian electrical sector
regulation. The authors suggest some points to be developed in future
researches on this subject and with external costs. Also, emphasizes the
necessity of detailed items of environmental costs being considered in the
official manual of National Agency for Electric Energy.
ANDRÉ L. MUSTAFÁ
MIRIAN R. NUTI
CESP – Companhia Energética
de São Paulo
KEYWORDS - environmental costs, hydropower plants, operational costs.
1. 0 Introduction
Electricity plays a fundamental and strategic role to all societies, especially
for developing countries, because energy is a key aspect for social inclusion
and for economic development as well to improve population quality of life.
The new Brazilian Power sector model (2004) was designed to increase
the level of security of energy supply, improving the reliability of the system
and favoring the tariff modicity through the best combination of sources of
energy available, which depends on prices offered in regular energy biddings.
These aspects as well the planning of the sector are a signal of the
Conceding Power (Ministry of Mining and Energy) to reinforce the regulatory
security, by offering adequate opportunities for agents who are interested in
participate in the efforts to promote the national energy supply.
Since 2004, in the environmental context, this regulatory framework
requires the Preliminary Permit (PP) for each project as a condition to
participate in the energy bidding. This is the first of three permits necessary
to complete the environmental conformity to the Brazilian licensing process.
The other two are the Installation Permit (IP) and the Operation Permit (OP).
The current regulatory framework divides the costs approach of a project
in two large phases. The first covers since the preliminary planning studies
until the operation of the hydropower project (HPP). The second is related
only to the HPP commercial operation phase. To elaborate budgets there
are specific rules to both phases: investment costs (planning phase) and
operation and maintenance costs (commercial operation phase). The socioenvironmental aspects of these two phases must follow the rules of the
ELETROEVOLUÇÃO JUNHO 2011
43
bienal paris 2010
Brazilian Regulatory Agency (Aneel) normalized by
the Eletrobras Budget Pattern specific to the planning
phase where the environmental and social costs are
detailed and by the Power Sector Accountability
Manual for the operation phase.
This situation is even more important when
is considered the current discussion focusing the
different modalities and alternatives to the concession
renovation for the entire hydro generator system, that
will occur 2011 on. The possibilities are many varying
from costly options to be necessary to proceed the
renovation as a new concession process. In any
situation it will be necessary to determine the value
of the financial asset and the O&M costs, where the
adequate actions for the environmental compliance
should be considered.
The basic regulation for the concession renovation
is being discussed since 2008 and there are a great
expectative between the agents for a solid rule due to
its importance to the actual regulation of the Brazilian
power sector.
This is the context of our reflection and the
objective of this paper is to identify and present the
major groups of costs arising from the adequate
social-environmental measures conducted in
the operational phase of a HPP to maintain its
environmental compliance. The basis to elaborate
the analysis will be the observation of hydropower
projects in operation under responsibility of São Paulo
Energetic Company - CESP.
The authors are convinced that the subject
started to be developed in this Paper can contribute
to (i) an eventual change in the current regulation
of the social-environmental costs of HPP; (ii) to
better consolidate the budgets for the renovation
of hydropower generation concession; (iii) to the
international debate, it can show the internal costs
that come from contemporary demands and reveal
some external costs that are not known or considered
until now.
2. 0 Environmental costs in the Brazilian
regulatory scenario
2.1. History
In the 1990, the Brazilian electrical sector has
developed studies to incorporate in their planning
44
ELETROEVOLUÇÃO JUNHO 2011
the costs related to social and environmental
aspects of the implementation of its projects. These
definitions follow the literature and standardization
of the Orçamento Padrão Eletrobrás (Eletrobras
Budget Standards) and the DNAEE / ANEEL (the
National Agency for Electric Energy) Chart of
Accounts. Following these references we adopted
the division between investment costs and
operating and maintenance costs for the stages
of planning (up to the entry into operation of
machines) and operation of hydroelectric plants,
the latter including the costs of maintenance and
operation. For items of environmental investment
costs, spreadsheets with specific guidelines were
prepared for the appropriation in the accounts as
well as an indication of the unit values of reference.
According to the definitions for the social and
environmental costs carried out under the COMASE
(Committee of Environment of the Electrical Sector),
the costs of degradation are the ones that suit the
needs of budgeting for the sector’s activities. Once
incorporated into the regulatory procedures all
costs able to be monetized, there would remain
the social costs or external costs, insusceptible to
estimate at this stage.
Later, the idea that social and environmental
costs are basically cost of investment was also
incorporated into the manuals for the production of
the inventory, feasibility and basic design. This notion
becomes crucial to allow the expenses arising from
environmental activities (management, licensing
and agreements, among others) were incorporated
into the cost of the energy business and recognized
as an intrinsic variable composition of its costs. Even
with the changes in the patterns of regulation in
three in the last ten years, this view remained. The
use of this concept, however, is not simple, as will be
shown the next item.
2.2. The accountability Manual (Aneel, 2007)
The first Chart of Accounts for the electric
utility was established in 1950, and was used until
1978. In 1979 a new document comes into force,
completely redesigned and updated to meet the
legislation of the time. From this date until 2007
the document has been updated and the most
significant updates were the three took place after
bienal paris 2010
the creation of Aneel in 1996. The document that
currently regulates the accounting expenses of the
electric power sector is the Accounting Manual for
Public Service of Electric Power, as of 2007.
In summary, the goals formulated in the
document are:
(a) Standardize the accounting procedures
adopted by the utilities allowing control and
monitoring by ANEEL; (b) Taking into account the
provisions of relevant legislation, (c) authorize the
preparation of financial statements, management
report and further information that requires
disclosure to follow the Brazilian legislation and
to meet the needs of investors, shareholders,
financial institutions, creditors, consumers,
regulatory bodies and the general public; (d) Allow
adequate verification of the result of the activities
of Generation, Transmission, Distribution and
Marketing, (e) contribute to the evaluation of the
analysis of economic and financial balance of the
concessionaires. (ANEEL, 2007:13)
There is a concern not only to regulate the
procedures but also to contribute to the balance of
utilities and, consequently, the services they provide
There is also a concern in meeting the information
needs, according to the law and the general
public, of issues not only related to the regulatory
accounting but also in terms of transparency
and commitment to sustainable development
issues present reports of social responsibility and
sustainability, which count toward the corporate
image and value of its shares.
Of all guidelines and accounting divisions
present this important document, it is emphasized
to meet the objectives of this article, the passages
where environmental issues are mentioned. There
are not items specific to the environment, which
at first means associated with the premise of the
principles of accounting, which does not distinguish
the activities for which expenditures were made, but
a way of computing them.
Guidelines related to the environment are
in chapter 6 and those specific for hydroelectric
undertakings are listed below:
6.3.14 Environmental Issues
1. The concessionaires and permit holders
must maintain additional records to identify any
spending on the environment, either in Net Profit in
Permanent Assets or Liabilities, and should mention
in the notes to the financial statements provide more
details involved: investments planned and executed
, studies, projects etc.; 2. Expenses related to the
actions of environmental protection, monitoring,
recovery and compensation for environmental
and social impacts, as well as spending on
reforestation and fish hatcheries to meet the
needs of Environmental Protection and Recovery
will be recorded as follows: (a) in hydro plants,
while in service, will be allocated in subaccounts
132.01.1.1.03 - Generation – Power Plants – Assets
in Service - Reservoirs, Dams and Pipelines, and
when under way, will be allocated in subaccount
132.01.1.9.03 - Generation – Power Plants – Works
in Progress - Reservoirs, Dams and Pipelines, as the
cost of reservoir;(...) (e) costs of conservation will be
recorded in subaccount 615.01.1.1 - Generation –
Power Plants- Cost of Operation; when transmission
in subaccount 615.02.1.1 - Transmission – Basic
Network - Cost of Operation; and, when distribution
in subaccount 615.03.1.1 -Distribution - Lines,
Networks and Substations - Cost of Operation. With
respect to contingencies related to the environment,
there should be taken notes of aspects related to
registration and disclosure provisions mentioned in
the Accounting Instruction 6.3.22. (ANEEL, 2007:52)
6.3.27 Financial Results
In addition to the normal expenses of operation
and maintenance, are also considered as cost of
operation costs with the Operational Support,
Environment, the Reintegration shares (except
shares reinstatement of property income) and
Auxiliary Services and Service and Training. (...)
(b) The environment will include the expenses of
the implementation of reforestation activities, fish
hatcheries and related to the need for protection
and restoration, and will count as mentioned in the
Accounting Instruction IC 6.3.14. (ANEEL, 2007:69)
In item 3, below, the use of this structure to the
appropriation of expenditures is commented.
ELETROEVOLUÇÃO JUNHO 2011
45
bienal paris 2010
3. 0 Environmental duties in the operational
phase of Hydro electrical Power Plant
It is a task of the project owner - considering
the PP conditions and all costs before the bidding
– to compose the budget in order to participate
in the bidding and adequate enough to support
all the environmental activities during the studies,
the construction and even in the first period after
operation start but before the first OP renovation.
In the second phase, the operation and
maintenance (O&M) costs, the entrepreneur must
consider to prepare the budget, elaborated according
to the Aneel rules, the necessary funds to the
perfect functioning of the HPP. Nowadays the Aneel
regulamentation to prepare the O&M budget does
not consider the environmental costs in specific items.
It is equivalent to say that after the operation phase
starts all the socio-environmental costs not considered
as investments and included in the bid price will not
be visualized in the official budget of operation phase.
Complementary actions originated in the licensing
process, civil society demands or Public Attorney
requests could be considered only as a global cost of
the project and not as an ordinary cost of O&M project
budget. There is an exception related to the expenses
generated with forestation activities, fish hatcheries
and those related to environment rehabilitation and
protection, as mentioned before (2.2).
The costs of obtaining the operational permit
renovation (yearly or every 5 years), the maintenance
of conservation units created or adopted by the
project under the law, the implementation of other
environmental legal requirements, the maintenance
of the environmental team itself and any other action
to maintain the environmental reliability of the HPP, in
legal and social significance, to give some examples,
are not part of the O&M accountability of the HPP. Part
of them is considered investment costs still remaining
in the operational phase. This fact does not contribute
to know the real value of the activity in one project
and bring difficulties to costs comparison with other
projects and in the whole energetic system.
The exercise carried out for this Technical Report
came from two basic information: the estimated
investment for 06 hydroelectric Companhia Energetica
de Sao Paulo - CESP and the amounts considered for
46
ELETROEVOLUÇÃO JUNHO 2011
accounting, considering the number of plants.
After the entry into operation of the projects,
the commitments arising from actions necessary
to maintain environmental compliance are not fully
accounted by current legislation under the group
called ‘investment’ (environmental actions that are
considered essential and complementary deployment
of the enterprise).
Part of the accounting is in the category called
‘expenses’, due to the guidelines established by the
regulator, and that in case of reversion of assets to the
government, expunge such value from the amount to
be reimbursed to the concessionaire.
In the case of CESP, the total payout in 2008 about
489 million reais, with about 209 million are classified
as “investment” and 280 million reais as ‘spent’.
Referring only to the set of environmental actions,
the release is of the order of 50.6 million reais (10.35%
of total), of which 38.5 million are classified as real
investment “and 12.1 million reais as ‘spent’
The part classified as ‘investment’ (38.5 million
dollars), represents about 76% of total disbursement
in the year 2008 with the set of environmental
actions and should be sufficient to continue the
environmental activities. This value, in case of reversal
of the asset to the government, would be reimbursed
to the concessionaire.
In the category called ‘spent’ (12.1 million reais),
making up about 24% of total disbursement in the
year 2008, it encompassed the rest of the resources
used in the Company’s environmental activity, with
strong predominance of resources for staff and
commitments after departure of the Operating
License, here included the costs with the very renewal
of licenses.
The figures show that a significant proportion
of the resources needed to maintain adequate
environmental compliance of a concessionaire are not
fully considered in the current regulatory framework
in relation to current chart of accounts.
This affirmation becomes even stronger when we
consider that the social and environmental issues of
the enterprises are highly dynamic, requiring constant
adjustment to society and its stakeholders.
For instance, we considered the renewal of a license
to operate a business in the granting of the CFSP. In
this case UHE Eng Sergio Motta (Porto Primavera),
bienal paris 2010
to check how would be classified the activities to
be undertaken at the request of the government’s
environmental agency.
This renewal, in their specific requirements of the
license, comprises a set of 29 programs or specific
environmental actions, of which 25 (almost all)
express the nature of strong demand for specialized
personnel and basic materials classified as “spent” in
accounting.
Not without purpose, this feature can lead to a
more conservative stance by the concessionaire in
the allocation of resources, trying to reduce them
and come to affect the results expected by the
environmental agency.
Thus, over time, the relationship that initially was 3
to 1 (three shares appropriated as an investment for
one as an expense or 76% vs. 24%) tend to be reversed
because the structural demands have already been
accounted, leaving only the expenditure on the
“continuity” of the activity, as seen in the example
above.
In a didactic way, to a farming activity we would have
the implementation and maintenance of a station for
production of fingerlings. This deployment is recorded
in investment and maintenance expenditures. After
the initial period, the activity of producing fingerlings
(expense) remains, requiring staff and supplies such as
food, medicines and consumption materials, boosting
the “expense” to the “investment”,this no longer needed
as the infrastructure of the station has been built.
One can extend the reasoning to other
environmental demands such as “Monitoring of
limnological characteristics and quality of surface
water”, the “Mapping of macrophytes in the reservoir,”
the “Analysis and verification groundwater levels, as
result of filling the reservoir at elevation 257/259m
“, the” Monitoring the fish fauna and eggs and
larvae, in addition to “assessing the efficiency of
implementation, expressed in the manifestation of
the licensing agency.
4.0 Final Considerations and Preliminary
Proposal for the internalization of
environmental costs during the operation
of hydroelectric power plants
Is it really necessary to distinguish environmental
costs from other incurred during the operation?
We begin these final considerations recovering a
cornerstone issue for any recommendation for further
development of this theme.
The preliminary statements of this Technical Report
are aligned with the benefits of knowledge of socioenvironmental costs. It is important to clarify why this
option, but first, there is a different point of view.
The appropriation of environment expenditures
in general entries valid for all other expenditures of
the enterprise is part of a will to simplify accounting
procedures, which largely also means savings in time.
Such an assumption makes sense in a regulatory
environment where it is not necessary to know the
cost break-down entrepreneur.
Where a regulation / measurement of what should
be done is determined by other instruments, both
inside the companies (such as systems management,
security and quality) and because of legal instruments
(fees, taxes, contributions that all entrepreneurs should
bear ).
Finally, among other arguments, there are those
related to the characteristics of the business, where
any optimization service can mean an economic and
financial advantage. After the privatization of public
services this last argument gained strength both in the
competitive world and in the regulatory environment.
The non-detailed discrimination of environmental
costs can also be defended by those who understand
the social and environmental aspects as appointments
intrinsic to the activity and as the other items of cost,
without special detailing. Following this reasoning
opening lines for environmental accounts might not
be necessary.
Moreover, even if one agrees with the need
for optimization and simplification of procedures
and the consideration of environmental aspects as
intrinsic to the business of energy, there are other
important factors to consider, in particular: (1) the
consolidation of environmental management (and
therefore knowledge of the costs associated with it);
(2) transparency of management, including financial,
not only to regulators but also for society ; (3) the use
of natural resources. Considering that the production
and transmission of energy are made with natural
resources, which relate to public service concessions
and, as a rule, a decision with a social cost associated
ELETROEVOLUÇÃO JUNHO 2011
47
bienal paris 2010
with it (displacement, the use of arable land, water
resources and minerals, etc.); (4) that companies take
actions of responsibility and sustainable development
and wish to make public the benefit of their business;
(5) that spending on environmental commitments
arising from negotiations with the licensing bodies,
public ministry and affected groups, may gain in
importance in the accounts of a particular asset in
operation varying without basis of estimates and
significantly affecting the assessment of renewal
licenses.
The Accounting Manual has no current specific
budget lines for environmental costs but only
indicates that these costs should be allocated
in the same sub-account of the buildings, civil
construction and improvements and machinery and
equipment. It is necessary to improve the accounting
procedures of the electricity sector, to show clearly
the costs of operating generations and transmission
systems. According to the authors, the clarity of the
information on the costs of the entrepreneur is crucial
to evaluate the performance of the concession. The
standardization of accounting for environmental costs
related to operation and maintenance of the projects
may additionally make able comparisons between
projects and the definition of performance indicators.
The lack of transparency in the identification
and dissemination of data and information on the
projects create a complex situation both for the
recognition of environmental management systems,
usually required in the licensing process and funding
of projects, but also when discussing alternatives and
arrangements for the renewal of concessions (such as
the generation plants, most of which ends in 2011) or
when discussing the transfer by sale. In both cases, we
must set the value of the asset and its actual cost of
Operation & Maintenance, where the maintenance
of environmental compliance should necessarily be
considered.
The identification, quantification and appropriate
settlement of the costs involved in the stage of
operation of the projects also contributes to the
improved management of environmental facilities
in operation and, more broadly, an open discussion
based on the appropriation of socio-environmental
costs in order to complement the actual regulations.
Considering the discussed aspects, the first
48
ELETROEVOLUÇÃO JUNHO 2011
recommendation of this IT is aimed at increasing the
study and the analysis regarding the explicitation
of the items in the cost of operation of the projects,
through projects of research and development
or consulting works, considering the character of
emergency in the national scene.
On the other hand, to have sufficient theoretical
scope that object must also consider an additional
axis and complementary to that of environmental
accounting, which concerns the externalities or
external costs. At the international scene, attention to
externalities have generated many initiatives with the
broad spectrum projects like ExternE, created in 1991
and developed so far. It is not the objective of this IT to
address this issue. It only records that the two fields of
technical development are linked and under dynamic
reformulation.
5.0 BIBLIOGRAPHY
[1]MANUAL DE CONTABILIDADE DO SERVIÇO PÚBLICO
DE ENERGIA ELÉTRICA. AGÊNCIA NACIONAL DE
ENERGIA ELÉTRICA – ANEEL, 2007.
[2] RENOVAÇÃO DA LICENÇA DE OPERAÇÃO Nº
121/00. IBAMA 2002.
bienal paris 2010
Artigo C3-203 apresentado na Bienal Paris 2010
Procedures to Evaluate Socio-Environmental Costs
during the Planning Phase of Transmission Systems
SUMMARY - The planning process for transmission lines in Brazil begins
with some studies developed to propose a solution to address the need
of supplying a given area, including the Ten Year Expansion Plan and the
development of four studies to prepare a specific project to be tendered in
public bidding, denominated as R1, R2, R3 and R4.
The scope and content of each one of these four reports are defined
by a document (no comma) issued by EPE in May 2005 - “Guidelines for
Developing Technical Reports Related to New Transmission Line Projects”.
These guidelines state that, for specific environmental characteristics that
require a different technical treatment, the environmental analysis should
provide the required items for an estimate of the costs of each one of the
corridor alternatives that are being compared, allowing the comparison of
these alternatives including the environmental costs. However, the social
and environmental costs of transmission line projects have not yet been
totally identified and quantified during the planning phase of transmission
line projects in Brazil.
This paper presents the procedures that are being developed by
the environmental team of EPE for the incorporation of the social and
environmental costs in the planning phase for transmission lines. These
procedures are being included in the early planning phase for the
transmission system of the Belo Monte Hydropower project and will be
included in the development of the R1 Report.
The main items already estimated are related to:
• requirement of higher towers due to crossing over forested areas;
• special structures due to crossing over water courses with a width
greater than the usual extensions between conventional towers; and,
• special mitigation measures due to the need for the construction of
new access roads at forested areas.
Therefore, the development of procedures that allow the identification
of the socio-environmental cost and its incorporation to the planning
phase of transmission systems, particularly for projects to be implemented
in the Amazon region, is an important tool for decision making.
F.P. SERRAN
R.C. FURTADO
H. M. VIEIRA
K. MATOSINHO
Empresa de Pesquisa
Energética - EPE
KEYWORDS - Socio-environmental costs, transmission, planning.
1.0 THE PLANNING PROCESS OF TRANSMISSION LINE SYSTEMS
The planning process for transmission lines in Brazil begins with the
studies developed to propose a solution to address the need of supplying
a given area. This first result is included in the Ten Year Expansion Plan. This
ELETROEVOLUÇÃO JUNHO 2011
49
bienal paris 2010
analysis is a very broad and general one, and it gives
only a first idea of amounts of energy that will be
transported and the main regions and ecosystems
to be crossed. It is important to highlight that the
projects included in the Ten Year Expansion Plan
can be revised and modified due to modification in
foreseen demand and also due to changes in the
generation projects.
The next phase of the planning process is the
development of four studies to prepare a project
to be tendered in public bidding. These studies are
developed usually with a three year period in advance
of the required operation date and include: (i) the R1
Report which analyses the technical and economic
feasibility of the project, taking into account the
socio-environmental aspects; (ii) the R2 Report that
presents the technical details of the main alternative;
(iii) the social and environmental characterization
and analysis of the previously selected transmission
line corridor, presented in the R3 Report; and, (iv) the
R4 Report that establishes the requirements of the
surrounding system, to ensure a suitable interaction
between the new and existing facilities.
Despite some initiatives and the existence of
guidelines for development of the four planning
reports (R1 to R4), the incorporation of socioenvironmental costs during the planning phase is not
yet a routine for the development of these studies and
comparison of alternatives. The socio-environmental
costs are mainly identified and included to the
transmission lines mainly during the feasibility phase
and development of the Environmental Impact
Studies.
One initiative of incorporation of the socioenvironmental costs to the R1 Report was the studies
developed in 2004 for the Tucuruí-Macapá-Manaus
transmission line. This study included the estimate
of socio-environmental cost associated with the
difficulties related to accessibility to isolated areas and
the minimization of socioenvironmental costs of a
project to be located in the Amazon region.
This study and the guidelines issued by EPE in
2005 - “Guidelines for Developing Technical Reports
Related to New Transmission Line Projects” – are being
considered for incorporating the socio-environmental
costs to the study of alternatives for the Belo Monte
hydropower project transmission system.
50
ELETROEVOLUÇÃO JUNHO 2011
According to the Ten Year Expansion Plan (20082017) there will be an increase of the total amount
of transmission line projects in the Amazon from
the existing 3,800 km to approximately 10,200 km
by 2017. It is expected that the implementation of
transmission line projects in this ecosystem will bring
on the need for special structures or environmental
mitigation and compensation measurements in order
to minimize the potential impacts, which may lead to
different costs from the ones usually incurred by the
power sector.
2.0 CASE STUDY
The overall integration of the Belo Monte
Hydropower Project into the Brazilian Interconnected
Transmission System – SIN include two main studies.
The first one, initiated in March 2009, is currently
analyzing three main alternatives including: (i) the
integration of the Belo Monte transmission system
(TS) with the transmission of the hydropower projects
of the Tapajós river; (ii) the integration of the Belo
Monte TS with the hydropower projects of the Teles
Pires river; and, (iii) the integration to the TucuruíMacapá-Manaus transmission line. The second one
is related to the specific transmission system of the
hydropower project to the southeast region. This
study was recently being initiated, in November
2009. The case study considered for this paper is the
first study, involving the three alternatives described
bellow:
• Alternative 1 – Interconnection to the Belo Monte
system, from São Luiz do Tapajós to Xingu;
• Alternative 2 – Interconnection with the
Transmission Line Tucuruí-Macapá-Manaus, from São
Luiz do Tapajós to Oriximiná;
• Alternative 3 – Interconnection with the
Transmission Line of the Teles Pires river system, from
São Luiz do Tapajós to Sinop.
The Ten Year Expansion Plan indicates that the
following operation dates for these hydropower
projects – 2015 to 2016 for the Teles Pires river, 2015 to
2019 for the Tapajós river, and 2015 for the Belo Monte
Hydropower project. The transmission line TucuruíMacapá-Manaus is already being constructed.
Figure 1 depicts a schematic view of the three
alternatives. Despite the selected alternative, another
bienal paris 2010
transmission line should be implemented from the
north to the southeast region of Brazil. This part of the
transmission system, which started to be studied just
in November 2009, was not included in this paper.
The main social and environmental characteristics
of each alternative are presented in Table 1. The
characteristics have been selected taking into
account the aspects that could lead to additional
socioenvironmental costs and could provide an
additional item for decision making. The values shown
below were calculated for a transmission line corridor
of 20 km, the usual width used for planning studies in
Brazil.
The reference map database from PROBIO
(Project of Conservation and Sustainable Use for the
Brazilian Biodiversity) has been used as the thematic
background to survey the land cover and vegetation
items. Other information came from IBGE (Brazilian
Institute of Geography and Statistics) national
basemap and remote sensing sources as Google Earth
and Landsat TM/CBER-S satellite imagery. All these
bases were overlaid in a geographical information
system – GIS – to identify areas with growing human
settlements, dense forests and seasonally flooded
regions.
3.0 SOCIOENVIRONMENTAL COSTS ESTIMATED
The socioenvironmental costs estimated for this
case study were related to:
• requirement of higher towers due to crossing
of forested areas – in those areas of the corridor
located in remote regions and untamed forests, it
engineering measures were proposed to minimize
the interference over the ecosystem: raising the
towers 40 meters to be above the forest canopy
avoiding clear-cuts; decreasing the number of road
accesses; and, narrowing the right-of-way to 15 m. In
those areas with a fragile environment, a tower and
cable deployment system using helicopters is being
considered as a way to minimize the opening of road
accesses.
Figure 1 – Alternatives being studied
ELETROEVOLUÇÃO JUNHO 2011
51
bienal paris 2010
• special structures due to crossing of water
courses with a width greater than the usual
extensions between conventional towers – an
unofficial survey was made with one of cable main
manufacturers for a river crossing of 2,4 km within
the Amazon river. This survey resulted in a price for
the cables of approximately 5,5 million US dollars plus
3,7 million U$ dollars of taxes. This value includes only
the cables. The cost related to the transmission line
additional height for this extension of river crossing
was not included. For the purpose of this alternative
comparison we calculated a price per km based on
the total cost with taxes (9,2 million U$ dollars) for
2,4 km. An approximate price of 3,8 million U$ dollars
per km was used. However, this value did not include
a detailed technical analysis of a river crossing of 6,8
km, regarding safety distance, height of towers, etc.
The technical studies may consider this a non-feasible
alternative.
• special mitigation measures due to the need for
construction of new access roads at forested areas –
the existence of roads at a distance of at least 25 km
is a significant aspect regarding engineering costs
52
ELETROEVOLUÇÃO JUNHO 2011
and also the potential need for deforestation for
construction of new access roads.
It is quite difficult to obtain reference values
for land prices and other costs. However, as one of
the main objectives at this planning phase is to
compare alternatives and not to obtain a detailed
budget for the project, some simplifications have
been made, and values that can contain some level
of error were allowed. The reference values for land
use were obtained through the research carried by
the Getúlio Vargas Foundation (FGV), a well known
Brazilian consulting and services institute dedicated
to administration and economy issues. Another
important data source was the AgraFNP, a leading
private consulting company dealing with information
and analysis in agribusiness.
One simplification has been the transformation of
the values obtained for the corridor (20 km) to a rightof-way of 200 meters. Therefore, it was assumed that
the interference observed in the corridor could not
be avoided during the development of the studies
and also, that no optimization will be possible. This is
a very conservative point of view. However, in order
bienal paris 2010
to compare alternatives at this early stage of planning,
even prior to the development of the R1 Report, it was
considered that this is an acceptable simplification.
Additionally, the costs related to the environmental
management system for the project have not been
not included, as these costs would be identified and
incorporated to the defined transmission line route
during the feasibility phase and the Environmental
Impact Study.
4.0 MAIN RESULTS
Due to the availability of values for land use, the
main characteristics related to land used of each one
of three alternatives analyzed have been grouped in
four types: agriculture, cattle raising, forested areas
and savanna. An average price for the land was used
to estimate the cost of implementation of each
alternative.
Additional costs have been added to the forested
areas considering the potential need for higher towers
due to the need for preservation. The environmental
heritage of the Amazon and the preservation of its
biodiversity are aspects that should not be neglected,
and therefore, will probably incur these kinds of
additional costs. The study developed for the TucuruíMacapá-Manuas Transmission Line also included
also some additional costs for cable laying using
helicopters. This estimate was not included in the
present analysis due to the level of uncertainty at this
early phase of planning.
5.0 FINAL COMMENTS
The cost estimated for this project has been based
on a identification of the main sensitive areas along
the alternative of corridors proposed considering
that these aspects can significantly contribute for
ELETROEVOLUÇÃO JUNHO 2011
53
bienal paris 2010
the socioenvironmental costs of a future project and
consequently for the decision making regarding the
best alternative.
It was observed that considering only the value of
the land (Subtotal 1) the most expansive alternative
would be Alternative 3 - Interconnection with the
Transmission Line of the Teles Pires river system,
from São Luiz do Tapajós to Sinop, due to extensive
agriculture and cattle raising areas located in this
region. The price of the land of forested areas is
considerably low compared to areas occupied with
economic activities.
Considering other aspects such as the importance
of biodiversity and, consequently, the need of higher
towers in order to minimize or avoid impacts on
vegetation (Subtotal 2), Alternatives 2 and 3 present
values that began to be more similar. Additionally,
considering the existence of river crossing, Alternative
2 - Interconnection with the Transmission Line
Tucuruí-Macapá-Manaus, from São Luiz do Tapajós to
Oriximiná, which requires the crossing of the Xingu
river or the crossing of the Amazon river, ends being
the most expensive one depending on the alternative
of crossing to be selected.
Despite the lack of accuracy of these costs and
the preliminary characteristics of this approach, we
considered that this analysis offer a first estimate
and an indication that one of the main issues to be
considered.
However, these costs should be more detailed and
verified and also compared with all other technical,
social and environmental aspects to support the
decision making regarding the best alternative
to promote the transmission of the Belo Monte
Hydropower project.
6.0 BIBLIOGRAPHY
[1]Empresa de Pesquisa Energética – EPE. Diretrizes
para a elaboração dos Relatórios Técnicos
referentes às novas instalações da Rede Básica. EPEDEE-RE-001/2005, Maio 2005
[2]FGCDados – online access in Nov, 30th, 2009 –
http://fgvdados.fgv.br
[3]Instituto FNP – Análise do Mercado de Terras.
Relatório Bimestral, no. 3, Jan/Fev, 2005
[4]
Comitê Técnico de Expansão da Transmissão.
54
ELETROEVOLUÇÃO JUNHO 2011
Estudo LT Tucuruí-Macapá-Manaus. 2004
[5]PROBIO (Projeto de Conservação e Uso Sustentável
da Diversidade Biológica Brasileira), Mapa de Uso
das terras e Vegetação do Bioma Aamzônia, 2003,
Ministério do Meio Ambiente.
[6]IBGE (Instituto Brasileiro de Geografia e Estatística),
Base CIM – Base Contínua ao Milionésimo, revisão
3.01, 2009, Ministério do Planejamento, Orçamento
e Gestão.
bienal paris 2010
Artigo D2-201 apresentado na Bienal Paris 2010
A Telecommunications Mobile Unit for
Transmission Lines Emergency Scenarios
SUMMARY - Great part of the Brazilian territory where FURNAS
operates in generation and transmission of electric energy is subject to
eventual storms with strong winds, sometimes resulting in towers falls and
disconnection of Transmission Lines (TL).
The scenario is usually harsh, requiring complicated logistics.
Transportation of staff, material and equipment and the restoration of the TL
can only be well performed with the intensive use of Telecommunications.
This study aims to show such emergency scenarios in TLs and the
improvements achieved with the adoption of a new Telecommunications
solution.
Alexandre Pinhel Soares
Ricardo Medeiros
José Antonio Paula Motta
Furnas Centrais Elétricas S.A.
KEYWORDS - Satellite Communications,Transmission Lines, Emergency
Scenarios.
1.0 INTRODUCTION
Great part of the Brazilian territory where FURNAS operates in generation
and transmission of electric energy is subject to eventual storms with
strong winds, sometimes resulting in towers falls and disconnection of
transmission lines (TL). In crises like these the Company carries through,
immediately, a detailed analysis of the event and triggers an emergency
plan that, among other actions, dislocates teams of maintenance,
engineering and support to the place of the accident.
The scenario is usually harsh, requiring complicated logistics. The
transportation and installation of staff, the deployment of an adequate
and efficient support camp, the displacement of the material needed to
perform the work and to provide infrastructure and the restoration of the TL
can only be well performed with the intensive use of telecommunications.
Between 1970 and 2009 due mainly to strong windy storms, 82
accidents occurred destroying 213 towers, resulting in a mean time to
repair of about 7 days and, depending on the magnitude of the event,
involving up to 500 professionals. The sites are distributed along all FURNAS
operation area (figure 1) and are, tipically, sites of difficult access (Figures 2
and 3) and of hostile environments.
ELETROEVOLUÇÃO JUNHO 2011
55
bienal paris 2010
2.0 THE PROBLEM
Figure 1: FURNAS´s TL towers fall sites (red circles)
from 1970 until 2009. (by FURNAS).
VHF radios and cell phones (when possible)
were the only way of communication used by
the teams (figure 4), highlighting that there was
no data communication, which caused a number
of problems such as local inability of producing
travel reports, consulting banks, requiring technical
data, and Internet access, intranet and email, for
example. Moreover, the available infrastructure
for communications was not compatible with the
importance of service.
Another diagnosed limitation refers to the
difficulty of the VHF system in providing privacy
in communication, what becomes a sensitive
issue when referring to work coordination or top
management inspections. Even when there are
conditions for the use of cell phones, there is the
disadvantage of the cost of connections, which are
predominantly long-distance.
Another motivator for the project was the
new penalty rule for unavailability of electric
energy transmission services. Despite this fact
has motivated the creation of numerous process
improvements that greatly reduce the average time
for restoration of TLs, caused an increase in demand
for telecommunications, explaining the need for a
more efficient system.
Figure 2: TL towers fall site with mud, very low
temperature and plain relief.
Detail: The headquarters. (by Fábio Resende).
Figure 3: TL towers fall site with dust, very high
temperature and rugged relief.
Detail: The headquarters (by Alexandre Pinhel).
56
ELETROEVOLUÇÃO JUNHO 2011
Figure 4: VHF radios, the usual solution in
Transmission Lines Emergency Scenarios in Brazil (by
Fábio Resende).
bienal paris 2010
3.0 THE TELECOMMUNICATIONS SOLUTION
emergency plan in order to provide the
communication services as soon as possible to
the field teams.
The TMU is quite compact and does not
present difficulties for transport and positioning,
even in installations on irregular ground not
needing, within certain limits, a very rigorous
leveling of the ground (figures 7 and 8).
Equipment for voice and data do not show
special features, and can be easily found on
the market. But the equipment of transmission,
being more specific, are hired together with the
satellite link, making the project independent of
proprietary technology solutions.
It was also defined that these equipment were
supposed to have automatic activation capacity
because of the difficulty of local communication,
what could hamper the activation of the TMU in
case of needing to contact the hired company
to perform the procedures, especially regarding
the orientation of the antenna.
Finally, to act as a contingency mechanism
for the system’s main TMU there are two satellite
telephony devices.
The FURNAS Maintenance Engineering
staff, identifying these severe communication
resources limitations during TL towers fall events,
has developed an integrated environment for
voice and data with full mobility capacity called
Telecommunications Mobile Unit ( TMU).
The solution consists of a acclimatizer
container and reliable infrastructure that can
provide energy to the surroundings of the site,
ability to access the Public Telephone Switched
Network (PSTN), the FURNAS Internal Telephony
System, Internet, Intranet and Company’s
mainframe applicatory, beyond providing
telephone communication among local users
with a range of up to 5 km, depending on the
topography (figures 5 and 6).
Both voice and data services are supplied
by equipment with wireless communication,
providing full mobility to users. Once installed
at the emergency site, all communication is
transported to the Main Office in Rio de Janeiro
through a single satellite data link that is
defined in a bidding process. This simplification
was shown to be feasible from the adoption
of the technology of voice “over IP” (VoIP). The
system also allows the implementation of
communications such as “hot-line”, turning the
access to the work status possible for the senior
management.
Different users like the security and
supervision staff may have specific extensions in
order to be easily located. Important visits that
need to be found with ease can also receive this
treatment. Furthermore the project is scalable,
allowing expansion of resources in case of need.
The energy infrastructure is extremely reliable
ensuring high availability of voice, data and
transmission equipment and the refrigeration
is achieved by common air conditioning. There
were no perceived interference among the
data equipment, VHF radios and wireless local
telephony.
For logistical issues, the TMU is based in
Minas Gerais, but it is moved to the accident
Figure 5: General characteristics of the TMU (by
site immediately after the triggering of an Alexandre Pinhel).
ELETROEVOLUÇÃO JUNHO 2011
57
bienal paris 2010
Figure 6: The TMU system.
Figure 7: Moving the TMU (by Alexandre Pinhel).
58
ELETROEVOLUÇÃO JUNHO 2011
Figure 8: Positioning the TMU (by Alexandre Pinhel).
bienal paris 2010
4.0 THE ECONOMICAL SOLUTION
transmission equipment, which are more specific,
there are contractual guarantee. The adoption
of equipment with automatic antenna pointing
enables the activation of the system without the
presence of very specialized staff.
Depending on the magnitude of the event, the
Media could be interested in moving to the venue.
In such cases the UMT can serve as a vehicle of
propaganda for the Company when providing
technological resources that can help in their
coverage.
Besides the expansion of resources for effective
communication, the project provides increased
reliability of the VHF system (which will continue to
be used), as the energy infrastructure also include
such equipment.
With all the improvements offered to
telecommunications
services,
restoration
of
transmission lines will be safer and will have their time
and their costs reduced, with obvious and direct return
to the Company, the employees and the society.
The Satellite Operators didn’t accept the on
demand rental modality which supposes payment
only for days of utilization citing lack of interest in
economic return or lack of technical conditions
to ensure the band when this was requested. The
sugestion of these companies was the rent for
continued use of the link, regardless of use, which
hindered the economic viability of the project. At this
point the budgeted annual estimated costs totaled
between 65 and 100 thousand Euros.
After persistent effort in convincing the supplier
that the brand FURNAS was highly valuable and that
the use of the system would bring a good return to
the supplier’s image creating possibilities for new
business in the Brazilian Electricity Sector, economics
feasibility has been reached by means of a franchising
operation at pre-fixed rate varying on a daily basis for
each exceeding day.
In this model FURNAS pays the contractor for 30
days of use per year, regardless of effective use. This
value will be diluted over the pre-set monthly fee. If
6.0 BIBLIOGRAPHY
using more than 30 days per year, extra days will be
paid separately and considering the daily value, also
[1] Pinhel Soares, A, “Monitoração de
pre-set, and used to compose the total contract price. disponibilidade em enlaces de comunicação por
Thus we were able to stipulate the fixed value (30 satélite”, XI ERIAC, Paraguai, 2005.
days per year) with the surplus value (days exceeding
the 30 days pre-contracted), avoiding abusive prices.
The final result of this negotiation reached a value
of about 15 thousand Euros per year.
5.0 CONCLUSIONS
When opting for the inclusion of transmission
equipment in the rental of satellite link, the system
became independent of Satellite Operators and we were
able to choose the service regarding price or quality.
When not in the field, the TMU could be used as a
laboratory for studying the effects of the Ionosphere
[1] and the Weather in the satellite link and for
acquiring knowledge about this type of technology,
which is uncommon in company, but that could be
frequently used under the demand of new ventures.
The use of commercial equipment that provide
voice, data, power and cooling functions ensures easy
restoration of services in case of failure. For satellite
ELETROEVOLUÇÃO JUNHO 2011
59
XI EDAO
Artigo apresentado no XI EDAO 22 a 26 de novembro de 2010
Sistema de Diagnóstico de Perturbações
em Tempo Real
Fábio Augusto da Silva Antunes
Cemig Geração e Transmissão
SA
Paulo Márcio da Silveira
Unifei – Universidade Federal
de Itajubá
RESUMO - Este trabalho apresenta uma proposta de triagem e
interpretação de sinalizações de proteção, capaz de auxiliar o operador
no entendimento de uma determinada perturbação no sistema de
transmissão de energia, em tempo real. O objetivo é fornecer melhores
condições (segurança e rapidez) para a equipe durante a tarefa de
restabelecimento de equipamentos desligados em decorrência de
perturbações no sistema elétrico.
PALAVRAS-CHAVE - Diagnóstico de Perturbações, Sistemas
Especialistas,
Tratamento
de
Alarmes,
Restabelecimento,
Indisponibilidade.
1.0 INTRODUÇÃO
Uma das principais atividades desempenhada pelas equipes de
operação de centros de operação é o restabelecimento de instalações
e sistemas elétricos após perturbações. Eventos desta natureza dão
origem nos sistemas de supervisão e controle dos centros de operação
a um fenômeno conhecido como “avalanche de alarmes” [1], [3].
Por se tratar de um problema enfrentado por diversas equipes
de operação em tempo-real, muitas idéias surgiram com objetivo de
tratar, interpretar e agrupar alarmes e sinalizações semelhantes, ou que
possuam algum tipo de correlação. A idéia principal é tentar reproduzir,
de forma automática e segura, o diagnóstico realizado por especialistas
da área, no momento de restabelecer equipamentos desligados em
decorrência de uma determinada perturbação [2].
Situações de contingência como blecautes no sistema elétrico, de
forma geral, possuem causas aleatórias e imprevisíveis. No momento
em que o operador se depara com uma situação de blecaute, sua
atenção é direcionada para a identificação de sua causa. Isto pressupõe
uma avaliação criteriosa, tão dispendiosa quanto maior for a amplitude
do blecaute. Uma vez consciente da quantidade de equipamentos
envolvidos na ocorrência, é necessário identificar quais equipamentos
necessitam ser isolados do restante do sistema interligado, e quais os
que podem ser imediatamente restabelecidos. Tendo a informação da
causa ou origem da perturbação, esta análise pode ser efetuada de
maneira ágil e eficaz.
60
ELETROEVOLUÇÃO JUNHO 2011
XI EDAO
triagens iniciais e seleções de alarmes, de tal modo
que os mesmos possam ser apresentados de forma
mais objetiva e inteligível aos operadores [1], [4], [5].
Outros conjuntos de regras identificam a
incidência de determinados tipos de proteção, para
cada equipamento a ser analisado. Há, portanto, regras
2.0 TRATAMENTO DE ALARMES E DIAGNÓSTICO DE para identificação de proteções de transformadores,
linhas de transmissão, barramentos, reatores, banco
PERTURBAÇÕES ATRAVÉS DE SISTEMAS
de capacitores, etc. Outras regras ainda reconhecem
BASEADOS EM CONHECIMENTO
algumas combinações de alarmes de interesse para
Um sistema capaz de reproduzir, de forma plena, o operador.
As regras mencionadas compõem o “motor de
toda a habilidade do especialista na identificação
da causa de uma perturbação é o desejo de inferências”. O conhecimento das relações existentes
muitas empresas do setor. Entende-se, no entanto, entre os equipamentos e alarmes de interesse está
que as ferramentas de tratamento de alarmes e armazenado exclusivamente na base de dados
diagnóstico de perturbações mais complexas, do sistema, de tal modo que não são necessárias
embora capazes de gerar os melhores resultados intervenções nas estruturas e códigos do sistema
(diagnósticos mais completos e objetivos), estarão computacional (representado neste caso pelo motor
mais expostas às falhas dos sistemas de aquisição de de inferências) para fins de atualização da base de
dados. Além disso, demandarão maior capacidade conhecimentos.
A metodologia apresentada neste trabalho está
computacional ou ainda sofrerão maior dificuldade
com a manutenção de suas bases de dados. Tais baseada não na simples eliminação de alarmes
elementos passam a ser leitmotiven para que menos importantes, mas sim em um novo conceito
as equipes de desenvolvimento de soluções de apresentação de alarmes. Dá-se maior foco para
repensem as metodologias para os usuários dos os alarmes oriundos de sinalizações de proteção
relacionados aos equipamentos envolvidos nas
centros de operação.
Nessa linha de raciocínio, surge a proposta deste perturbações.
trabalho, a qual não substitui o conhecimento e
experiência das equipes de operação, mas, ao contrário,
agrega segurança e precisão em suas análises.
Os alarmes e sinalizações de proteção que
chegam ao sistema de supervisão e controle do
centro de operação são os principais subsídios para
o desenvolvimento de uma ferramenta capaz de
promover diagnósticos em tempo real.
A existência de padrões nas nomenclaturas de
alarmes e sinalizações de proteção sugere o uso
de metodologias de inteligência computacional
no trato do problema. Nesta linha de raciocínio, as
FIGURA 1 – Diagrama representativo de um
propostas existentes na literatura propõem uso de
sistemas baseados em conhecimento (SBC) como Sistema Especialista
uma tentativa de agregar, através de ferramentas
O conteúdo apresentado na seqüência referecomputacionais, o conhecimento consolidado pela
experiência dos operadores dos centros de operação. se ao desenvolvimento do protótipo do Sistema
A metodologia adotada nesta proposta é de Diagnóstico de Perturbações em Tempo Real
conhecida como Sistemas Especialistas – Figura 1. (SDP-TR), que atualmente opera no COS – Centro
Através de regras do tipo“Se... então:”,são promovidas de Operação do Sistema – da Cemig G.T. [1].
A questão da agilidade reforça a motivação no
desenvolvimento deste trabalho uma vez que a
indisponibilidade de equipamentos da transmissão
repercute na qualidade da energia elétrica e na
diminuição da receita da transmissora.
ELETROEVOLUÇÃO JUNHO 2011
61
XI EDAO
2.1 Base de dados
A base de conhecimentos deve conter
informações sobre os equipamentos que se
desejam diagnosticar. No entanto, deve-se tomar
o cuidado de evitar estruturas demasiadamente
complexas, que impeçam aos demais usuários
promover atualizações referentes às alterações na
topologia do sistema elétrico.
No COS-Cemig, as sinalizações de proteção
que chegam ao sistema de supervisão e controle
carregam consigo o número de operação do
equipamento (para reatores, transformadores,
barramentos) ou o número do disjuntor associado
(para o caso de linhas de transmissão). Além
disso, as mudanças de estado operativo destes
equipamentos são informadas através de alarmes
gerados pelo sistema de configuração de redes.
A Tabela 1 abaixo ilustra um exemplo de registro
armazenado na base de conhecimentos do SDP-TR:
TABELA 1 – Exemplo de registro da base de
conhecimentos do SDP-TR.
62
ELETROEVOLUÇÃO JUNHO 2011
O padrão de construção destas estruturas de
dados aplica-se a todos os equipamentos do sistema
operado pela Cemig G.T., e seus respectivos relés
de proteção. Nota-se, portanto, que a adaptação do
SDP-TR a uma mudança de topologia do sistema
elétrico requer somente a adição de um novo
registro (para novos equipamentos) ou alteração
de um dos registros existentes (quando a alteração
limitar-se à configuração da subestação).
2.2 Motor de Inferências
O Motor de Inferências deste sistema concentra
todas as regras de análise necessárias para a
elaboração de diagnósticos de perturbações.
Dada uma determinada ocorrência no sistema,
compreendida dentro de um intervalo temporal
de alarmes e sinalizações de proteção, as regras
de interpretação deverão reconhecer as seguintes
incidências [1]:
• Alarmes que representam equipamento “fora
de operação”;
• Sinalizações de proteção associadas ao
equipamento “fora de operação”;
• Alarmes de mudança de estado operativo dos
disjuntores associados.
Estas regras fazem parte da etapa de triagem.
Outras regras são aplicadas, posteriormente, com a
finalidade de interpretar as seqüências de alarmes
e sinalizações de proteção recolhidas conforme a
triagem.
Na seqüência são apresentados os conjuntos de
proteção para os diversos tipos de equipamentos a
diagnosticar. É importante destacar que os arranjos
de proteção variam conforme o nível de tensão de
operação. As regras são, de forma geral, aplicáveis
para equipamentos que operam em tensão igual
ou superior a 138kV.
2.2.1 Transformadores e reatores
Se o equipamento “fora de operação” for um
transformador ou um reator, um determinado
conjunto de regras é ativado. A Tabela 2 abaixo
ilustra exemplos de proteções associadas a
transformadores e reatores, necessárias para a
elaboração de diagnósticos [6], [7]:
XI EDAO
TABELA 2 – Principais
transformadores e reatores.
proteções
de
Feita a detecção destes relés no intervalo de
alarmes selecionado, outro grupo de regras deve
preocupar-se com análises conjuntas. Supondo
que um transformador “fora de operação” indique
atuação das funções 26, 49, e não indique outras
funções da Tabela 2, o sistema poderá informar
que “não houve atuação de proteções elétricas” e
também “não houve bloqueio”. Pode ainda sugerir
que o equipamento foi desligado por “sobrecarga”.
De posse dessas informações obtidas em tempo
real, o operador tem melhores condições de
compreender a causa do desligamento e promover
o restabelecimento com maior agilidade.
Tão importante quanto às regras que indicam
a atuação de determinado relé, são as regras de
exceção, que indicam a não atuação de proteções
relevantes para o diagnóstico. As regras de exceção,
para ser mais eficazes na elaboração do diagnóstico,
devem indicar a não atuação de “proteções elétricas”,
“proteções físicas” ou “bloqueio” – para o caso de
transformadores.
2.2.2 Linhas de Transmissão
De maneira análoga aos transformadores e
reatores, foram levantadas as principais funções de
proteção para linhas de transmissão (LT). São estas
apresentadas na Tabela 3 a seguir:
TABELA 3 – Principais proteções de linhas de
transmissão.
Ao constatar o desarme de uma linha de
transmissão, o operador busca na tela de alarmes
a incidência de proteções que o leve a concluir
sobre eventual existência de proteção impeditiva
(relé 86), atuação de religamento automático
(relé 79), proteções contra curto-circuito (relés 21,
67, 50, 51), etc. São, portanto, estas informações
que devem estar imediatamente disponíveis
para facilitar a etapa do restabelecimento da
LT. Outras informações como transferência de
disparo (funções 77 e 85) e sobretensão (relé 59)
complementam o diagnóstico da ocorrência.
Tão importante quanto saber se houve a atuação
destas proteções, é saber quando elas não atuam,
da mesma forma como comentado nas regras de
exceções para transformadores.
Sabe-se que alguns tipos de disjuntores de linhas
de transmissão possuem limitações quanto ao
intervalo de tempo entre dois ciclos O.C.O. (open –
close – open), ou seja, em uma eventual ocorrência
de religamento automático não satisfatório, o
operador não deve submeter o disjuntor a um
novo comando de fechamento imediatamente.
Isto justifica a necessidade de se saber, em tempo
real, sobre a atuação ou não do relé de religamento
automático (79).
ELETROEVOLUÇÃO JUNHO 2011
63
XI EDAO
As regras de exceção podem também ajudar
o operador a identificar uma situação de desarme
indevido de uma linha de transmissão. Supondo
que num determinado desarme não ocorra atuação
de proteção elétrica (21, 67, 50, 51, etc.), mas ocorra
uma transferência de disparo que desliga um ou
os dois terminais da linha. Um possível diagnóstico
seria: “LT 345kV Neves 1 - Barreiro 1: Transfertrip sem sinalização de proteção elétrica”, claro o
suficiente para que o operador passe a investigar
outra possível causa para o desarme, excluindo a
hipótese de curto-circuito.
2.2.3 Barramentos
Arranjos de proteção para barramentos são
geralmente constituídos por proteções diferenciais,
de subtensão, sobretensão e contra falha de
disjuntor, tal como indica a Tabela 4 abaixo:
Ao contrário, se o desligamento ocorrer devido
atuação de proteção diferencial (relé 87), a indicação
mais provável é de defeito interno ao barramento.
As regras de exceção para tratamento de
ocorrências em barramentos podem auxiliar o
operador na identificação uma atuação indevida dos
arranjos de proteção. Supondo um desligamento
com incidência de relé de bloqueio (86), sem
atuação das demais proteções comentadas, o
operador direcionará foco para outra possível causa
para o desarme.
2.3 Apresentações dos diagnósticos
Os diagnósticos devem ser apresentados
ao operador juntamente com todos os alarmes
relacionados ao equipamento desligado. Uma vez
que os alarmes foram devidamente triados na etapa
anterior, não haverá excesso de informações que
atrapalhe sua compreensão acerca da perturbação.
As tabelas 5, 6 e 7 abaixo ilustram exemplos de
apresentação destas informações:
TABELA 4 – Principais proteções de barramentos.
Perturbações em barramentos costumam
ser mais raras do que as que envolvem linhas de
transmissão. As conseqüências, no entanto, são
bastante graves. Barramentos desligados por
falha de disjuntor (funções 50BF / 62BF) indicam
a ocorrência de uma perturbação múltipla,
iniciada em outro elemento do sistema, cujo(s)
disjuntor(es) associado(s) não obedeceram ao
comando de abertura enviado pelo seu próprio
arranjo de proteção. Este evento supostamente
leva o operador a concluir que a falta não teve
origem no barramento, mas sim em equipamento
externo. Tendo esta informação em tempo real, o
restabelecimento ocorrerá de forma muito mais
objetiva.
64
ELETROEVOLUÇÃO JUNHO 2011
TABELA 5 – Alarmes de uma ocorrência
envolvendo transformador
A tabela 5 destaca os alarmes provenientes
de uma perturbação em um transformador
de 400MVA, 500/230kV, no qual foi constatada
falha interna ao equipamento. O diagnóstico
indicou “MESQ T001: relé de gás; válvula alívio
pressão; sem sinalização prot.elétrica; BLOQUEIO”
corretamente.
bienal paris
2010
XI EDAO
TABELA 6 – Alarmes de uma ocorrência
envolvendo barramento
A tabela 6 destaca um desligamento em um
barramento de 345kV por atuação de proteção
diferencial, seguida de bloqueio. A mensagem
“BARR1B1S2_345P: DIFERENCIAL de barra; bloqueio;
VM; AZ; BR” indicou corretamente o evento.
TABELA 7 – Alarmes de uma ocorrência
envolvendo linha de transmissão
A ocorrência em uma LT de 500kV mostrada na
tabela 7 relata “BDESP3_SGPARA_U: prot.distância;
recepção transfer trip; sem relig.autom;”. A indicação
de não ocorrência de religamento automático e das
demais proteções foi correta e objetiva.
As mudanças de estado de disjuntores são
destacadas em cores (vermelho para abertura e
azul para fechamento), de modo a diferenciá-las
das sinalizações de proteção, e conseqüentemente
facilitar o entendimento do operador.
Na primeira linha das Tabelas 5, 6 e 7 estão
dispostos, além dos nomes dos equipamentos,
os disjuntores associados. Nas linhas abaixo são
representados os alarmes (alinhados á respectiva
coluna) juntamente com os respectivos horários
de atuação. Na última linha, segue o diagnóstico
resumindo a interpretação dos alarmes triados para
aquele determinado equipamento.
3.0 RESULTADOS PRÁTICOS
Para validar a eficácia da proposta apresentada
neste artigo, foram submetidas para análise mais de
160 perturbações, correspondendo todo histórico
de ocorrências envolvendo o sistema de Transmissão
operado pelo COS – Cemig, dos anos de 2008 e 2009.
Cada diagnóstico fornecido pelo SDP-TR foi
devidamente comparado com os relatórios de
operação e as respectivas análises de ocorrências
elaboradas pelo setor de Análise (pós-operação) do
COS-Cemig.
Os resultados apresentados estiveram bastante
alinhados aos insumos de comparação mencionados.
Das 160 perturbações, um total de 146 (91%)
apresentaram diagnóstico condizente com as
referências utilizadas.
As poucas falhas encontradas estiveram
relacionadas com sinalizações que não chegaram ao
sistema de supervisão e controle, e comprometeram
as análises na medida de sua importância para a
compreensão do evento.
Para contornar este problema, o SDP-TR passou
a utilizar duas fontes distintas de sinalizações de
proteção: os alarmes gerados pelo SCADA e as
Seqüências de Eventos (SOE). Esta segunda fonte
de dados traz consigo a vantagem da “estampa” de
tempo com precisão de milissegundos. O SDP-TR
compara as duas fontes e trata de forma especial
informações faltantes ou redundantes, de modo a
diminuir as conseqüências decorrentes de falhas na
recepção de alarmes, e reforçar o diagnóstico quando
as informações são convergentes. O percentual de
diagnósticos bem sucedidos foi obtido com base
nesta estratégia de análise.
É importante ressaltar que em nenhuma das
análises o SDP-TR apontou diagnóstico incorreto,
ELETROEVOLUÇÃO JUNHO 2011
65
XI EDAO
dadas as informações disponíveis.
Constatou-se durante as análises que o módulo
de alarmes do sistema de supervisão e controle
registrou, em média, 370 alarmes e sinalizações
de proteção em intervalos de 10 minutos, nos
quais estiveram contidos os alarmes referentes
aos instantes iniciais da ocorrência, bem como os
alarmes relacionados ao restabelecimento dos
equipamentos envolvidos na perturbação. Grande
parte destes alarmes não tinha relação alguma com
a perturbação em questão.
É bastante notória a redução do esforço humano
gasto para a diferenciação dos alarmes que têm
envolvimento com as perturbações sob análise.
A equipe de operação em tempo-real do COSCemig passou a fazer uso do SDP-TR, ainda em
fase de experimentação, com o objetivo de auxiliar
a elaboração dos relatórios diários de operação
(RDO), nos itens referentes à ocorrências no sistema
(levantamento de proteções atuadas e causas). Este
mesmo sistema, pelo fato de permitir consultas em
quaisquer períodos, tem sido utilizado de forma mais
intensa pelas equipes de Análise (Pós-Operação), na
tarefa de elaboração dos relatórios de perturbações.
4.0 CONCLUSÕES
O SDP-TR, conforme já mencionado, refere-se a um
protótipo em fase de validação e aprimoramento das
regras de interpretação. A meta é implantá-lo no próprio
sistema de supervisão e controle do COS-Cemig.
Este trabalho foi desenvolvido com o propósito
de auxiliar o entendimento da equipe de operação
em Tempo Real do COS-Cemig, sobre perturbações
no sistema elétrico. Justifica-se a escolha dos insumos
utilizados (alarmes e sinalizações de proteção) por se
tratar de uma aplicação para uso em tempo-real.
Os diagnósticos de pós-operação consideram
muitas outras informações além de alarmes, tais
como registros de oscilografias, informações locais
da subestação, inspeções em equipamentos, etc.,
que, devido ao elevado nível de detalhamento, estão
bastante distantes de fornecer as respostas que os
operadores do centro de operação demandam.
É importante ressaltar que as ferramentas
computacionais baseadas no processamento de
alarmes ainda sofrem prejuízos por falhas oriundas na
aquisição de dados que, embora apresentem baixas
probabilidades, podem lamentavelmente prejudicar
66
ELETROEVOLUÇÃO JUNHO 2011
os resultados destes aplicativos e levá-los a promover
diagnósticos equivocados. Estas falhas podem
originar-se nas UTRs (unidades terminais remotas)
instaladas nas estações (usinas e subestações), nas
diversas vias de telecomunicação, ou ainda na própria
infraestrutura de dados dos centros de controle.
Contudo, os resultados apresentados atenderam
ao propósito deste trabalho e comprovaram o
grande potencial das metodologias de inteligência
computacional para o trato de problemas do
cotidiano de centros de operação.
Os próximos passos consistem no aprimoramento
das regras de diagnóstico, de modo a agregar maior
confiabilidade e objetividade nas análises. Outro
ponto de melhoria é a implementação de análise
por terminal de equipamento (especialmente para
os casos de perturbações em linhas de transmissão).
5.0 REFERÊNCIAS BIBLIOGRÁFICAS
[1] Antunes F. A. S., Silveira P. M., Sistema de Triagem
de Alarmes e Análise de Perturbações, Monografia
do Curso de Especialização em Sistemas Elétricos
– UNIFEI Universidade Federal de Itajubá, 2009.
[2] Cardoso Jr G., Rolim J. G., Zürn H. H., Diagóstico
de Faltas em Sistemas de Potência: Definição do
Problema e Abordagens via Inteligência Artificial.
Revista Controle & Automação/Vol.15 n°.2/Abril,
Maio e Junho 2004, 2004.
[3] Batista L., Cunha R., Vasconcelos G., Adeodato
P., Noronha C., Genu J., Regueira B., Sistema
Híbrido Inteligente para Tratamento de Alarmes
e Diagnóstico de Falhas em Redes Elétricas,
XXV Congresso da Sociedade Brasileira de
Computação, São Leopoldo-RS, 2005.
[4] Falcão D. M., Técnicas Inteligentes Aplicadas a
Sistemas Elétricos de Potência, Notas de Aulas
Programa de Engenharia Elétrica - COPPE/UFRJ,
2002.
[5] Mendes R. D., Inteligência Artificial: Sistemas
Especialistas no Gerenciamento da Informação,
Ci. Inf. vol. 26 no. 1 Brasilia Jan./Apr, 1997.
[6] Schweitzer Engineering Laboratories Inc. 2007,
Tabela Ansi, http://www.selinc.com.br/tab_ansi.htm,
2007.
[7] ONS - Operador Nacional do Sistema Procedimentos de Rede, Submódulo 2.6:
Requisitos mínimos para os sistemas de proteção
e de telecomunicações, 2009
XI EDAO
Artigo apresentado no XI EDAO 22 a 26 de novembro de 2010
Desenvolvimento de Método para
Aperfeiçoamento de Operadores através da Imersão
em Ambiente de Simulação
RESUMO - Este artigo apresenta a experiência obtida por Furnas
Centrais Elétricas, no desenvolvimento e emprego de uma plataforma
para Treinamento Imersivo, para a formação e aperfeiçoamento de
Operadores de Usinas ou Subestações. Além dos baixos custos para
o desenvolvimento, implantação e operacionalização, o emprego dos
meios e métodos aqui apresentados, favorece a produção e retenção
de conhecimentos.
PALAVRAS-CHAVE
Tridimensional.
-
Aperfeiçoamento,
Gestos,
Enéas Macedo Ribeiro Júnior
Ângelo Andelnyr Sampaio Alves
Eletrobrás Furnas
Rio de Janeiro/RJ
Operadores,
1.0 INTRODUÇÃO
No âmbito Furnas Centrais Elétricas o processo de formação de um
novo Operador de Usinas ou Subestações, tem início com o Concurso
Público. Os candidatos aprovados nesta fase possuem formação técnica
na área de eletrotécnica ou eletrônica, podendo ter ou não experiência
no setor.
Em uma segunda fase do processo de admissão, o candidato
participa do “CTB” ou “Curso de Treinamento Básico” ministrado no
Centro de Treinamento de Furnas, que possui caráter eliminatório,
sendo composta por aulas teóricas e práticas. O candidato que concluir
mais esta etapa com sucesso é encaminhado para a lotação final em
uma das diversas instalações do Sistema Furnas, onde é concluída a sua
capacitação.
Durante a sua vida profissional, o Operador de Usinas ou Subestações
participa do “Programa de Certificação”, que possui período trienal, e visa
garantir que o colaborador reúna condições físicas, mentais e técnicas
para atuar na Operação de uma determinada Instalação.
Considerando as mudanças que o Setor Elétrico Brasileiro tem
sofrido nos últimos anos, nos aspectos de aumento de complexidade
da rede, interfaces de controle, regulação no setor, competitividade e
principalmente no impacto que a adoção da Parcela Variável ocasiona
às receitas das Empresas, é que se tornou evidente que a metodologia
até então empregada necessitava de melhorias.
ELETROEVOLUÇÃO JUNHO 2011
67
XI EDAO
2.0 OBJETIVO
Aprimorar processo em uso nas dependências
de Furnas Centrais Elétricas, para a formação e
aperfeiçoamento de Operadores de Usinas ou
Subestações, nos seguintes tópicos:
Eficiência: Acelerar o processo de melhoria
de desempenho através da disseminação de
conhecimentos de forma planejada, associada à
exposição do Treinando a vivências em situações
de crise, com o emprego de técnicas Treinamento
Imersivo.
Treinamento Humanizado: Todo o processo é
gerenciado e conduzido por um funcionário que
tem a função de ser o facilitador da atividade. Desta
forma se pretende potencializar os resultados
obtidos com o emprego de equipamentos
simuladores para fins de treinamento, uma vez que
os conteúdos a serem ministrados são voltados
às necessidades imediatas de conhecimentos dos
Treinandos.
Escalabilidade: Os equipamentos simuladores
empregados no treinamento podem ser ampliados
ou suas configurações podem ser modificadas
de acordo com as necessidades da Usina ou
Subestação que estão representando.
Conectividade: Para permitir o treinamento de
situações que envolvam mais de uma Instalação, os
equipamentos simuladores desenvolvidos podem
atuar em uma operação conjunta, reproduzindo
o funcionamento de um trecho da Rede sob
concessão da Empresa.
Baixo custo: O emprego de plataforma
tecnológica orientada ao“software livre”,participação
da força de trabalho local no desenvolvimento dos
aplicativos e na tutoria do processo de treinamento
como, também a aplicação dos “Turnos de
Simulação” no próprio local de atuação do
Treinando, são os fatores determinantes para que
a solução apresentada necessite de baixos valores
de investimento, tanto para o desenvolvimento
quanto para a operacionalização.
3.0 PREMISSAS
São raros os momentos onde o Operador de uma
Instalação entra em contato diretamente com o
68
ELETROEVOLUÇÃO JUNHO 2011
equipamento a ser manobrado, durante um evento
de restabelecimento. Via de regra, as mudanças
de estado em chaves seccionadoras e disjuntores
se dão através da realização de comandos em
algum tipo de interface, que pode ser um painel
elétrico, a IHM de um relé digital ou ainda uma
estação de trabalho onde está sendo executado
algum aplicativo para supervisão e controle. Então,
a percepção sobre o estado dos equipamentos que
estão sob o controle do Operador se dá através
de meios indiretos. As interfaces de controle e
supervisão produzem informações sobre o estado
do equipamento comandado, como também
a ordem de grandeza dos valores analógicos
presentes nos equipamentos de geração ou
transmissão.
A partir desta percepção é que as soluções para
simulação se baseiam, uma vez que para simular
perturbações uma Instalação, basta fazer com que
as interfaces de controle e supervisão produzam
informações que levem a um Indivíduo a acreditar
que está realmente em meio a uma ocorrência.
Se os estímulos sensoriais produzidos durante a
simulação como também o próprio ambiente forem
suficientemente realistas, é possível proporcionar
ao Treinando a sensação de “transportação” o que é
descrito por Utiel[1] como “um momento onde há
um forte elo entre o Indivíduo e o ambiente virtual
com o qual está interagindo”.
O efeito que este tipo de interação proporciona
ao participante daquela atividade de treinamento
é análogo a vivenciar a uma situação de crise na
realidade, porém todo o processo ocorre em um
ambiente controlado sem conseqüências danosas
tanto para o Indivíduo quanto para o Sistema
Elétrico.
Então, a base do trabalho aqui apresentado
consiste na reprodução realista dos estímulos
sensoriais e das situações vivenciadas nas Salas
de Controle de Usinas ou Subestações, em um
Ambiente de Simulação. A exposição do Treinando
a este “Ambiente Virtualizado” de trabalho para o
desempenho de atividades com complexidade
compatíveis com os seus níveis de conhecimentos
naquele momento, permite ao indivíduo
desenvolver os comportamentos necessários para
atuar de forma adequada em situações de crise ou
XI EDAO
que irá detectar as necessidades de conhecimento
da sua equipe e então elencará os Cenários de
Simulação com graus de dificuldades adequados
ao grupo de Operadores.
O Treinando é notificado através de e-mail
corporativo sobre a data da realização do Turno de
Simulação, qual o tema que será abordado e ainda
nesta mesma mensagem, é ofertado a ele um teste
para verificação de conhecimentos através do SICC
– “Sistema Integrado de Capacitação e Certificação”.
O objetivo desta mensagem é assinalar para o
participante quais os conhecimentos que ele
deverá deter e quais comportamentos ele deverá
apresentar para obter sucesso durante a fase de
Simulação.
Tem início então o momento da “Auto-Instrução”,
uma vez que o indivíduo deverá buscar por
sua iniciativa, os conhecimentos necessários no
material técnico disponível ou através de consultas
ao Operador Chefe de Turno ou ainda ao Tutor. O
padrão de rendimento mínimo do teste objetivo de
conhecimentos realizado no SICC é de 75%.
Na data previamente agendada, geralmente
durante o turno da manhã, o Treinando comparece
ao “Ambiente de Simulação” para a realização do
“Turno de Simulação”, onde o tema sugerido na
notificação via e-mail é abordado sob a forma de
4.0 O PROCESSO DE TREINAMENTO
uma situação de crise na Instalação.
Espera-se que o Operador interaja com as
O Aperfeiçoamento de Operadores através
da Imersão em Ambiente de Simulação é uma interfaces de comunicação e controle e construa
aplicação da modalidade de “Treinamento Imersivo” pelo menos uma solução correta para a situação
voltada para a formação e o desenvolvimento de proposta, sob os pontos de vista da técnica e das
competências junto à força de trabalho existente normas vigentes. O padrão de rendimento mínimo
nas Salas de Controle das Usinas ou Subestações – desta etapa é de 100%.
Ao término da atividade o Tutor realiza o
o Operador de Instalações.
O processo de treinamento é coordenado “feedback” da atuação do Treinando, sendo possível
localmente em cada Unidade da Empresa através acessar o conteúdo multimídia produzido durante
da figura do “Tutor”. É importante para o bom a simulação. Tal recurso permite a correção de
andamento do Treinamento, que o funcionário posturas inadequadas, vícios na Comunicação
que irá desempenhar esta função, seja detentor Operativa ou ainda o reforço de boas práticas.
Caso o Treinando não tenha atingido os objetivos
de sólidos conhecimentos sobre os aspectos
funcionais da Instalação além dos procedimentos propostos, o Cenário de Simulação é repetido em
outra data. Caso o Operador tenha obtido êxito,
em uso na Sala de Controle.
Sugerimos que o Tutor seja o “Supervisor de uma nova notificação é enviada, propondo um
Operação” justamente por ser este o funcionário novo Cenário de Simulação. O ciclo de atividades
que apresenta a maior bagagem de vivências e se repete até a conclusão de todos os Cenários
conhecimentos relacionados a ocorrências. É ele propostos. Na figura 1 temos um fluxograma que
restabelecimento. Porém não propomos apenas
simulações para situações críticas - preconizamos
também o emprego de cenários onde os Treinandos
devam executar manobras em regime normal, com
complexidades variadas para que possam adquirir
perícia.
O aspecto da percepção dos resultados é
tratado sob a luz da “Avaliação Formativa”, uma vez
que esta metodologia, segundo Fernandes[2] “está
ligada a atividades de aprendizagem que envolvem
os processo mais complexos do pensamento” –
justamente aqueles empregados pelo Operador
por ocasião de um restabelecimento. O objetivo
é perceber com precisão se o participante
do treinamento detém os conhecimentos
indispensáveis para o correto desempenho da
sua atividade e ainda, se é capaz de reproduzir os
comportamentos necessários durante as situações
de crise.
Como ferramenta para reforço positivo de
comportamentos, empregamos o “feedback” após
a realização das atividades de simulação. O intuito
é de proporcionar ao Treinando uma percepção
realista da qualidade da sua atuação como também
das oportunidades de melhorias.
ELETROEVOLUÇÃO JUNHO 2011
69
XI EDAO
ilustra a seqüência de eventos que compõe o
processo de treinamento.
permitem a reprodução, com alto grau de realismo,
das atividades desempenhadas pelo Operador em
uma Sala de Controle (ver Figura 2).
Figura 2
Figura 1
5.0 A ARQUITETURA DO AMBIENTE
O recurso instrucional utilizado durante o
processo de treinamento é denominado “Ambiente
de Simulação” que é formado pelo conjunto de
“estações de trabalho” e os meios de comunicação
(telefone “hotline” e rádio intercomunicador) que
70
ELETROEVOLUÇÃO JUNHO 2011
Os equipamentos e aplicativos que compõe
o “Ambiente de Simulação” foram concebidos
de forma que podem assumir diversos arranjos,
visando contemplar a variedade de configurações
e modalidades de operação das Instalações
encontradas no ambiente Furnas Centrais Elétricas.
Basicamente um “Ambiente de Simulação”
divide-se em duas regiões – uma voltada para
receber o Treinando e outra destinada a atuação do
Tutor. Para potencializar o realismo da simulação, é
recomendável que estas áreas sejam fisicamente
separadas e que o contato entre elas se dê apenas
através dos meios de comunicação disponíveis.
Na área destinada ao Tutor há um terminal
telefônico na modalidade “hotline”, um rádio
intercomunicador e uma estação de trabalho
denominada “Estação Virtual” - que é a responsável
por reproduzir o comportamento funcional de uma
determinada Instalação. A “Estação Virtual” recebe
os comandos oriundos das interfaces de controle
ou do “Gerenciador de Cenários” e os processa de
forma análoga a uma Estação Real.
XI EDAO
O Tutor tem total controle sobre a simulação
através da utilização da interface gráfica do
“Gerenciador de Cenários” (ver Figura 3).
Figura 3
Esta aplicação proporciona um ambiente gráfico
para programação de eventos, o que permite criar
ou modificar um Cenário de Simulação. Através
deste aplicativo é possível executar, pausar, reiniciar
um determinado Cenário.
Na área destinada ao Treinando há um terminal
telefônico “hotline”, um rádio intercomunicador
e dependendo da configuração da Estação a
ser virtualizada, podem ser necessárias até duas
estações de trabalho.
É realizada a gravação em formato de vídeo, via
câmera IP, das atividades dos Treinandos bem como
de toda a comunicação via rádio, telefone e sons
ambientes.
Em Instalações mais modernas onde todos
os equipamentos do plantel são controlados
através de meios computacionais, é necessária
uma estação de trabalho para o Sistema Aberto
de Gerenciamento de Energia (SAGE/CEPEL), que
opera na modalidade de treinamento.
Em Instalações onde os equipamentos do
plantel são controlados de forma mista (parte dos
equipamentos são controlados através de meios
computacionais, parte dos equipamentos são
controlados por painéis elétricos), são necessárias
duas estações de trabalho – em uma delas está
instalado o SAGE na modalidade de treinamento
e no equipamento restante está instalado o
“Simulador Tridimensional em Primeira Pessoa”
(STriPP) que podemos ver na figura 4.
Figura 4
Esta aplicação permite reproduzir a interação
do Treinando com um painel elétrico e representa
de forma realista, o ambiente de uma Sala de
Controle e seus equipamentos componentes para
proporcionar a um indivíduo a experiência de
interagir de forma absolutamente segura com os
punhos e botões em um “painel elétrico virtualizado”,
facilitando a ele adquirir perícia na utilização deste
tipo de interface de controle.
A interação do Treinando com o “STriPP” se dá
através de um controle sem fios, disponível no
mercado sob a marca “Nintendo” – é o “Controlador
Wii” que podemos ver na figura 5.
Figura 5
ELETROEVOLUÇÃO JUNHO 2011
71
XI EDAO
Este sensor de gestos possui giroscópios
e acelerômetros, o que significa que ele pode
perceber o movimento, a inclinação e a rotação do
equipamento no espaço. Comparado com outros
dispositivos de interface, o “Controlador Wii” tem
preço acessível, sendo fácil de utilizar.
É através deste dispositivo que se torna
possível reproduzir os movimentos necessários
para o acionamento do punho de comando de
equipamentos.
Para finalizar, em Instalações onde todos os
equipamentos do plantel são controlados somente
através de painéis elétricos, é necessária apenas
uma estação de trabalho onde está instalado o
“STriPP”
6.0 ESTRATÉGIAS EMPREGADAS
Para desenvolver, implantar e operar com
sucesso, “Ambientes de Simulação” no âmbito de
uma empresa com as dimensões e heterogeneidade
tecnológica como as presentes nas Instalações de
Furnas Centrais Elétricas, é uma tarefa complexa, para
dizer o mínimo.
O resultado que estamos obtendo com a
implantação do método aqui descrito, é fruto da
ação conjunta da Operação em Tempo Real com
a Manutenção Eletroeletrônica em cada Unidade
da Empresa que está desenvolvendo o seu
“Ambiente de Simulação”. A coordenação técnica,
logística, determinação de perfil e aquisição
de equipamentos ficou a cargo da Divisão de
Sistemas de Controle e Automação (DSCA.O). A
disseminação e desenvolvimento do Método e
aplicativos necessários ficaram a cargo dos autores
deste artigo.
A implantação piloto de um “Ambiente de
Simulação” para o emprego do método descrito
neste artigo ocorreu no âmbito do Departamento
de Produção de Nova Iguaçú (DRN.O), na Subestação
de São José, que localiza-se no município de Belford
Roxo - Rio de Janeiro.
O “Aperfeiçoamento de Operadores através da
Imersão em Ambiente de Simulação” atualmente
encontra-se em fase de implantação em dez
Unidades no ambiente Furnas Centrais Elétricas
(nove Subestações e uma Usina Hidroelétrica).
72
ELETROEVOLUÇÃO JUNHO 2011
6.1 ESTRATÉGIAS DE DESENVOLVIMENTO
Foi necessária a utilização de estratégias que
permitissem a realização de atividades descentralizadas
para permitir que cada Área Cliente construísse
a sua estrutura de treinamento com o apoio e o
conhecimento da força de trabalho local. Empregamos
o “Desenvolvimento Colaborativo Compartilhado”, ou
seja, parte dos aplicativos utilizados na Estação Virtual
é desenvolvida pela força de trabalho local da unidade
da empresa que está recebendo o equipamento
simulador. Os demais aplicativos são produzidos
pela Coordenação do Projeto já customizados às
necessidades da configuração da Estação.
Surge então a figura do “Desenvolvedor Local”,
que é um Operador ou Técnico de Manutenção
lotado na Unidade da Empresa que participará do
desenvolvimento da Estação Virtual. Para cumprir este
papel, o funcionário recebeu treinamento preparatório
para programar em Shell Script para posteriormente
desenvolver a “Biblioteca de Comandos da Estação”.
É justamente através do emprego desta biblioteca
que se torna possível acionar na “Estação Virtual”,
equipamentos e alarmes, causar falhas, modificar
valores analógicos entre outras tantas possibilidades,
uma vez que estes funcionários conhecem em
profundidade o funcionamento dos equipamentos
daquela Instalação.
Inicialmente foram selecionadas dez Unidades da
Empresa, e cada uma delas indicou dois funcionários
para desempenharem o papel de Desenvolvedores
– um Operador e um Técnico de Manutenção.
A plataforma tecnológica utilizada para a
concepção dos aplicativos empregados no
“Ambiente de Simulação” está fortemente orientada
ao “Software Livre” por questões de compatibilidade
com o SAGE – a aplicação utilizada para supervisão e
controle no âmbito de Furnas Centrais Elétricas.
6.2 ESTRATÉGIAS DE PROGRAMAÇÃO
Com o objetivo de acelerar o desenvolvimento
dos aplicativos necessários ao funcionamento da
Estação Virtual e ao mesmo tempo potencializar o
realismo proporcionado através deste equipamento,
optou-se por aproveitar os códigos, diagramas e
arranjos já existentes nas Instalações referentes
à operação dos equipamentos de geração ou
transmissão.
XI EDAO
Os mapas das lógicas para intertravamento de
equipamentos e os bancos de dados do SAGE foram
explorados de forma a conferir ao Equipamento
Simulador, absoluta fidelidade de comportamento
durante as manobras como também durante a
produção de alarmes.
A biblioteca de comandos de cada Usina ou
Subestação é desenvolvida baseada na farta
documentação técnica disponível em cada Unidade
da Empresa, como também com o emprego dos
conhecimentos tácitos da força de trabalho local.
Assim o trabalho da equipe fica focado para a
tarefa de portar o comportamento já mapeado das
atuações de proteções, falhas de equipamentos,
esquemas de emergência e etc, imprimindo maior
agilidade aos ciclos de desenvolvimento.
Durante o desenvolvimento dos aplicativos
também houve a preocupação de como os clientes
(Tutores e Treinandos) se relacionariam com as
interfaces dos aplicativos que controlam o processo
de simulação. Para nomear controles e variáveis,
empregou-se a fraseologia típica e mnemônica
fortemente orientada à Cultura Operativa, com o
claro objetivo de diminuir a curva de aprendizado
no trato com o Equipamento Simulador.
A criação do ambiente gráfico para programação
de cenários para simulação é fruto desta abordagem.
O Tutor em uma Instalação possui sólidos
conhecimentos sobre as ações em uma Sala de
Controle durante perturbações, porém nem todos
possuem o mesmo nível de conhecimentos no que
se refere à informática e muito menos a produção de
programas para computadores.
O “Gerenciador de Cenários” é a resposta ao
desafio de produzir um interpretador de comandos
que além de controlar a execução dos cenários,
permite programar seqüências de eventos em
uma simulação. A interface presente no aplicativo
compatibiliza as complexidades típicas desta
atividade com as capacidades do usuário. Ou seja, é
indispensável que o Tutor domine profundamente
a operação da Instalação, porém mesmo que não
possua alguma familiaridade com ferramentas de
programação, ainda assim será possível para ele criar,
editar e gerenciar a execução de Cenários.
No que se refere ao Treinando, a adoção da
tecnologia para detecção de gestos foi a resposta
encontrada para a questão - “como reproduzir de
forma mais realista a interação do Indivíduo com os
punhos de controle?”
A solução adotada faz com que a ação para ligar
ou desligar um determinado equipamento durante
a atividade de treinamento, se aproxime muito
daquela que será realizada na Sala de Controle real.
7.0 APLICABILIDADE DO MÉTODO
O emprego de Treinamento Imersivo na forma
como propomos neste artigo, pode ser realizada
em Instalações com as mais diversas configurações,
complexidades e interfaces de controle, uma vez que
o “Ambiente de Simulação” pode ser desenvolvido
para reproduzir com alto grau de realismo, as
vivências em uma Sala de Controle de Usinas ou
Subestações.
Em Instalações onde seja possível ministrar
o treinamento próximo a Sala de Controle, não
será necessário deslocar o Treinando para outra
Unidade da Empresa para a realização dos “Turnos
de Simulação”.
Nas Estações atendidas até o momento
nas dependências de Furnas Centrais Elétricas,
considerando que a atividade de Treinamento é de
curta duração (entre quinze a quarenta minutos por
cenário), torna-se viável treinar durante o horário de
expediente normal. Nestas localidades a simulação
ocorre durante o turno da manhã.
8.0 RESULTADOS
Até o momento da preparação deste documento
foram treinados quinze operadores em cenários de
perturbação parcial da Subestação de São José,
durante o horário de trabalho e sem a necessidade
de deslocamento do funcionário para um Centro
de Treinamento ou outra localidade. Desta forma o
custo para manter o corpo de Operadores atualizado
e com o desempenho melhorado é baixo, se
comparado a outros métodos.
Os registros produzidos durante o transcorrer
da atividade de treinamento documentam, entre
outras informações, a carga horária da simulação,
os conteúdos abordados, as ações do Treinando,
a data da realização da simulação e o número de
ELETROEVOLUÇÃO JUNHO 2011
73
bienal
XI
EDAOparis 2010
repetições de cenários. Tais documentos podem
ser utilizados junto aos Órgãos Reguladores para
fins de comprovação, uma vez que produzem a
evidência concreta de que a Empresa pratica o
aperfeiçoamento de seus colaboradores.
Visando atender a demanda de formação de novos
Operadores, o CTFU – Centro de Treinamento de Furnas
está aquisitando os equipamentos para a montagem
de seu Ambiente de Simulação e a utilização deste
recurso instrucional ocorrerá pela primeira vez em um
CTB, durante o mês de março de 2011.
Consideramos também como resultado
positivo, o emprego do Equipamento Simulador
da Estação de São José, durante os testes para a
verificação de condições discrepantes do arranjo de
intertravamento naquela Estação.
9.0 VISÃO DE FUTURO
Com o objetivo de permitir a aplicação de
treinamentos envolvendo trechos do Sistema
Elétrico sob a concessão de Furnas Centrais Elétricas,
onde existam mais de uma Usina ou Subestação,
está prevista a possibilidade de interconexão de
“Ambientes de Simulação”. Desta forma é viável
simular ocorrências que envolvam Unidades
adjacentes da Empresa, em um arranjo denominado
“Drill” que resulta em uma atividade encadeada
fortemente orientada a aperfeiçoar a interação entre
equipes no desempenho de missões críticas.
Não está prevista a imediata aplicação desta
facilidade uma vez que o processo de treinamento
ainda está em fase de implantação, porém o recurso
está disponível para aplicações futuras.
10.0 CONCLUSÃO
Considerando o cenário atual do Setor Elétrico
Brasileiro, é desafiador operar uma Usina ou
Subestação sob a Regulação vigente. Somente
equipes devidamente capacitadas, dotadas de
domínio e habilidade, desempenharão o seu
papel de forma adequada uma vez que o impacto
das ações destes profissionais na confiabilidade,
qualidade do suprimento de energia elétrica e no
faturamento das Empresas, é importante.
Como descrito por LEITE[3] em seu artigo,
74
ELETROEVOLUÇÃO JUNHO 2011
simplesmente desenvolver Equipamento Simulador,
não é a garantia de que teremos Operadores
desempenhando as suas funções de forma
compatível com as atuais exigências do mercado.
Além da questão do ambiente favorável para a
realização da atividade, da fidelidade dos Cenários
e também do realismo, o desenvolvimento de
métodos e normas que regulem a atividade, são
fatores preponderantes para que se alcancem os
resultados desejados.
Pudemos constatar que a abordagem orientada
às necessidades dos Treinandos, produz melhores
efeitos. Uma vez que ao invés de “sortear” cenários
aleatórios a atividade está voltada a atender as
necessidades concretas de melhoria de desempenho
dos Indivíduos, se obtém construção, transmissão e
fixação de conhecimentos de forma mais rápida.
A transparência do processo e o emprego do
“feedback” imediatamente após a realização das
atividades, são também fatores facilitadores da
aprendizagem. A adoção destas estratégias facilita a
aceitação do processo por parte dos Treinandos.
Concluindo, o trabalho aqui apresentado é a
contribuição de Furnas Centrais Elétricas para a
melhoria da qualidade e confiabilidade no que se
refere à Operação de Instalações, uma vez que torna
viável o Aperfeiçoamento de Operadores de forma
contínua, compatibilizando os aspectos de eficiência
e custo.
11.0 REFERÊNCIAS BIBLIOGRÁFICAS
[1] Utiel, W; Kirner, C.: “Realismo Visual em Ambientes
Interativos como Ferramentas
de Auxilio à Educação”, “Novas Tecnologias na
Educação”, CINTED – UFRGS, Julho 2009.
[2]Fernandes.
D.
(2005).: “Avaliação
das
Aprendizagens: Desafios às Teorias, Práticas e
Políticas”. Lisboa: Texto Editora.
[3] LEITE, C. R. R; OLIVEIRA, J.J.R; OLIVEIRA, J.G.: “Uso de
Simuladores no Treinamento de Operadores da
CHESF como Ferramenta para Disseminação de
Conhecimentos na Operação do Sistema Elétrico”,
II Seminário Internacional “Reestruturação e
Regulação do Setor de Energia Elétrica e Gás
Natural” – GESEL - UFRJ, Rio de Janeiro – RJ, 2007.
Lista dos Comitês de Estudo
COMITÊS
Representantes Brasileiros
Acesse o coordenador da área de seu interesse para participar de nossa Entidade:
GRUPO A – EQUIPAMENTOS
CE-A1
Máquinas Rotativas
Coordenador:JACQUES PHILIPPE MARCEL SANZ
Empresa:Eletronorte
Endereço:Av. Arthur Bernardes, s/nº - Centro de Tecnologia da Eletronorte
Cep: 66.115-000 - Belém - PA
Tel:
(91) 3257-1966 ramal 8240 - Fax:(91) 3257-4376
E-mail:[email protected]
Projeto e construção de turbogeradores, hidrogeradores, máquinas não-convencionais e grandes motores.
Aspectos econômicos, testes, comportamentos e materiais.
CE-A2Transformadores
Coordenador:MIGUEL CARLOS MEDINA PENA
Empresa:
Chesf – Companhia Hidro Elétrica do São Francisco.
Endereço:Rua Delmiro Gouveia, 333 – Bongi
50760-901 – Recife – PE
Telefone:
(81) 3229-2778 / 2167 - Fax:
(81) 3229-3242
E-mail:
[email protected] /[email protected]
Projeto, construção, fabricação e operação de todos os tipos de transformadores, incluindo transformadores
conversores, de uso industrial e os chamados “phase-shifters”, além de todos os tipos de reatores e componentes de transformadores (buchas, comutadores, etc).
CE-A3
Equipamentos de Alta Tensão
Coordenador:
Paulo Cesar Fernandez
Empresa:Eletrobrás
Endereço:Av. Presidente Vargas 409, 15º, Ed Herm Stoltz
Centro - Rio de Janeiro - RJ - CEP: 20071-003
Telefone:
(21) 2514-5763 - Fax: (21) 212514-4896
E-mail:[email protected]
[email protected]
Teoria, projeto, construção e operação para todos os dispositivos de manobra, interruptores e limitadores de
corrente, pára-raios, capacitores, seccionadores isoladores de equipamentos e de barramentos e transformadores de instrumento.
GRUPO B – SUBSISTEMAS
CE-B1
Cabos Isolados
Coordenador:JÚLIO CÉSAR RAMOS LOPES
Empresa:Inovatec Consultoria e Engenharia Ltda
Endereço:Rua São Benedito, 2.650 – cj. 102A - 04735-005 – São Paulo - SP
Telefone:
(11) 5548-8201 - Fax: (11) 5548-8201
E-mail:[email protected]
Base teórica, projeto, processos produtivos, instalação, serviços, manutenção e técnicas de diagnóstico para
cabos isolados CA e CC e para aplicações terrestres e submarinas.
CE-B2
Linhas Aéreas
Coordenador:RUY CARLOS RAMOS DE MENEZES
Empresa:UFRGS - Universidade Federal do Rio Grande do Sul
Endereço:Rua Osvaldo Aranha, 99 - 3º andar
Telefone:
+51 3308 3592 - Fax:+51 3308 3999
E-mail:[email protected]
Projeto, desempenho elétrico e mecânico, construção, vida útil, manutenção e reforma de linhas aéreas e de
seus componentes: condutores, cabos pára-raios, isoladores, torres, fundações e sistemas de aterramento.
ELETROEVOLUÇÃO junho 2011
75
COMITÊS
CE-B3Subestações
Coordenador:RICARDO DE OLIVEIRA MELO
Empresa:
CHESF – Companhia Hidro Elétrica do São Francisco
Endereço:Rua Delmiro Gouveia, 333 – Bongi - 50760-901 – Recife – PE
Telefone:
(81) 3229-2420 / 2421 - Fax: (81) 3229-2687
E-mail:[email protected]
Projeto, construção e manutenção de subestações e instalações elétricas de usinas, excluindo os geradores.
CE-B4
Elos de Corrente Contínua e Eletrônica de Potência
Coordenador:
SÉRGIO DO ESPÍRITO SANTO
Empresa:
FURNAS Centrais Elétricas S.A.
Endereço:Rua Real Grandeza 219 - Sala 110 - Bloco E - Botafogo
22283-900 Rio de Janeiro - RJ
Telefone:
(21) 2528-2545 - Fax: (21) 2528-5528
E-mail:[email protected]
CCAT: as­pec­tos eco­nô­mi­cos, apli­ca­çõ­es, as­pec­tos de pla­ne­ja­men­to, pro­je­to, de­sem­pe­nho, con­tro­le, pro­te­ção,
con­tro­le e tes­te de es­ta­çõ­es con­ver­so­ras. Ele­trô­ni­ca de po­tên­cia para trans­mis­são CA, sis­te­mas de dis­tri­bu­i­ção
e me­lho­ria de qua­li­da­de de ener­gia: as­pec­tos eco­nô­mi­cos, apli­ca­çõ­es, pla­ne­ja­men­to, pro­je­to, de­sem­pe­nho,
con­tro­le, pro­te­ção, cons­tru­ção e tes­te. Ele­trô­ni­ca de po­tên­cia ele­va­da: de­sen­vol­vi­men­to de no­vas tec­no­lo­gias
em con­ver­so­res in­clu­in­do con­tro­les, no­vos se­mi­con­du­to­res, apli­ca­çõ­es des­tas tec­no­lo­gias em CCAT, FACTS e
qua­li­da­de de ener­gia.
CE-B5
Proteção e Automação
Coordenador:RAUL BALBI SOLLERO
Empresa:
CEPEL - Centro de Pesquisas de Energia Elétrica
Endereço:Avenida Horácio Macedo, 354- Cidade Universitária - 21941-911
Rio de Janeiro – RJ
Telefone:
(21) 2598-6386 - Fax: (21) 2598-6386
E-mail:[email protected]
Princípios, projeto, aspectos econômicos, aplicação, coordenação, desempenho operacional e manutenção
de sistemas de proteção, controle e automação de subestações, sistemas e equipamentos de controle remoto,
sistemas e equipamentos de medição.
GRUPO C – SISTEMAS
CE-C1
Desenvolvimento de Sistemas Elétricos e Economia
Coordenador:MARIA ALZIRA NOLI SILVEIRA
Empresa:EPE - Empresa de Pesquisa Energética
Endereço:Avenida Rio Branco, nº 1 - 11º andar - Centro - 20090-003 – Rio de Janeiro – RJ
Telefone:
(21) 3512-3165 - Fax: (21) 3512-3199
E-mail:[email protected]
Métodos de análise para o desenvolvimento dos sistemas elétricos de potência e economia, métodos e ferramentas para análise estática e dinâmica, aspectos e métodos de planejamento nos vários contextos, estratégias de gerenciamento de ativos.
CE-C2
Operação e Controle de Sistemas
Coordenador:
PAULO GOMES
Empresa:ONS – OPERADOR NACIONAL DO SISTEMA ELÉTRICO
Endereço:Rua da Quitanda, 196 – 11º andar – Centro - 20091-005 – Rio de Janeiro – RJ
Telefones:
(21) 2203-9822
E-mail:[email protected]
Estudos e análises das condições técnicas, logísticas e institucionais requeridas para operação segura e
econômica de sistemas de potência, contemplando os seguintes aspectos: controle de sistemas e de equipamentos; controle geração-carga; planejamento da operação; avaliação de desempenho; centros de controle;
treinamento de operadores; requisitos de segurança contra colapso de sistemas, danos em equipamentos e
falhas humanas.
76
ELETROEVOLUÇÃO junho 2011
COMITÊS
CE-C3
Desempenho Ambiental de Sistemas
Coordenador:EVANISE NEVES DE MESQUITA
Empresa:Consultora
Endereço: Rua Mariz e Barros, 54 apto 1401 - Icaraí - Niterói - RJ CEP 24220-121
Telefone:
(21) 3701-1448
E-mail:[email protected]
Identificação e avaliação dos impactos ambientais de equipamentos e dos sistemas elétricos e os métodos
usados para gerenciá-los.
CE-C4
Desempenho de Sistemas Elétricos
Coordenador:DALTON DE OLIVEIRA CAMPONÊS DO BRASIL
Empresa:ONS - Operador Nacional do Sistema Elétrico
Endereço:Rua da Quitanda, 196 - 21º andar - Centro
Cep: 20091-005 - Rio de Janeiro – RJ
Telefone:
(21) 2203-9695 - (21) 2539-3659
E-mail:[email protected]
Estudos, desenvolvimentos e recomendações de métodos e instrumentos para análises e medições do desempenho de sistemas elétricos relacionado com a Qualidade da Energia Elétrica, Compatibilidade Eletromagnética, Descargas Atmosféricas e Coordenação de Isolamentos.
CE-C5
Mercados de Eletricidade e Regulação
Coordenador:LUIZ AUGUSTO N. BARROSO
Empresa:PSR
Endereço:
Praia de Botafogo 228/1701 parte
CEP: 22250-906 - Rio de Janeiro - RJ
Telefone:
(21) 3229-4145
E-mail:[email protected]
Estrutura e organização, regulação e estrutura de “funding” e econômico-financeira. Em termos do escopo oficial, esses três aspectos fundamentais estão descritos como: “análise das diferentes abordagens na organização da Indústria de Suprimento de Energia Elétrica – as diferentes estruturas de mercado e produtos, técnicas
e instrumentos associados, aspectos da regulação”.
CE-C6
Sistemas de Distribuição e Geração Distribuída
Coordenador:Aílton Ricaldoni Lobo
Empresa:
Clamper Industria e Comercio S.A
Endereço:Rodovia LMG 800 - Km 1, Nº 128 - Dist. Indust.Genesco A. de Oliveira
33400-000 - Lagoa Santa - MG
Telefone:
(31) 3689-9500 - Fax: (31) 3689-9501
E-mail:[email protected]
Avaliação do impacto técnico de novas características de distribuição sobre a estrutura e operação do
sistema: desenvolvimento da geração distribuída, dispositivos para armazenamento de energia, gerenciamento pelo lado da demanda e eletrificação rural.
GRUPO D – TECNOLOGIAS DE APOIO
CE-D1
Materiais e Tecnologias Emergentes
Coordenador:ORSINO OLIVEIRA FILHO
Empresa:
CEPEL - Centro de Pesquisas de Energia Elétrica
Endereço:Avenida Horácio Macedo, 354- Cidade Universitária - Ilha do Fundão
21941-911 - Rio de Janeiro – RJ
Telefone:
(21) 2598-6020 - Fax: (21) 2598-6087
E-mail:
[email protected]
Acompanhamento e caracterização de materiais novos e já existentes para a tecnologia de energia elétrica,
diagnóstico, acervo técnico e conhecimentos correlatos, novas tecnologias com impacto esperado sobre os
sistemas a médio e longo prazo.
ELETROEVOLUÇÃO junho 2011
77
COMITÊS
CE-D2
Sistemas de Informação e Telecomunicação para Sistemas Elétricos
Coordenador:ELTON BERNARDO BANDEIRA DE MELO
Empresa:
CHESF - Companhia Hidro Elétrica do São Francisco
Endereço:Rua Delmiro Gouveia, 333, Sala 114, Anexo II, Bongi,
Recife - PE - CEP: 50761-901
Telefone:
(81) 3229 4095
E-mail:
[email protected] ou [email protected]
Princípios, investigações e estudos, especificações de projeto, engenharia, desempenho durante
o comissionamento e aspectos de operação e manutenção nas áreas de telecomunicações e de
serviços de informação para o setor elétrico, sistemas de informação para atividades operacionais e
de negócios envolvendo serviços, meios de comunicação e redes.
PARTICIPAÇÃO NO CIGRÉ INTERNACIONAL
Treasurer and Steering Committee
Tesoureiro:
PAULO CESAR VAZ ESMERALDO
Empresa:EPE – Empresa de Pesquisa Energética
Endereço:Avenida Rio Branco, nº 1 – 11º andar – Centro
20090-003 – Rio de Janeiro – RJ
Telefone:
(21) 3512-3133
Fax:
(21) 3512-3199
E-mail:[email protected]
Administrative Council
Membro:JOSÉ HENRIQUE MACHADO FERNANDES
Empresa:Eletronorte - Centrais Elétricas do Norte do Brasil S/A
Endereço:
SCN, Q.06 - Conj. “A” - Edif. Venânco 3000
70718-900 - Brasília - DF
Telefone:
(61) 3429-5303/5301
Fax:
(61) 3328-1552
E-mail:[email protected]
SC-A1
Rotating Electrical Machines
Coordenador: ERLI FERREIRA FIGUEIREDO
Empresa:Universidade do Estado do Rio de Janeiro - UERJ
Endereço: Rua São Francisco Xavier, nº 524 – 5º andar – sala 5.029 – Bloco A
Cep: 20.559-900 – Maracanã – Rio de Janeiro – RJ Telefone:
(21) 2205-0569
Fax:
(21) 2569-9067
E-mail:[email protected]
SC-B5
Protection and Automation
Secretário:IONY PATRIOTA DE SIQUEIRA
Empresa:
Chesf - Companhia Hidro Elétrica do São Francisco
Endereço:Rua 15 de março, 50 sala B 314
Bongi - Recife - PE - 50761-070
Telefone:
(81) 3229-4145
Fax:
(81) 3229-4145
E-mail:[email protected]
78
ELETROEVOLUÇÃO junho 2011
Critérios para Seleção e Divulgação dos Artigos
Técnicos da Revista EletroEvolução
1. Todos os artigos previamente selecionados e apresentados em eventos de responsabilidade
do CIGRÉ-Brasil poderão se candidatar à sua publicação na revista EletroEvolução, devendo
ser encaminhados à Presidência do Conselho Editorial, pelos respectivos interessados, no
endereço do CIGRÉ-Brasil: Praia do Flamengo, 66 – Bloco B – sala 408 – Flamengo, Rio de
Janeiro. CEP: 22.210-903.
1.1 Os trabalhos deverão obedecer à formatação e limites de tamanho estabelecidos pelo
respectivo evento, cabendo à revista EletroEvolução a sua diagramação e formatação final de
impressão, incluindo a revisão final de sua redação para efeito de publicação.
2. Todos os artigos submetidos e que atendam à condição estabelecida no item 1 serão
encaminhados, para efeito de revisão e comentários, a uma comissão composta por um mínimo
de 3 revisores, a serem designados pelo Coordenador do Comitê de Estudo responsável pelo
respectivo tema e/ou pelo Presidente do Conselho Editorial da Revista EletroEvolução. Cada
revisor terá o prazo máximo de um mês para apresentar seu comentário e parecer sobre o
trabalho.
2.1 Será de responsabilidade da Presidência do Conselho Editorial da revista o encaminhamento,
ao autor do artigo, da decisão do referido Conselho, a qual poderá ser pela sua não publicação,
aceitação mediante incorporação das revisões solicitadas pelos revisores ou aprovação integral.
Tal resposta deverá ocorrer no prazo máximo de 120 dias a partir da data de recebimento do
artigo.
2.2 Os artigos classificados em 1º e 2º lugares nos seus respectivos grupos, em eventos
realizados pelo CIGRÉ-Brasil, serão considerados previamente aptos para sua publicação na
revista EletroEvolução, a critério do Conselho Editorial, não havendo a necessidade de seu
encaminhamento pelos respectivos autores principais, nem a necessidade de revisão. À época
da publicação dos artigos, a sua versão final para impressão será encaminhada aos autores
para conhecimento e conferência.
3. Também estão aptos para sua publicação, a critério da Diretoria do CIGRÉ-Brasil e do Conselho
Editorial, os artigos com os resultados e constatações finais dos Grupos de Trabalho dos
Comitês de Estudo. Esses artigos deverão ser encaminhados à Presidência do Conselho
Editorial da revista, não havendo necessidade de revisões, uma vez que já serão os frutos de
trabalho conjunto dos especialistas do Cigré-Brasil no assunto.
4. De forma excepcional e a critério da Diretoria do CIGRÉ-Brasil, poderão ser publicados outros
artigos de interesse da entidade, sob a denominação “Artigos Convidados”.
Conselho Editorial da Revista EletroEvolução
ELETROEVOLUÇÃO JUNHO 2011
79
Download

Artigos brasileiros da Bienal Paris 2010 e do XI EDAO