EE-240/2009 Regulador Auto-Sintonizado EE-240/2009 Regulador Auto-Sintonizado EE-240/2009 1. Forma Preditora de Modelos ARMA wk C( q 1 ) yk A( q 1 ) A(q-1) = 1 + a1q-1 + ... + anq-n C(q-1) = 1 + c1q-1 + ... + cnq-n Problema: Dados w j , j k , w j ~ N(0,1), estimar yk+r , r 1 yk = wk + g1 wk-1 + g2 wk-2 + ... = G(q-1) wk ou, yk+r = wk+r + g1 wk+r-1 + g2 wk+r-2 + ... + gr-1wk+1 + grwk + gr+1wk-1 + ... “futuro” ~y k “conhecido” ŷk EE-240/2009 ~ yk yk r yˆ k var~ yk varyk r yˆ k 1 g12 gr2 1 Seja z uma combinação linear de w j , j k Então, yk r z ~ yk yˆ k z varyk r z var~ yk yˆ k z var~ yk varyˆ k z var~ yk ŷk é o melhor preditor linear de yk+r EE-240/2009 Para representar ŷk em termos de yk e não wk: yk+r = wk+r + g1 wk+r-1 + g2 wk+r-2 + ... + gr-1wk+1 + grwk + gr+1wk-1 + ... D(q 1 ) F(q-1)wk+r 1 A(q ) wk x A(q-1) A(q-1) yk+r = A(q-1) F(q-1) wk+r + D(q-1) wk = A(q-1) F(q-1) wk+r + D(q-1) q-r wk+r A(q-1) yk+r = C(q-1) wk+r C(q-1) = A(q-1) F(q-1) + D(q-1) q-r EE-240/2009 c1 = a1 + f1 c2 = a2 + f1a1 + f2 C(q-1) = A(q-1) F(q-1) + D(q-1) q-r ... cr = ar + f1ar-1 + ... + fr-1 + d0 ... 0 = fr-1an + dn-1 yˆ k wk D(q 1 ) 1 A( q ) wk A( q 1 ) 1 C(q ) yˆ k yˆ k D(q 1 ) 1 C(q ) yk EE-240/2009 2. Forma Preditora de Modelos ARMAX uk q r B(q 1 ) A(q 1 ) wk C( q 1 ) A( q 1 ) + yk + A(q-1) = 1 + a1q-1 + ... + anq-n B(q-1) = 1 + b1q-1 + ... + bnq-n C(q-1) = 1 + c1q-1 + ... + cnq-n A(q-1) yk = q-r B(q-1) uk + C(q-1) wk Analogamente ao caso anterior (ARMA), seja: C(q-1) = A(q-1) F(q-1) + q-r D(q-1) EE-240/2009 yk r B(q 1 ) A(q 1 C(q 1 ) uk ) A(q 1 ) w k r C(q-1) = A(q-1) F(q-1) + q-r D(q-1) yk r yk r B(q 1 ) A(q 1 ) uk B(q 1 ) A (q 1 ) A(q 1 )F(q 1 ) q r D(q 1 ) A(q uk F(q 1 1 )w k r ) D(q 1 ) A (q 1 ) w k r wk A(q-1) yk = q-r B(q-1) uk + C(q-1) wk A(q 1 ) B(q 1 ) wk yk uk r 1 1 C(q ) C(q ) yk r B(q 1 ) A(q 1 ) uk F(q 1 )w k r D(q 1 ) A(q 1 ) B(q 1 ) y u k k r 1 1 1 A(q ) C(q ) C(q ) EE-240/2009 yk r B(q 1 ) 1 A(q ) y k r F(q 1 1 uk F(q )w k r ) w k r D(q 1 ) A(q 1 ) B(q 1 ) y u k k r 1 1 1 A(q ) C(q ) C(q ) D(q 1 ) B(q 1 ) q r D(q 1 )B(q 1 ) uk yk 1 1 1 1 A(q ) C(q ) A(q )C(q ) C(q-1) = A(q-1) F(q-1) + q-r D(q-1) q-r D(q-1) = C(q-1) – A(q-1) F(q-1) y k r F(q 1 ) w k r D(q 1 ) B(q 1 ) C(q 1 ) A(q 1 )F(q 1 ) B(q 1 ) yk uk 1 1 1 1 C(q ) A(q )C(q ) A(q ) B(q 1 )F(q 1 ) 1 C(q ) uk EE-240/2009 3. Controle de Variança Mínima: y k r F(q 1 ) w k r D(q 1 ) C(q 1 ) yk B(q 1 )F(q 1 ) C(q “futuro” ~y k 1 ) uk Escolher uk para anular estes termos uk D(q 1 ) B(q 1 )F(q 1 ) yk EE-240/2009 4. Regulador Auto-Sintonizado: yN 1yN1 nyNn 1uN1 muNm eN T aN 1 yN1 yNn uN1 uNm 1 n 1 m T T ˆ ˆ N1 ˆ N KN1 yN1 aN 1N KN1 1 PNaN1 T 1 aN1PNaN1 T PN1 I KN1aN 1 PN EE-240/2009 4. Regulador Auto-Sintonizado ( caso C=1 ): uN yN T ˆ ˆ N1 ˆ N KN1 yN1 aN 1N KN1 PN1 yN T aN 1 eN 1 PNaN1 T 1 aN1PNaN1 T I KN1aN 1 PN ˆ N1 ˆ (q 1 ) D uk yk 1 ˆ 1 ˆ B(q )F(q ) Separação Equivalência à Certeza EE-240/2009 Controle de Minima Varianca 10 8 6 4 2 0 -2 -4 -6 0 20 40 60 80 100 120 140 160 180 200 EE-240/2009 a1 a2 2 2 1 1 0 0 -1 -1 -2 -2 -3 0 10 20 30 40 -3 0 10 b1 20 30 40 30 40 b2 3 2 1 2 0 1 -1 0 -1 -2 0 10 20 30 40 -3 0 10 20 EE-240/2009 Muito Obrigado! EE-240/2009