Uso efetivo da irrigação no
mamoeiro (Carica papaya L):
aspectos fisiológicos e
produtividade
Prof. Eliemar Campostrini
Plant Physiology Lab
Northern Rio de Janeiro State University
Campos dos Goytacazes, RJ
Brazil
www.uenf.br
[email protected]
ORCID number: 0000-0002-1329-1084
Research ID C-4917-2013
DAT 0
FI
PRD
RDI
NI
DAT 6
DAT 14
My Lab
A ação humana tem influenciado significativamente a atmosfera durante a era
industrial
-uso de combustíveis fósseis (CO2, NO)
-Desmatamento (CO2)
-Agricultura (CO2 e NO produzido pelas industrias de fertilizantes e CH4 pela
fermentação entérica de ruminantes, cultivo de arroz inundado, aterros sanitarios)
O que está provocando a escassez de água no planeta
-A partir da era pré-industrial até 2009, a ação antropogênica causou um
incremento na concentração de CO2 de 280 para 390 µL L-1, e a concentração deste
gás atingiu o valor de 400 µL L-1 em 2013. Nesta condição, observa-se um elevação
de 2 µL L-1 por ano (Rodrigues et al., 2015).
A partir desta informação,
espera-se que em 2100 a
concentração de CO2 no ar
possa atingir em torno de 800
ou 1150L L-1
O que está provocando a escassez de água no planeta
-A partir da era pré-industrial até 2009, a ação antropogênica causou um
incremento na concentração de CO2 de 280 para 390 µL L-1, e a concentração deste
gás atingiu o valor de 400 µL L-1 em 2013. Nesta condição, observa-se um elevação
de 2 µL L-1 por ano (Rodrigues et al., 2015).
Segundo o IPCC (2014), esta elevação na concentração pode causar um
incremento na temperatura do ar em torno de 3,7 a 4,8ºC
Tal elevação pode provocar extremos na variação de pressão do ar, com
consequentes alterações no deslocamento de massa de ar, provocando zonas de
extrema escassez de água e locais com chuvas de elevadas intensidades
Segundo o IPCC (2014), esta elevação na concentração pode causar um
incremento na temperatura do ar em torno de 3,7 a 4,8ºC
Tal elevação pode provocar extremos na variação de pressão do ar, com
consequentes alterações no deslocamento de massa de ar, provocando zonas de
extrema escassez de água e locais com chuvas de elevadas intensidades
TORONTO, Canadá (Thomson Reuters Foundation) - Novos dados de satélite
mostram que a seca no Brasil é pior do que se pensava, com o Sudeste
perdendo 56 trilhões de litros de água em cada um dos últimos três anos
A pior seca do país nos últimos 35 anos também tem levado o Nordeste
brasileiro, região maior, mas menos povoada, a perder 49 trilhões de litros de
água a cada ano nos últimos três anos
http://br.reuters.com/article/topNews/idBRKCN0SO2P220151030
-Semi-lenhosa (uma posição intermediária entre uma
herbácea e uma árvore)
-Precocidade de produção (3-4 meses)
-Elevada taxa fotossintética(≈26 mol m-2 s-1 –
field condition in 2000 mol m-2 s-1 PAR)
-café: 8- 9 mol m-2 s-1
-milho: 40-50 mol m-2 s-1
-feijão: 12 mol m-2 s-1
-arroz: 13 mol m-2 s-1
-cana de açúcar: 40-50 mol m-2 s-1
-crescimento rápido
-produção de várias sementes
‘Solo’: 270 sementes por fruto (5g)
‘Formosa’ : 350 sementes por fruto (17g)
-Reduzido custo de construção do tronco
-Produção contínua de frutos
(crescimento indeterminado)
Porque a água é importante para o mamoeiro
-estrutura semilenhosa (biologia)
-constante produção de frutos
(agronomia)/Produtor rural
Tronco
- C. papaya possui uma anatomia diferencial
- Densidade do tronco é somente 0.13 g cm3
-eucalipto: 1 g cm3
-brauna: 1.16 g cm3
-angico: 0.78 g cm3
-Apesar de não ser uma planta lenhosa, o mamoeiro pode crescer até 10 m de altura,
-Cada planta do grupo ‘Solo’ pode produzir 50 frutos por planta com 0.5kg cada fruto (25kg
total de fruto). Grupo ‘Formosa’ pode produzir 25 frutos por planta com 1.5kg cada fruto
(Total de suporte de peso: 45kg)
Como pode explicar esta sustentação se a planta não é lenhosa!
Explicação para compensar a falta de lenho:
1) Pressão de turgencencia nas células do parênquima
2) Fibras lignificadas do floema em forma de rede (parte externa do tronco) ou
a combinação dos dois fatores
Cada planta com 20cm de diâmetro!!
‘Solo’ pode suportar um peso total 25kg
“Formosa’ 45kg
The construction of fibers and high-pressure matrix
parenchyma is unique in tree-like plants, and
guarantees adequate flexural rigidity with a minimum
fibre content!!
A pressão de turgência foi medida em
mamoeiro e ficou entre 0.82 e 1.25 MPa, O que
indicou que esta pressão é essencial para
rigidez do tronco!!!!
Kempe et al (2014)
Um pneu de carro cheio tem uma pressão de
0.2 MPa
A água que dentro de um cano numa casa tem
em torno de 0.2-0.3 MPa
Tronco
-Para compensar o tronco oco, na base deste tronco não existe o espaço vazio.
-Ainda nesta base da planta, os internós são pouco espaçados entre eles (compactos!)
Uma estratégia para suportar mecanicamente o peso dos frutos e da planta!!
- O xilema é pobremente lignificado (Fisher 1980 )
-Este xilema é composto de vasos largos e pode ser visto a olho nu. Estes vasos estão
embebidos em um parênquima não lignificado
Xylem vessel
O mamoeiro apresenta uma alta relação área foliar/área do xilema
0,10m2 de área foliar por cada cm2 de área ativa do xilema
A planta de papaya perde 460 mL de H2O por cada cm2 de xilema ativo
Isto faz com que a planta apresenta uma maior sensibildade ao grau de
secura do ar ( maior sensibilidade ao déficit de pressãod e vapor do ar
(DPVar)
Ao que tudo indica a planta de mamoeiro possui uma resistência
hidráulica elevada no continum raiz-caule-folha-atmosfera
Possivelmente o caule seria o ponto limitante no movimento de água
mamoeiro
Como a falta de água afeta o mamoeiro?
-O mamoeiro é sensível a falta de água no ar e no solo
Valor SPAD
41,2
Valor SPAD
39,8
Valor SPAD
26,6
Valor SPAD
6,6
Falta de água no ar!
Alte temperatura do ar e baixa umidade relativa elevam o DPVair
DPVair = 0,61137 * exp (17,502 * T° / 240,97 + T°) * (1,0 – (UR% / 100))
Valores máximos de DPV para o papaya: Elevado DPVair e DPVleaf-air reduz gs
DPVair = < 1kPa (es air – eair)
DPVleaf-air= < 2kPa (es leaf –eair)
DPVleaf-air
10
9
d i ffe r e n c e s (k P a )
L e a f-to -a i r v a p o r p r e ssu r e
O decréscimo de A após a saturação luminosa é devido em
parte ao decréscimo na condutãncia estomática (gs) por
meio do aquecimento da folha causado pela elevada
energia luminosa (limitação estomática)
8
7
6
5
4
3
2
1
0
0
500
1000
1500
2000
2500
3000
P h o to sy n th e ti c a l l y a c ti v e r a d i a ti o n (  m o l m
-1
-2
Tleaf
s )
PPF (mol m-2 s-1)
The photosynthetic
response of papaya is
strongly linked to
environmental
conditions through
stomatal behavior
soil field capacity
High light (2200 µmol m-2 s-1)
High leaf temperature (40ºC)
High VPD (≈ 6 kPa)
Low g (0.10 mol m-2 s-1)
s
Low A (5 µmol m-2 s-1)
Midday depression of
photosynthesis
can reduce yield
soil field capacity
Papaya leaves showed
paraheliotropic movement
associated with reduced leaf
turgor (Reis 2008).
Paraheliotropic movement can be
translated into decreased radiation
load per unit leaf area which, in
turn, could prevent the
photoinhibition
Falta de água no solo!
Ψsoil = - 20 kPa
Ψsoil = - 68 kPa
Em relação ao déficit hídrico no solo, o mamoeiro mostra uma limitação estomática e nãoestomática
Como relação a limitação estomática, esta limitação pode ser controlada por natureza
hidráulica e não-hidraulica
Valor SPAD
41,2
Valor SPAD
39,8
Valor SPAD
26,6
Valor SPAD
6,6
Baixinho de Santa Amália genotype
70L pots
Greenhouse
Maximum PAR 1200µmol m-2 s-1
Severe water stress: ψleaf =-0,8MPa
Regular irrigated plants: ψleaf =-0,6MPa
Estratégia para tentar escapar do estresse hídrico sem afetar a produtividade
-Elevar o uso efetivo de água!
H 2O
evaporação
H2O
a) Estratégias práticas de manejo:
1) Evitar vazamento em tubulações
0.6
day-1
2) Aplicação de água no horário
de maior transpiração
10 L H2 O plant-1 day-1
Summer
aplicou 10L dia-1 no solo
aplicou 16L dia-1 no solo
The crop was
irrigated with a
drip/fertigation
system providing
supplemental
irrigation of 10
(winter) and 16 L
per plant per day
(summer)
0.4
0.3
0.2
0.1
Summer
Winter
0
8:00
9:00
10:00 11:00 12:00 13:00 14:00 15:00 16:00 17:00
4.5
-0.1
Summer
Hour
Winter
4
77,09 g CO2 plant-1 day-1
Winter
3.5
CO 2 Assimilation (g m-2 h-1 )
Transpirtion (L m-2 h-1 )
0.5
-1
L H2 O plant
Luz15
Winter
3
2.5
2
1.5
1
50,74 g CO2 plant-1 day-1
Summer
0.5
0
8:00
9:00
10:00 11:00 12:00 13:00 14:00 15:00 16:00 17:00
-0.5
Hour
3) Uso de cobertura plástica sobre o solo
Na Austrália, 40% da
disponibilidade total
da água no solo é
perdida por
evaporação!
4) Remoção de folhas mais velhas
4) Remoção de folhas mais velhas
Em geral, cada folha madura pode prover fotoasimilados para 3 frutos (Zhou et al.,
2000)
A fotossíntese pode afetar a qualidade dos frutos (Salazar, 1978).
Remoção de 75% das folhas reduziu significativamente a produção de novas
flores, o pegamento de frutos, e decresceu o teor de solidos soluveis (TSS) dos
frutos
50% de remoção das folhas não reduziu o pegamento de frutos ou TSS (Zhou et
al, 2000)
In general: (Brazil)
Solo group: < leaf area
High yield:
95 t ha-1
95 fruits 1 leaf support 4 fruits
24 leaves
Average yield :
61 t ha-1
62 fruits 1 leaf support 3 fruits
19 leaves
Formosa group: > leaf area
High yield:
150 t ha-1
73 fruits 1 leaf support 3 fruits
25 leaves
Average yield :
85 t ha-1
42 fruits 1 leaf support 2 fruits
21 leaves
4) Uso de irrigação de subsuperfície
5) Técnicas alternativas de irrigação:
-Irrigação parcial do sistema radicular e deficit de irrigação controlado
-Estas técnicas podem aumentar a “pegada hídrica”
Sai cerca de 2000 a 3000
µmol H2O m-2 s-1 e entra
cerca de 20 a 30 µmol CO2
m-2 s-1
Transpiration (mmol m-2 s-1)
12
Planta C3
y = 10.871x + 1.6225
R² = 0.722
RDI
y = 12.69x + 0.72
R² = 0.5369
FI
y = 11.092x + 1.4987
R² = 0.7368
PRD
14
10
y = 10.543x + 0.7411
R² = 0.715
NI
8
6
4
FI
2
0
0
0,2
0,4
0,6
0,8
Stomatal conductance (mol m-2 s-1)
1
NI
PRD
14 dias após a aplicaçao dos tratamentos -maximo estresse
gs (mol H2O m-2 s-1)
0,8
CIFI
0,7
PRD
IPSR
RDI
0,6
NI
0,5
0,4
0,3
0,2
0,1
0
0
3
6
9
12 14 16
Days after treatment
17
21
0,6
gs (mol m-2 s-1)
0,5
VPD
0,4
0,3
0,2
0,1
0
DAT
CI
IPSR
RDI
NI
14
High VPD
12
Transpiration (mmol m-2 s-1)
Low VPD
High VPD
12
FI
CI
PRD
IPSR
10
y = 10.871x + 1.6225
R² = 0.722
RDI
y = 12.69x + 0.72
R² = 0.5369
FI
y = 11.092x + 1.4987
R² = 0.7368
PRD
10
y = 10.543x + 0.7411
R² = 0.715
NI
8
6
4
FI
PRD
RDI
NI
E (mmolH2O m-2 s-1)
RDI
2
NI
8
0
0
6
0,2
0,4
0,6
Stomatal conductance (mol m-2 s-1)
4
2
0
0
3
6
9
12
14
16
Days after treatment
17
21
0,8
1
Condition de campo
July
80
60
50
70%
40
1nd gas exchange
measurements
30
20
10
70%
0
3 days after rainfall
13 days after rainfall
Rainfall (mm)
Rainfall (mm)
70
80
70
60
50
40
30
20
10
0
October
2nd gas exchange
measurements
root dead
(7 days without
irrigation)
young root
5 days with
irrigation
after 7 days
without
irrigation
FI
NI
FI
Dry side of PRD
5) Melhoramento genético
a) Busca de genótipos com maior agressividade de raiz (maior
aprofundamento do sistema radicular)
-Raízes com maior condutividade hidráulica
Root  70 a 75% in 30cm  1 year old ≈ 3.5 m
5) Melhoramento genético
b) Busca de genótipos de mamoeiro com menor transpiração noturna
c) Genótipos com maior espessura de
cutícula
d) Genótipos com maior capacidade de
ajustamento osmótico
Conclusão:
-A água é um fator do ambiente extremamente importante para o mamoeiro,
uma vez que esta planta não possui uma estrutura anatômica completa para
caracterizá-la como lenhosa.
-Tal característica anatômica da planta, associada à produção contínua dos
frutos, bem como a grande sensibilidade da assimilação fotossintética do
carbono à limitação hídrica do solo e do ar faz que com esta molécula seja
importante para a cultura
- Devido a crise hídrica, torna-se de fundamental importãncia usar estratégias
de manejo e ações no melhoramento genético da planta para elevar o uso
efetivo de água e assim tentar manter a taxa fotossintética e a produtividade
com menos água aplicada na planta
-
My team:
Bárbara dos Santos Esteves (Pos Doc)
José Altino Machado Filho (PhD student)
Weverton Pereira Rodrigues (PhD student)
Luciene de Sousa Ferreira (PhD student)
Jefferson Ranjel da Silva (PhD student)
Katherine Fraga Ruas (PhD student)
Emile Caroline Silva Lopes (MSc student)
Deivisson Peregrino de Abreu (undergraduate)
Luan Baritiello da Silva Bezerra (undergraduate)
Leticia Cespom (undergraduate)
Wallace Bernado (undergraduate)
Raynan de Souza Aguliar (undergraduate)
Colaboração
Projects:
Ecophysiology of tropical tree crops
-Effects of enviromental factors (light, water, mineral nutrients) on photosynthesis, water use efficiency and yield in papaya,
coffee, grape, sugarcane, soybean
Whole-canopy gas exchange in coffee
Projects:
Ecophysiology of tropical tree crops
-Effects of enviromental factors (light, water, mineral nutrients) on photosynthesis, water use efficiency and yield in papaya,
coffee, grape, soybean
Whole-canopy gas exchange in papaya
Partial rootzone drying in papaya
Partial rootzone drying in sugarcane
-Hydraulic conductivity and gas exchange in
coffee, eucaliptus and soybean
Root hydraulic conductivity in
different coffee clones
-Ecophysiology of photoautotrophic micropropagation in papaya and banana
grown in bioreactors
-Ecophysiology of photoautotrophic micropropagation in papaya and banana
grown in bioreactors
-Photoautotrophic micropropagation in papaya
-Photoautotrophic micropropagation in papaya
-Photoautotrophic micropropagation in papaya
400 ppm CO2
5000 ppm CO2
Papaya (Carica papaya L.) is a principal horticultural crop of tropical and subtropical regions
(Campostrini et al, 2010).
Papayas are produced in about 60 countries,
with the bulk of production occurring in
developing economies!
Indonesia
Peru
Thailand
Democratic Republic of the Congo
Mexico
Faostat 2015:
Area harvested in the world: 441,042 ha
Brazil: 31,989 ha (7.3%)
Bangladesh
Brazil
Nigeria
Asia is the largest papaya-producing continent,
providing 55.5% of the total production,
followed by South America (23.0%) and Africa (13.2%)
India
0
40000
80000 120000
Area harvested (ha)
160000
Venezuela (Bolivarian Republic of)
Thailand
Democratic Republic of the Congo
Dominican Republic
Mexico
Nigeria
Indonesia
Production in the world: 12,420,584 tonnes
Brazil:1,582, 638 ton (13%)
Brazil
India
0
2000000
4000000
Production (ton)
6000000
Papaya (Carica papaya L.) is a principal horticultural crop of tropical and subtropical regions.
Faostat 2015:
Yield in the world: 28,161 kg ha-1
Brazil: 43,333 kg ha-1 (65% higher!)
China, mainland
China
Chile
Brazil
Bolivia (Plurinational State of)
Belize
Bangladesh
Bahamas
Australia
Argentina
14000000
Productin (tonnes)
12000000
0
y = 371.852x - 7E+08
R² = 0.9257
40000
80000
Yield kg ha-1
10000000
8000000
World
6000000
Brazil
4000000
2000000
y = 20.290x - 4E+07
R² = 0.2756
0
1996 1998 2000 2002 2004 2006 2008 2010 2012 2014
Year
Faostat 2015:
World-wide production of
papaya has been increasing
approximately 372,000 tonnes
year−1(FAOSTAT, 2015)
Brazil has been increasing
20.290 tonnes per year!!
120000
Gaining in popularity worldwide, papaya is now ranked third with 11.22 Mt, or 15.36 percent
of the total tropical fruit production, behind mango with 38.6 Mt (52.86%) and pineapple
with 19.41 Mt (26.58%)
Total tropical fruit production:
Mango – 52.86%
Pineapple – 26.58%
Papaya – 15.36% (Evans e Ballen, 2012)
Papaya in Europe:
-Tropical fruits are grown in very limited countries in Europe due to the climatic constraints
-However, some of them are grown due to a favorable climate on the Mediterranean coast and
Atlantic Islands for local consumption (Voth, 2000)
-Papaya is cultivated under protected cultivation in subtropical country such as the Canary
Islands (Spain) (Galan Sauco et al. 2008).
-However, global climate changing should cause an increase in air temperature, and will be
expected that cultivation of papaya will be expanded in the subtropical regions in Europe and
Asia
Morphological analysis and photosnthetic performance of improved papaya genotypes
Brazilian Journal plant Physiology 21:209-222. 2009
5 genotypes:
-Sunrise Solo
-JS12
-Golden
-Tainung
6L pots
Greenhouse
Maximum PAR 1000 µmol m-2 s-1
Temp max 32ºC
Maximum yield 100 to 150 t
ha-1
Maximum SPAD reading = 60
Sunrise Solo
Portable Chlorophyll Measurement (PCM)
Maximum yield 100 to 150 t ha-1
54
52
50
48
46
44
42
40
38
36
34
32
30
28
26
24
A
A
A
A
Golden
Híbrido
JS12
Solo 7212
Tainung
A
A
A
A
B
B
A
A
A
B
B
B
B
B
14
B
B
28
35
B
Maximum yield 90 t ha-1
B
21
42
49
56
63
Days after seedling (DAS)
Golden
Maximum SPAD reading = 36
Maximum yield 90 t ha-1
70
77
84
Sunrise Solo:
-High yield
-High soluble solids (more sugar)
-450g weight
-red pulp
-green leaf (high chlorophyll concentration)
-100 ton ha-1
Tainung:
-High yield
-High soluble solids (more sugar)
-900 -1200 g weight
-red/orange pulp
-green leaf (high chlorophyll concentration)
- High production (150 ton ha-1)
First Brazilian Hybrid UENF/Caliman 01
Red pulp
fruit weight 1200 g per fruit,
fruit diameter 9,9 cm,
Fruit length 21,5 cm
Length/diameter 2,2,
10 g per 100 fresh seeds
Others Hybrids:
UENF/Caliman 02, 03, 04, 05, 06, 07 and
08
More informations: contact
[email protected]
Papaya in Spain
www.freshfruitportal.com
There are currently 310 planted hectares of papaya on the Canary Islands, the Spanish
publication wrote.
90% are located in greenhouses on Tenerife and Gran Canaria.
Production reaches around 16,000 tons (MT) a year.
Yield: 51,600 kg ha-1 high yield!!!
Yield in the world: 28,161 kg ha-1
Brazil: 43,333 kg ha-1
Almeria
Papaya is starting!!
Spain: Cajamar demonstrates viability of papaya cultivation in Almeria
According to Juan Carlos, papaya plants develop very quickly and start producing eight to nine months
after being planted; much earlier than most other fruit crops, which usually take four to six years. They are
also very productive.
Most papaya growers in the Iberian Peninsula introduced the fruit last year with small plantations (500
to 1,000 square metres), and they are only just harvesting their first papayas.
"Some growers dared starting off with larger plantations and the crop's future is promising," stated Juan
Carlos Gázquez.
Source: Elalmeria.es
2/26/2014
Papaya commercialization significantly contributes to the economy of developing countries
Papaya is considered one of the most important fruits because it is a rich source of antioxidant
nutrients (e.g., carotenes, vitamin C, and flavonoids), the B vitamins (e.g., folate and pantothenic
acid), minerals, and fiber.
Papaya fruit is known for its high content of vitamins A, and C (approaches or exceeds USDA
minimum daily requirements for adults) and is a good source of calcium, potassium. On an
average, 100 g of ripe papaya contains 2500 I.U. of Vitamin A and 70 mg of vitamin C (ascorbic
acid)
In addition, papaya is a source of the digestive enzyme papain, which is used as an industrial
ingredient in brewing, meat tenderizing, pharmaceuticals, beauty products, and cosmetics.
Papain is a commercially valuable proteolytic enzyme that is produced in the milky latex of
green, unripe papaya fruits (Dunne and Horgan, 1992).
Evolutionarily, papain may be associated with protection from frugivorous (fruit-eating)
predators and herbivores (El Moussaoui et al 2001).
Papain yield: 245 -700 kg ha-1
≈250 kg fruit produce 1kg crude papain!!
Papain is a commercially valuable proteolytic enzyme that is produced in the milky latex of
green, unripe papaya fruits (Dunne and Horgan, 1992).
Evolutionarily, papain may be associated with protection from frugivorous (fruit-eating)
predators and herbivores (El Moussaoui et al 2001).
Papain yield: 245 -700 kg ha-1
≈250 kg fruit produce 1kg crude papain!!
Papain : is a cysteine
protease
E-64: a cysteine protease
specific inhibitor
Papaya plant
-Semi-woody (an intermediate position between herbs and trees)
-Latex-producing
-Usually single-stemmed
-Reproductive precocity (3-4 months)
-High photosynthetic rates (≈26 mol m-2 s-1 - field condition in 2000 mol m-2 s-1 PAR)
-fast growth
-production of many seeds
‘Solo’ group: 270 seeds per fruit (5g)
‘Formosa’ group: 350 seeds per fruit (17g)
-Low construction cost of hollow stems
-Continuous fruit production
(indeterminate growth)
Papaya plant
Root
Root  70 a 75% in 30cm  1 year old ≈ 3.5 m
Fruit
-Papaya fruit ripening is climacteric, and high ethylene production may start only
hours after harvest at the recommended stage (appearance of one to two yellow
stripes on the fruit)
physiological disorders of papaya fruits are bruising (“skin freckles”) and
translucent and lumpy pulp (Oliveira and Vitória 2011 ).
Skin freckles
Fruit
-Papaya fruit ripening is climacteric, and high ethylene production may start only
hours after harvest at the recommended stage (appearance of one to two yellow
stripes on the fruit)
Physiological disorders of papaya fruits are bruising (“skin freckles”) and translucent
and lumpy pulp (Oliveira and Vitória 2011 ).
Skin freckles
Fruit
-Papaya fruit ripening is climacteric, and high ethylene production may start only
hours after harvest at the recommended stage (appearance of one to two yellow
stripes on the fruit)
Physiological disorders of papaya fruits are bruising (“skin freckles”) and translucent
and lumpy pulp (Oliveira and Vitória 2011 ).
High diurnal temperature variation induces latex exudation and increased variation in cell t
pressure
Fruit (Downton, 1981).
Increased
pressureisisclimacteric,
expected with
temperature
-Papayaturgor
fruit ripening
andhigh
highdiurnal
ethylene
production fluctuations.
may start only
hours after harvest at the recommended stage (appearance of one to two yellow
Thestripes
exuded
on the fruit surface may dehydrate the cells around the exudate, thus form
onlatex
the fruit)
different sized spots that are proportional to the volume of exuded latex (Reyes and Paull,
1994)
Physiological disorders of papaya fruits are bruising (“skin freckles”) and translucent
and lumpy pulp (Oliveira and Vitória 2011 ).
Fruit
-Papaya fruit ripening is climacteric, and high ethylene production may start only
hours after harvest at the recommended stage (appearance of one to two yellow
stripes on the fruit)
Physiological disorders of papaya fruits are bruising (“skin freckles”) and translucent
and lumpy pulp (Oliveira and Vitória 2011 ).
16
Fruit
set2000
jan2001
Pedunc
casca i
casca e
7
14
-1
Teor de Cálcio(g.kg )
Amplitude Térmica(
o
6
-Papaya fruit ripening is climacteric, and high ethylene production may start only
12
hours after harvest at the recommended stage5 (appearance of one to two yellow
10stripes on the fruit)
4
3
Physiological disorders of papaya fruits are bruising
(“skin freckles”) and translucent
and lumpy pulp (Oliveira and Vitória 2011 ).
2
6
8
1
4
jun2000
Semana
fev2001
0
set2000
época
jan2001
Campostrini et al. (2005) proposed that the high calcium contents associated with high temp
and large diurnal temperature fluctuations in September contributed to greater cell wall rigid
facilitating increased turgor pressure resulting in the rupture of the latex vessels and latex le
Potencial hídrico do solo média
diária (kPa)
Fruit
200
180
-Papaya fruit
production may start only
160ripening is climacteric, and high ethylene113,6
hours after140
harvest at the recommended stage (appearance of one to two yellow
50,1
stripes on the
120 fruit)
100
Physiological80disorders of papaya fruits are bruising (“skin freckles”) and translucent
and lumpy pulp
60 (Oliveira and Vitória 2011 ).
40
20
25/09/2003
08/09/2003
22/08/2003
05/08/2003
19/07/2003
04/07/2003
17/06/2003
31/05/2003
14/05/2003
27/04/2003
11/04/2003
25/03/2003
08/03/2003
19/02/2003
02/02/2003
16/01/2003
01/01/2003
15/12/2002
28/11/2002
11/11/2002
25/10/2002
08/10/2002
0
data
Reis et al. (2003) demonstrated that in the
months that preceded the greatest SF incidence, a severe soil water deficit (ψsoil mean of
-113.6 kPa) in association with a minimal potential ET demand were the factors most
related to SF incidence
Fruit
High density
< water content
-Papaya fruit ripening is climacteric, and high ethylene production may start only
hours after harvest at the recommended stage (appearance of one to two yellow
Reduced rigidity of
stripes on the fruit)
these cell wall
Physiological disorders of papaya fruits are bruising (“skin freckles”) and translucent
Reduced efficiency of
and lumpy pulp (Oliveira and Vitória 2011 ).
the tonoplast in
maintaining the
turgor pressure in the
cell in the tissue of
pulp flesh
translucency (PFT)
Water did not enter the cells due to disruption
of the membrane pumps that generate the proton
gradient driving water permeability!
In healthy fruit: the dry seed wei
6.24±0.88 g fruit-1 and the calcium
concentration was 7.53±2.58 g kg
PFT fruit: had a greater dry seed
(8.02±1.75 g fruit-1) and the calci
content was 9.0±1.04 g kg-1
Fruit
High density
-Papaya fruit ripening is climacteric, and high ethylene production may start only
hours after harvest at the recommended stage (appearance of one to two yellow
The mass of calcium extracted by th
stripes on the fruit)
with PFT was 72.18 g fruit-1, w
calcium mass extracted from the
Physiological disorders of papaya fruits are bruising (“skin freckles”)
and
translucent
the healthy
fruit
was 46.98 g fruit-1
and lumpy pulp (Oliveira and Vitória 2011 ).
More research is needed to unders
role of calcium transport in papaya
Leaves arranged in a spiral pattern
> light
interception
> Number of
sun leaves
Male
Hermaphrodite
Female
Leaf
-plant produce large palmate leaves (≈0,6m2)
-Five to nine pinnate lobes of various widths (40-60 cm)
-Leaf epidermis and the palisade parenchyma are composed of a
single cell layer, while spongy mesophyll consists of four to six
layers of tissue
Male
Hermaphrodite
Female
Stomata
-Papaya leaves are hypostomatics
-stomatal density of sunlight leaves is 400 to 800
stomata mm-2
Male
Hermaphrodite
Female
Male
Hermaphrodite
Female
1.60m
Stem (trunk)
-The single stem provides structural support
-Stem diameters of adult plants vary from 10 to 30 cm at base to 5 -10 cm at the
crown.
Latex
- Damage to any aerial part of the papaya plant, where laticifers are widely distributed, elicits
latex release, which is very typical for this species (Azarkan et al. 2003 )
This milky latex is a slightly acidic fluid composed of 80 % water (Rodrigues et al. 2009 ). It
contains sugars, starch grains, minerals (S, Mg, Ca, K, P, Fe, Zn), alkaloids, isoprenoids, lipidic
substances, and proteins, including enzymes like lipases, cellulases, and cysteine proteases
(papain, chymopapain), important in defense against insect herbivores (Sheldrake 1969 ; El
Moussaoui et al. 2001 ; Azarkan et al. 2003 ; Konno et al. 2004 )
Ecophysiology of
papaya
(Carica papaya L)
Prof. Eliemar Campostrini
Plant Physiology Lab
Northern Rio de Janeiro State University
Campos dos Goytacazes, RJ
Brazil
www.uenf.br
[email protected]
ORCID number: 0000-0002-1329-1084
Research ID C-4917-2013
DAT 0
FI
PRD
RDI
NI
DAT 6
DAT 14
Stomata
Single-leaf photosynthesis
-Papaya leaves are hypostomatics
-stomatal density of sunlight leaves is 400 to 800
stomata mm-2
Male
Hermaphrodite
Female
Single-leaf photosynthesis
Papaya is classified as a plant with C3 metabolism (Imai et al., 1982; Marler et al.,
1994; Campostrini, 1997; Marler and Mickelbart, 1998; Jeyakumar et al., 2007)
The absence of margin cell formation in the vascular bundles of papaya leaves
(Buisson and Lee, 1993) is a characteristic associated with C3 metabolism
C4 leaf
Bundle sheath
Single-leaf photosynthesis
The average C13 value of C4 plants is -14‰
C3 plants is -23 to -36 ‰
Campostrini, 1997
Torres-Netto 2005
Single-leaf photosynthesis
Ψsoil = - 20 kPa
Ψsoil = - 68 kPa
Marler e Mickelbart, 1998
Maximum net carbon assimilation (A) rates
of 25 to 30 μmol m-2 s-1 are achieved at 2000
μmol m-2 s-1 photosynthetic photo flux (PPF)
in soil field capacity (Marler and Mickelbart,
1998; Campostrini and Yamanishi, 2001;
Reis, 2007)
Morphological analysis and photosnthetic performance of improved papaya genotypes
Brazilian Journal plant Physiology 21:209-222. 2009
6L pots
Greenhouse
Maximum PAR 1000 µmol m-2 s-1
Temp max 32ºC
Maximum SPAD reading = 60
Sunrise Solo
Maximum yield 100 to 150 t ha-1
Portable Chlorophyll Measurement (PCM)
5 genotypes:
-Sunrise Solo
-JS12
-Golden
-Tainung
54
52
50
48
46
44
42
40
38
36
34
32
30
28
26
24
A
A
A
A
Golden
Híbrido
JS12
Solo 7212
Tainung
A
A
A
A
B
B
A
A
A
B
B
B
B
B
14
B
B
28
35
B
Maximum yield 90 t ha-1
B
21
42
49
56
63
Days after seedling (DAS)
Golden
Maximum SPAD reading = 36
70
77
84
CVL
Days after seeding
CVL
Central vein length
40
38
A
AB
-2
SLA (g m )
36
AB
34
AB
32
B
30
28
Golden
Hibrido
JS12
Solo 7212 Tainung
SPAD reading = 60
0,22
Sunrise Solo
0,21
A
A
2
Leaf area - LA (m )
0,20
0,19
A
SPAD reading = 30
A
0,18
A
0,17
Golden
0,16
0,15
Golden
Hibrido
JS12
Solo
Tainung
24
15
14
A
22
SDM (g)
20
13
A
A
A
A
A
12
11
A
18
10
RDM (g)
A
9
16
B
8
B
7
14
6
12
5
Golden
Híbrido
JS 12
Solo7212
Tainung
Golden
Híbrido
JS 12
Solo7212
Tainung
3,0
0,012
A
A
0,011
B
2,0
B
B
B
0,010
AB
AB
LAR
SDM / RDM
2,5
AB
1,5
B
1,0
0,009
0,008
Golden
Híbrido
JS12
Solo7212
Tainung
Golden
Híbrido
JS 12
Solo7212
Tainung
0,60
0,50
A
A
0,58
0,48
A
A
A
A
0,46
TMR
0,54
AB
AB
0,52
0,44
B
0,50
B
0,42
0,48
0,46
0,40
Golden
Híbrido
JS12
Solo7212
Tainung
Golden
Híbrido
JS12
Solo7212
Tainung
Shoot dry mass (SDM), Root dry mass (RDM), Leaf area ratio (LAR)(leaf area/total dry mass), Leaf dry mass
ratio (LMR)(total leaf dry mass/total dry mass), Trunk dry mass ratio (TMR)(trunk dry mass/total dry mass)
and Shoot / root dry mass ratio (SDM/RDM) of Carica papaya L. plants with 92 days after seedling (DAS). Each
column represents the average of 8 replicates. Average follow by the same letter doesn’t show statistic
differences (Tukey 5%). 6L pots , greenhouse, maximum PAR 1000 µmol m-2 s-1 and max temp 32ºC
LMR
0,56
68000
A
64000
However, Golden genotype had
high daily carbon gain!
AB
-2
-1
Adaily ( mol m dia )
66000
A
62000
The reduction of growth and
yield in Golden papaya can be
due:
B
B
60000
58000
56000
54000
Golden
Híbrido
JS12
Solo7212
Tainung
-high photorespiration
-high dark respiration
In general, each mature leaf can provide photoassimilate for about three fruits (Zhou
et al., 2000)
The photosynthetic capacity also influences papaya fruit quality (Salazar, 1978).
Defoliation by 75% significantly reduced new flower production and fruit set,
decreased ripe fruit total soluble solids (TSS)
50% defoliation did not reduce new fruit set or ripe fruit TSS (Zhou et al, 2000)
In general: (Brazil)
Solo group: < leaf area
High yield:
95 t ha-1
95 fruits 1 leaf support 4 fruits
24 leaves
Average yield :
61 t ha-1
62 fruits 1 leaf support 3 fruits
19 leaves
Formosa group: > leaf area
High yield:
150 t ha-1
73 fruits 1 leaf support 3 fruits
25 leaves
Average yield :
85 t ha-1
42 fruits 1 leaf support 2 fruits
21 leaves
Increase net photosynthetic rate (A) is very important to high papaya production
While high A rates are possible in papaya, environmental factors as PPF (light), water (soil and
air), soil compaction, wind, VPD, temperature, soil oxygen, often limit A.
1) Light (PPF)
Sun leaf
Ψsoil = - 20 kPa
Ψsoil = - 68 kPa
With rapid reductions in irradiance, photosynthesis declines due to rapid biochemical adjustments.
With the return to high irradiance, and in the absence of any stomatal lmitation, photosynthesis quickly
increase
Ligh compensation point in
papay single leaf. Field
condition
60 mol m-2 s-1
Dark respiration
1.75 to 2.5 mol CO2m-2 s-1
The PPF response of papaya may also decline with PPF above saturating levels
10
9
d i ffe r e n c e s (k P a )
L e a f-to -a i r v a p o r p r e ssu r e
The decrease in A that begins at light saturation is due, in
part, to the decrease in stomatal conductance (gs) through
the direct action of radiant energy on leaf heating
(stomatal limitation)
8
7
6
5
4
3
2
1
0
0
500
1000
1500
2000
2500
3000
P h o to sy n th e ti c a l l y a c ti v e r a d i a ti o n (  m o l m
-1
-2
Tleaf
s )
PPF (mol m-2 s-1)
The photosynthetic
response of papaya is
strongly linked to
environmental
conditions through
stomatal behavior
soil field capacity
High light (2200 µmol m-2 s-1)
High leaf temperature (40ºC)
High VPD (≈ 6 kPa)
Low g (0.20 mol m-2 s-1)
s
Low A (5 µmol m-2 s-1)
Midday depression of
photosynthesis
can reduce yield
soil field capacity
Papaya leaves showed
paraheliotropic movement
associated with reduced leaf
turgor (Reis 2008).
Paraheliotropic movement can be
translated into decreased radiation
load per unit leaf area which, in
turn, could prevent the
photoinhibition
Tainung
Cloudy days
overcast
Sunny days
sunny day
Red lady
Although midday Fv/Fm
of well-watered plants
was sgnificantly lower
than early morning
Fv/Fm, the values of
≈0.75 are within the
range of typical values
and thus do not indicate
the substantial decline in
photochemical efficiency
However, chronic photoinhibition also decreases A rates at light levels above saturation, in this
case through damage and replacement of the D1 protein in the reaction center of PSII by excess
PPF (Critchley, 1998)(non stomatal limitation)
Sunrise
Irradiance can control stomatal conductance and can reduce photosynthesis
Papaya stomata are able to track rapid changes in irradiance!! (Clemente and
Marler, 1996)
Most plants experience continuous fluctuations in light under natural conditions
rather that long periods of uniform irradiance!!
Even individuals of pioneer and other species growing in open habitats experience
high and low light periods in the order of several minutes each due to broken
cumulus cloud cover (Knapp and smith, 1990).
hour of the day
15:56
15:06
14:16
13:26
12:36
11:46
10:56
10:06
09:16
08:26
07:36
3,00
1500
1000
2,00
1,00
500
0,00
0
-1
PAR
(mol m s )
5,00
-2
PAR
external air
06:46
05:56
05:06
04:16
03:26
02:36
01:46
00:56
00:06
VPD air (kPa)
6,00
2500
2000
4,00
2000 mol m-2 s-1
2000 mol m-2 s-1
320mol m-2 s-1
durante 3min
1600 mol
m-2
s-1
250 mol m-2 s-1
durante 2.5 min
1600 mol m-2 s-1
3.6m x 1.5m = 5.4m2 field condition in Brazil Almeria greenhouse: 3.0m x 1.6m = 4.8 m2
The papaya photosynthetic capacity can be linked to non stomatal limitation in soil field capacity
condition.
As exemple:
-Nitrogen leaf concentration
15 g kg-1DM
18 g kg-1DM
35 g kg-1DM
37 g kg-1DM
15 g kg-1DM
18 g kg-1DM
35 g kg-1DM
37 g kg-1DM
http://www.specmeters.com/weathermonitoring/weather-stations/2000mini-stations/watchdog-2475-plantgrowth-station/
1200
1000
y = 0,4365x
R2 = 0,9986
W m -2
800
600
400
200
0
0
500
1000
1500
um ol m -2 s -1
2000
2500
3000
Whole-canopy photosynthesis
25.2 mol m-2 s-1
4.5
Summer
Winter
4
77,09 g CO2 plant-1 day-1
Winter
CO 2 Assimilation (g m-2 h-1 )
3.5
3
2.5
2
1.5
1
50,74 g CO2 plant-1 day-1
Summer
0.5
0
8:00
9:00
10:00 11:00 12:00 13:00 14:00 15:00 16:00 17:00
-0.5
Hour
g CO2 m-2 h-1 to mol m-2 s-1
conversion factor is 6.30
The crop was irrigated with a drip/fertigation
system providing supplemental irrigation of 10
(winter) and 16 L per plant per day (summer)
Summer: (clear sky, during 4 days)
PPFmax: 2400 mol m-2 s-1
Tmax: 38ºC
VPDmax: 4 kPa
Winter: (clear sky during 4 days)
PPFmax: 1400 mol m-2 s-1
Tmax: 33ºC
VPDmax: 3.5 kPa
Each chamber
had a volume of
3.4 m3
Under the environmental conditions evaluated :
(4 sunny days)
Winter:
Maximum vapor pressure deficit (VPDair)=3.5 kPa
Air maximum temperature of 33°C
Maximum PPF: 1400 mol m-2 s-1
Summer
Maximum VPDair=4.0 kPa
Air maximum temperature of 38ºC
Maximum PPF : 2400 mol m-2 s-1
Leaf area each plant
5 months old
Winter :3.5m2
Summer: 4 m2
Tair inside ballon -Tair outside ºC
Luz
44
42
40
38
Tleaf (°C)
36
34
32
30
28
Winter
26
Summer
24
22
20
08:0009:0010:0011:0012:0013:0014:0015:0016:0017:00
Time
Air temperature
Optimal temperature:
21 a 33ºC (Knight, 1980)
22 A 26ºC (Lassoudiere, 1968)
30ºC (Allan, 1978)
Allan and Jager (1978) reported that A increased when air temperature rose from 16 to
30°C, and then A decreased linearly at temperatures above 30°C, the value at 41°C being
half that at 30°C
However, air temperature acts indirectly on papaya photosynthesis via increases in leaf-toair VPD! (stomatal limitation)
When air temperature increased from 20° to 40°C for ‘Sunrise Solo’ papaya growing in
Linhares, southeastern Brazil, the VPDleaf air increased from 2 to 6 kPa and A decreased
from 20 to 5 μmol m-2 s-1 (Torres-Netto, 2000)
Air temperature
High air temperature and low Relative Humidity increase VPDair
VPDair = 0,61137 * exp (17,502 * T° / 240,97 + T°) * (1,0 – (UR% / 100))
Threshold VPD values to papaya:
VPDair = < 1kPa (esair – eair)
VPDleaf-air= < 2kPa (esleaf –eair)
High VPDair and VPDleaf-air reduce gs
VPDleaf-air
In addition, air temperature acts directly on papaya leaves photosynthesis via increases in
leaf temperature
(non stomatal limitation)
Nonstomatal limitation:
-inhibition of Rubisco,
-heat stress results in a loss of the oxygen evolving complex activity (Enami et al.,
1994; Yamane et al., 1998),
-dissociation of the peripheral antenna complex of PSII from its core complex
(Gounaris et al., 1984; Srivastava et al., 1997)
-inhibition of electron transfer from primary/secondary electron-accepting
plastoquinone of PSII at the acceptor side (Bukhov et al., 1990; Cao and Govindjee,
1990),
High temperature increases the membrane fluidity and electron transport is blocked!!
Than Fo increase
Carica papaya is heat tolerant!
Table 1. Maximum quantum efficiency of open Photosystem II reaction centers-quantum yield
(Fv/Fm), photoinhibition (%), and canopy temperature (°C) in Golden papaya inside whole canopy
chambers during four days of measurements during winter and summer.
winter
summer
Fv/Fm 08:00
0.759 (539)x Aaz ± 0.004y
0.741(1000) Aaz ± 0.007y
Fv/Fm 13:00
0.643 (1440) Ab ± 0.012
0.674 (2440) Ab ± 0.013 y
Fv/Fm 17:00
0.764 (30) Aa ± 0.004
0.740 (200) Aa ± 0.008 y
Photoinhibition (%)
13 A± 3.14
8.89 B ± 1.75 y
Leaf temperature (ºC)
Maximum
Average
Minimum
37.5
43.9
31.0 ± 1.12
36.95 ± 0.67 y
26.4
30
followed by the same letter are not significantly different using the Turkey’s mean
separation test (P=0.05). Capital letters compare columns and lower case letters
compare rows.
yStandard error of the mean.
xnumbers inside the parentheses represent the photosynthetic photon flux density
(PPFD, µmol m-2 s-1)
zMeans
0.6
-1
L H2 O plant
Luz15
Winter
day-1
10 L H2 O plant-1 day-1
Summer
The crop was
irrigated with a
drip/fertigation
system providing
supplemental
irrigation of 10
(winter) and 16 L
per plant per day
(summer)
0.4
0.3
0.2
0.1
Summer
Winter
0
8:00
9:00
10:00 11:00 12:00 13:00 14:00 15:00 16:00 17:00
4.5
-0.1
Summer
Hour
Winter
4
O-1
WUEwinter =77/15 = 5gCO2 kg H2
WUEsummer = 50/10 = 5gCO2 kg H2O-1
77,09 g CO2 plant-1 day-1
Winter
3.5
CO 2 Assimilation (g m-2 h-1 )
Transpirtion (L m-2 h-1 )
0.5
3
2.5
2
1.5
1
50,74 g CO2 plant-1 day-1
Summer
0.5
0
8:00
9:00
10:00 11:00 12:00 13:00 14:00 15:00 16:00 17:00
-0.5
Hour
Reduced whole-canopy photosynthesis and transpiration in papaya in the summer
were due to high leaf temperatures (Tmax=43.9ºC)(due high radiation and high air
temperature) and high VPDair (4.0kPa) that caused stomatal closure.
However, high temperature did not affect photochemical efficiency (Fv/Fm ) when
assessed by chlorophyll fluorescence (Fv/Fm )
40
y = 2.1493x + 3.4249
R² = 0.7081
winter
summer
winter
35
Carbon dioxide assimilation
(µ mol m-2 s-1 )
30
25
20
15
10
y = 1.9155x + 2.1847
R² = 0.4961
summer
5
0
0
2
4
6
8
10
12
14
-5
-10
-15
Transpiration (mmol m-2 s-1 )
The water use of field-grown papaya plants
during four days:
Summer:
2.5 L H2O m-2 leaf area day-1 plant-1
Winter:
4.2 L H2O m-2 leaf area day-1 plant-1
16
Papaya (summer and winter)
2 µmol CO2 mmol H2O-1
4.8 g CO2 kg H2O-1
0.208 L H2O g CO2-1
0.0020 mol CO2 mol H2O-1
496 mol H2O-1 mol CO2
C3:
2.48 µmol CO2 mmol H2O-1
6.1 g CO2 kg H2O-1
0.164 to 0.5 L H2O g CO2-1
0.0025 mol CO2 mol H2O-1
400 mol H2O-1 mol CO2
C4:
2 to 5 g CO2 kg H2O-1
What strategies to reduce negative effects of high PPF on photosynthesis in
summer
Particle film
What is a ‘Particle Film’?
• A microscopic layer of
mineral particles
Particle Film
Plant Surface
• allows water and
carbon dioxide to pass
through the film
Source:
Dr. David Michael Glenn USDA,
ARS, West Virginia, USA
Stomates are not blocked
After initial
application
After 24 hours
Reflective surfaces are
common plant adaptation
• Plants “use” pubescence
and cuticular waxes to
reduce environmental
stresses and reduce disease
and insect damage
• Particle film technology
builds on this strategy of a
reflective plant surface that
repels insects
Licania tomentosa
3% kaolin
Source:
Dr. David Michael Glenn USDA, ARS, West
Virginia, USA
12% kaolin
Source:
Dr. David Michael Glenn USDA, ARS, West
Virginia, USA
Untreated control 26.0 C
Infrared image of apple trees
Surround treated 24.4 C
40
Temperature (Cº)
35
30
25
Surround WP
control
air temperature
20
15
900
1100
1300
1500
Hour
1700
1900
Source:
Dr. David Michael Glenn USDA, ARS, West
Virginia, USA
12% Surround
Control
3% Surround
Source:
Dr. David Michael Glenn USDA, ARS, West
Virginia, USA
15
11
Control irrigated #1
3% Surround irrigated
12% Surround irrigated
control irrigated #2
3% Surround irrigated #2
12% Surround irrigated #2
9
7
5
3
1
-1
-3
900
1800
300
1200
2100
600
1500
2400
900
1800
300
2000
500
1400
2300
800
1700
200
1100
Photosynthesis (g CO2/m2/hr)
13
Irrigated September 13-20 2007
Hour
In summer the use particle film (kaolin particles) applied in
high light condition (clear sky)
-Increase reflection of UV and IR
-Reduce leaf temperature
-Increase stomatal conductance
-Increase whole-canopy photosynthesis and transpiration
Concentration: 10%/12%
12kg = 38US$
Microspray irrigation applying above the canopy during summer (12h to 14h).
Evaporative cooling reduce VPDleaf-air, increase stomatal conductance, increase transpiration and
photosynthesis
When the air
temperature inside
the canopy reached
35ºC the microspray
irrigation system
was turned on
controle
microaspersão
13,0
controle
microaspersão
transpiração (mmol m -2 s -1)
déficit de pressão de vapor (kPa)
4,5
12,5
4,0
12,0
11,5
3,5
11,0
10,5
3,0
10,0
8:50
10:12
hora
controle
23
12:39
microaspersão
0,50
10:12
hora
controle
12:39
microaspersão
condutância estomática
(mol m-2 s -1)
taxa fotossintética líquida
( mol m-2 s -1)
22
8:50
0,45
21
20
5 fruits plant-1
0,40
19
0,35
18
17
0,30
8:50
10:12
hora
12:39
Microspray
irrigation
increased
8:50
10:12
hora
12:39
Greenhouse can provides adequate environmental conditions to cultivate papaya.
-protection against excessive light (sunburn, photoinhibition, high leaf
temperature, high VPDleaf-air)
-protection against wind and hail
- Exclusion of PRV vector
Baixinho de Santa Amália genotype
Full sunlight
● Greenhouse
E
SOL
SOL
Full sunlightE ● Greenhouse
2000
1500
P
P
F
1000
winter
500
fluxo de fótons fotossintéticos
(mol m-2 s-1)
P
P
F
fluxo de fótons fotossintéticos
(mol m-2 s-1)
2000
09:15
10:22
11:46
winter
summer
7
VPDleaf-air (kPa)
0900 h
1200 h
4
3
2
1
0
greenhouse full sunlight greenhouse full sunlight
Treatments
9:44
hora
30% Light reduction
5
summer
500
8:09
13:45
hora
6
1000
0
0
8
1500
12:42
8
25
winter
summer
winter
7
5
20
0900 h
1200 h
Rate of net photosynthesis
(mol m-2 s-1)
VPDleaf-air (kPa)
6
4
3
2
1
0
greenhouse full sunlight greenhouse full sunlight
Stomatal conductance (mol m-2 s-1)
0,60
winter
0,50
0900 h
0,40
1200 h
summer
0,30
0,20
0,10
0,00
greenhouse
full sunlight
Treatments
0900 h
1200 h
10
5
0
greenhouse full sunlight greenhouse full sunlight
Treatments
Treatments
0,70
15
summer
greenhouse
full sunlight
55
53
Spad reading
51
49
47
45
E
greenhouse
SOL
full sunlight
Full sunlight ● Greenhouse
320
300
0,80
260
Fv/Fm
0,75
240
0,70
0,65
220
7:56
9:35
12:32
0,60
hora
0,55
07:56
09:35
hora
360
330
300
ET/CS
RC/CS
0,85
280
270
240
210
180
150
07:56
09:35
hora
12:32
12:32
Commercial production
2004/2005
Greenhouse
Full sunlight
Plant Height (cm)
183.8 a
144.2 b
Trunk diameter (cm)
13 a
10 b
Leaf number plant-1
35.3 a
29.4 b
Leaf area plant (m2)
0.2 a
0.15 b
Number of fruits plant-
9.7 a
6.5 b
Fruit weight plant-1
3.53 kg a
2.12 kg b
Average fruit weight
364.7 g a
326.1g b
1
Martelleto et al 2008
Light quality and intensity can affect leaf anatomy in papaya plant
< R/FR
Shade 50%
Full sunlight
Buisson e Lee, 1993
Buisson e Lee, 1993
Sun leaf
Shade leaf
Leaf thickness (µm)
137
119
Specific leaf mass (mg cm-2)
4,7
2,8
Leaf area (cm-2)
292
162
Chlorophyll content (µg cm-2)
3.57
5.16
Petiole lenght (mm)
207
148
Stomata density (mm-2)
465
330
Degree air space
0.29
0.33
Under conditions of low light intensity and low
red:far red light , leaf lobing was dramatically
reduced.
Change in spectral quality also resulted in a
reduction in the ratio chlorophyll a to b
High Leaf lobing can reduce leaf temperature in sun leaf
Motorcycle radiator
The papaya photosynthetic capacity can be linked to non stomatal limitation in soil field capacity
condition.
As exemple:
-Nitrogen leaf concentration
15 g kg-1DM
18 g kg-1DM
35 g kg-1DM
37 g kg-1DM
Valor SPAD
41,2
Valor SPAD
39,8
Valor SPAD
26,6
Valor SPAD
6,6
15 g kg-1DM
18 g kg-1DM
35 g kg-1DM
37 g kg-1DM
SPAD reading = 60
Sunrise Solo
SPAD reading = 30
Golden
Eliemar Campostrini
[email protected]
Fisiologia Vegetal
UENF/CCTA
1 Spad reading
45 Spad reading
Solo
Golden
16
30
14
20
3-4 leaf
15
6-7 leaf
10
5
Apot (µmol O2 m-2 s-1)
Apot (mol O2 m-2.s-1)
25
12
10
3-4 leaf
8
6
6-7 leaf
4
2
0
0
10
20
30
40
Spad reading
50
60
70
0
0
10
20
30
40
Spad reading
50
60
70
K+
ATP
H+
ADP + Pi
ClH2O
Field-grown papaya
(-20kPa)
(--68kPa)
Tainung
Red Lady
Sunrise
Marler e Mickelbart, 1998
Strategies to increase effective use of water in papaya
-Regulated deficit irrigation (RDI)
-Partial rootzone drying (PRD)
Strategies to increase effective use of water in papaya
-Regulated deficit irrigation (RDI)
-Partial rootzone drying (PRD)
15L pots
Substrate soil, sand and
cattle manure (2:1:2)
The plants were kept at
field capacity (FC) until they
were 96 days old.
-Gas exchange
-Chlorophyll fluorescence
-Growth (central vein lenght, root dry biomass, stem dry biomass, leaf dry biomass,
total dry biomass, root volume)
-Proline
-Carbon isotope discrimination
-Agronomic water use efficiency
-Thermal imaging
Max
Av
PAR
RH
Min
Temp
VPD
The plants were kept at field capacity (FC) until they were 96 days old.
NI
PRD
14 days after planting
maximum stress
NI
FI
NI
14 days after planting
maximum stress
gs (mol H2O m-2 s-1)
0,8
CIFI
0,7
PRD
IPSR
RDI
0,6
NI
0,5
0,4
0,3
0,2
0,1
0
0
3
6
9
12 14 16
Days after treatment
17
21
0,6
gs (mol m-2 s-1)
0,5
VPD
0,4
0,3
0,2
0,1
0
DAT
CI
IPSR
RDI
NI
14
High VPD
12
Transpiration (mmol m-2 s-1)
Low VPD
High VPD
12
FI
CI
PRD
IPSR
10
y = 10.871x + 1.6225
R² = 0.722
RDI
y = 12.69x + 0.72
R² = 0.5369
FI
y = 11.092x + 1.4987
R² = 0.7368
PRD
10
y = 10.543x + 0.7411
R² = 0.715
NI
8
6
4
FI
PRD
RDI
NI
E (mmolH2O m-2 s-1)
RDI
2
NI
8
0
0
6
0,2
0,4
0,6
Stomatal conductance (mol m-2 s-1)
4
2
0
0
3
6
9
12
14
16
Days after treatment
17
21
0,8
1
20
Photosynthesis (mol m-2 s-1)
20
10
FI
5
16
12
10
8
6
4
2
0
RDI
0
NI
0
0
3
FI
RDI
NI
14
PRD
6
9
12
14
16
Days after treatment
17
50
100
150
Soil water potential (kPa)
200
16
21
14
A (µmol m-2 s-1)
A (µmol CO2 m-2 s-1)
15
18
12
10
8
6
4
FI
PRD
RDI
NI
Photochemical efficiency of PSII
PI=(RC/ABS) x (TR/DI) x (ET/(TR-ET))
(RC/ABS): Active RC density on a Chl basis
(FV/F0): Performance due to trapping
probability Fv/F0=TR/DI
(ET/(TR-ET): Performance due to
electron-transport probability
Fv/Fm= TR/ABS
85
20
FI
NI
PRD
RDI
NI
80
16
75
14
70
High number
Leaf number
18
FI
y = 0.281x + 12.816
R² = 0.9695 FI
12
y = 0.8018x + 61.052
R² = 0.9566 FI
65
60
10
8
y = 0.2068x + 13.101
R² = 0.8998 RDI
y = 0.1678x + 12.876
R² = 0.8736 PRD
55
y = 0.7248x + 58.33
R² = 0.9617 PRD
y = 0.5561x + 61.358
R² = 0.9666 RDI
50
6
0
5
10
15
Days after treament
20
25
0
5
10
15
Days after treament
20
25
700
Root volume (cm3)
600
500
400
300
200
100
0
CI
IPSR
RDI
FI
FI
NI
RDI
PRD
NI
1,60
Leaf area (m2)
1,40
1,20
1,00
0,80
0,60
0,40
FI
NI
PRD
RDI
FI
NI
FI
Dry side of PRD
root dead
(7 days without
irrigation)
young root
5 days with
irrigation
after 7 days
without
irrigation
Carbon isotope discrimination
CI
IPSR
RDI
NI
-27,5
>Ci/Ca (≈0,7) = < δ‰
-28
b
b
b
<Ci/Ca (≈0,3) = > δ‰
-29
-29,5
-30
0,9
a
-30,5
0,8
Ca
0,7
Ci/Ca
δ13C
-28,5
a
0,6
b
0,5
bc
0,4
Ci
c
0,3
0,2
CI
IPSR
RDI
NI
Agronomic water use efficiency
AWUE (g total DW.L-1)
5
a
a
4
b
3
b
2
Treatment
FI
PRD
RDI
NI
Water economy
in relation FI
(%)
50%
50%
55.14%
AWUE
(g DM L-1)
3.12
4.55
4.57
2.46
Transpiration
rate
(L H2O g DM-1)
0.322
0.217
0.217
0.400
1
0
FI
PRD
RDI
NI
C3 crops
1 to 6 g DM L-1 H2O
C4 grasses
10 to 30 g DM L-1 H2O
Arkley (1982)
Treatment
L H2O m-2 day-1
FI
1.63
PRD
0.84
RDI
0.78
NI
1.17
Treatment
Volume water
applied per
plant per day
Transpiration
L H2O per m2
leaf per day per
plant
Transpiration L
H20 per plant
per day
Leaf area
m2
age
Whole canopy
summer
16.0
2.5
10
4.0
5 months
Whole canopy
winter
10.0
4.2
15
3.5
5 months
FI
2.3
1.63
2.3
1.41
3 months
PRD
1.1
0.84
1.1
1.30
3 months
RDI
1.1
0.78
1.1
1.40
3 months
NI
1.0
1.17
1.0
0.85
3 months
Thermal imaging
20 months
Caliman company
Brazil
http://www.caliman.com.br/pt/
Field condition
Field condition
ET0
Field condition
July
80
60
50
70%
40
1nd gas exchange
measurements
30
20
10
70%
0
3 days after rainfall
13 days after rainfall
Rainfall (mm)
Rainfall (mm)
70
80
70
60
50
40
30
20
10
0
October
2nd gas exchange
measurements
Dr. Thomas Marler
University of Guam
Guam
Flooding
Papaya is considered a species sensitive to low oxygen availability
in the soil (hypoxia), which is commonly caused by waterlogging
(Ogden et al., 1981; Malo and Campbell, 1986)
Reduced oxygen can occur as a result of tropical storms that
saturate the soil for several days, flood irrigation, as well as microirrigation practices that create microenvironments of reduced soil
oxygen
A completely flooded soil can cause death to papaya plants in 2 d
(Wolf and Lynch, 1940; Khondaker and Ozawa, 2007) or 3 to 4 d
(Samson, 1980)
Khondaker and Ozawa (2007) constructed
chambers that controlled soil gas composition at
ambient (20%), 18% and 11% oxygen; under soil
oxygen at and below 18%, A, chlorophyll content,
large and small roots, and shoot dry matter were
all decreased
20% O2
18% O2
11% O2
20% O2
18% O2
11% O2
Box 1: 20% O2
Box 2: 18% O2
Box 3: 11% O2
Papaya, considered sensitive to hypoxia, responds with accentuated
senescence (chlorotic leaves), leaf fall and does not recover after hypoxic
conditions are removed (Marler et al., 1994).
These studies indicate that papaya is sensitive to small reductions in soil
oxygen content and it is likely that micro-irrigation saturation of a small
portion of the soil is having some negative effects. Consequently, a
welldrained soil is essential for high productivity.
Salinity
Papaya seed germination is inhibited by very low levels of salinity (Kottenmeier et al., 1983), yet
seedling growth can be stimulated by 1/10 seawater salinity levels (8 mS cm-1) when compared
to a Hoagland’s nutrient solution control (Kottenmeier et al., 1983)
Maas (1993), however, classified papaya production as moderately
sensitive with salinity effects at 3 mS cm-1
Similarly Elder et al. (2000) found that moderately saline water
(1.4 to 4 mS cm-1) applied in trickle or under-tree mini-sprinkler irrigation
had no adverse affect on productivity but when overhead
applied, there was leaf damage and reduced growth.
seawater:
3.5% (35 g/L, or 599 mM)
50-80 mS cm-1
Hoagland solution:
2.7 mS cm-1
1 mS cm-1 = 1 dS m-1
The experiment was conducted in a greenhouse between March and October 2010, at UENF, in Campos dos
Goytacazes, RJ
2 genotypes: Golden and UENF/Caliman
100L pots
EC 1; 1.6; 2.2; 2.8; and 3.4 dS m-1
96 to 126 Days after transplanting
* Control.
The experiment was conducted in a greenhouse between March and October 2010, at UENF, in Campos dos
Goytacazes, RJ
2 genotypes: Golden and UENF/Caliman
100L pots
EC 1; 1.6; 2.2; 2.8; and 3.4 dS m-1
* Control.
The experiment was conducted in a greenhouse between March and October 2010, at UENF, in Campos dos
Goytacazes, RJ
2 genotypes: Golden and UENF/Caliman
100L pots
EC 1; 1.6; 2.2; 2.8; and 3.4 dS m-1
Treat. Treat. Treat. Treat. Treat.
Solution A
Solution B
1
2*
3
4
5
Fertilizers (g)
x 0.5
x1
x 1.5
x2
x 2.5
Urea
23.7
47.5
71.3
95.1
118.8
MAP
11.8
23.6
35.4
47.3
59.1
K2SO4
29.6
59.3
88.9
118.6
148.3
MgSO4
29.6
59.2
88.8
118.4
148
Micronutrients
3.5
7.0
10.5
14
17.5
CE (dS m-1)
1.0
1.6
2.2
2.8
3.4
Ca(NO3)2
56.2
CE (dS m-1)
1.0
112.4 168.6 224.8
1.5
2.0
2.6
Maximum 3 L each treatment per day per plant. After
each nutrient solution were applied 1.5 to 3L water in
each plant per day; 3 times per day)
281
3.2
Φe = is the initial slope of the light
response curve ETR versus
PAR(quantum efficiency)
PI=(RC/ABS) x (TR/DI) x (ET/(TR-ET))
(RC/ABS): Active RC density on a Chl basis
(FV/F0): Performance due to trapping
probability Fv/F0=TR/DI
(ET/(TR-ET): Performance due to
electron-transport probability
75 DAP
Golden
25ºC
1,6 dS m-1
35,9ºC
3,4 dS m-1
UENF/
Caliman
25ºC
1,6 dS m-1
25,4ºC
1,6 dS m-1
32,4ºC
3,4 dS m-1
Relationships between sap-flow measurements, whole-canopy transpiration, and
reference evapotranspiration in field-grown papaya (carica papaya l.)
Summer: (clear sky, during 4 days)
PPFmax: 2400 mol m-2 s-1
Tmax: 38ºC
VPDmax: 4 kPa
Winter: (clear sky during 4 days)
PPFmax: 1400 mol m-2 s-1
Tmax: 33ºC
VPDmax: 3.5 kPa
The crop was irrigated with a drip/fertigation
system providing supplemental irrigation of 10
(winter) and 16 L per plant per day (summer)
Under the environmental conditions evaluated :
(4 sunny days)
Winter:
Maximum vapor pressure deficit (VPDair)=3.5 kPa
Air maximum temperature of 33°C
Maximum PPF: 2400 mol m-2 s-1
Summer
Maximum VPDair=4.0 kPa
Air maximum temperature of 38ºC
Maximum PPF : 1400 mol m-2 s-1
Leaf area each plant
5 months old
Winter :3.5m2
Summer: 4 m2
A
B
Effects on sap flow
heated probe
non-heated probe
Sap flow measure
differences
between
heated and
non-heated probe
H2O
Water reduce
temperature
Xylem vessel
[reviewer1]is
night time relevant?
0,40
y = -1,2861x2 + 1,0287x + 0,1222
R² = 0,7867
0,35
K=[(ΔTmax/ΔT)-1]
0,30
0,25
winter 8-9
winter 10-11
winter 12-13
winter 14-15
winter 16-17
summer 8-9
summer 10-11
summer 12-13
summer 14-15
summer 16-17
0,20
0,15
0,10
0,05
0,00
0
0,2
0,4
0,6
Transpiration (L m-2 leaf h-1)
K is the heat coefficient:
Tm : the maximum temperature
difference (°C) between sensors in
active xylem (night time), and T is
the temperature difference (°C)
between sensors in active xylem
0,8
Mycorrhizal fungi effects on papaya productivity
The beneficial effects of arbuscular mycorrhizal (AM) fungi in the plant kingdom and
agricultural cropping systems are well documented, and include increased P, water,
and nutrient uptake as well as improved pest resistance (Harley and Smith, 1983;
Bethlenfalvay and Linderman, 1992)
Arbuscular mycorrhizal fungi colonize papaya under natural conditions. Papaya
appears to be very dependent on AM since plants in sterilized soil, as compared to
inoculated, showed poor growth and particularly P uptake (Habte, 2000)
Mohandas (1992) reported that AM inoculation of papaya seedlings increased growth,
P concentration and acid phosphatase activity in leaves
20 days of water-stress treatment
Treatments were applied 3 months after planting
20 days of waterstress treatment
Mycorrhiza establishment may result in the control of ethylene levels as one
mechanism of reducing damage by water stress in papaya plants.
Besmer and Koide (1999) showed that mycorrhizal colonization can decrease
ethylene concentration in flowers, which might explain the increased vase-life of cut
flowers.
AM colonization may act as an inhibitor of ethylene biosynthesis by influencing ACC
conversion to ethylene
Download

O-1 - vi simpósio papaya brasil 2015