LGN215 - Genética Geral Aula 7: Mutação e Recombinação Gênica Prof. Dr. Antonio Augusto Franco Garcia Monitora: Maria Marta Pastina Piracicaba - SP Mutação Conceito: qualquer modificação súbita e hereditária no conjunto gênico de um organismo, que não é explicada pela recombinação da variabilidade genética preexistente Assim, um organismo mutante é aquele cujo fenótipo alterado é causado por uma possível mutação Tipo selvagem: padrão encontrado na natureza ou no estoque de laboratório Mutação gênica: alterações num número reduzido de nucleotídeos da molécula de DNA, resultando no aparecimento de um novo alelo Mutação cromossômica: mutações que alteram de maneira visível (ao microscópio), o número ou a estrutura dos cromossomos Mutação de ponto Alterações na sequência de nucleotídeos, que alteram a sequência de aminoácidos na cadeia polipeptídica codificada pelo gene, levando a uma alteração fenotípica No entanto, podem ocorrer mutações neutras, sem efeito algum no fenótipo Tipos de alterações: Adição, deleção ou substituição de base Código genético Adição e Deleção DNA: AGA TGA CGG TTT GCA RNA: UCU ACU GCC AAA CGU Proteína: ser – tre – ala – lis - arg Adição de uma Timina (T) DNA: AGT ATG ACG GTT TGC A RNA: UCA UAC UGC CAA ACG U Proteína: ser – tir – cis – gln – tre Deleção de uma Timina (T) DNA: AGA TGA CGG TTT GCA (original) DNA: AGA GAC GGT TTG CA RNA: UCU CUG CCA AAC GU Proteína: ser – leu – pro – asn Substituição de base Substituições de base: mutações nas quais um par de base substitui outro Pode ser: Transição: substituição de uma base por outra da mesma categoria química Purina substituída por purina (A → G ou G → A) Pirimidina substituída por pirimidina (C → T ou T → C) Transversão: substituição de uma base por outra de categoria química diferente (purina por pirimidina e vice e versa) Substituição de base Mutação silenciosa: a substituição de bases não altera a seqüência de aminoácidos na cadeia polipeptídica Ex: DNA: AGC → AGG RNA: UCG → UCC Prot.: Serina – Serina Mutação de sentido errado: a substituição altera um aminoácido na cadeia polipeptídica Ex: DNA: AGC → AAC RNA: UCG → UUG Prot.: Serina – Leucina Mutação sem sentido: causa o aparecimento de um códon de terminação no mRNA, impedindo a síntese completa da cadeia polipeptídica Ex: DNA: AGC → ATC RNA: UCG → UAG Prot.: Serina – Códon de terminação Mutações Mutações sem sentido levarão ao término prematuro da tradução, tendo um efeito considerável no funcionamento da proteína As adições e deleções de um único par de bases no DNA causará uma mudança no quadro aberto de leitura do gene a partir desse ponto. Assim toda a sequência de aminoácidos traduzida a partir do sítio mutante é alterada, não tendo relação com a sequência original Resultado: perda completa da estrutura e função normal da proteína Anemia falciforme: substituição de base Mutação somática vs germinativa Mutações podem ocorrer em qualquer célula e em qualquer estágio do ciclo celular. Portanto, podem ocorrer em células somáticas e em células germinativas Uma mutação somática leva, geralmente, a um aglomerado de células fenotipicamente mutantes chamado setor mutante Os setores mutantes podem ser identificados somente se seu fenótipo contrastar visualmente com o fenótipo das células tipo selvagem Ex: mutação somática na maçã vermelha Delicious. Alelo mutante que determina cor dourada surgiu na parede do ovário da flor, que se desenvolveu na parte carnosa da maçã. As sementes não são mutante e darão origem a plantas normais (frutos vermelhos). Mutação somática vs germinativa Se a mutação for em um tecido cujas células ainda estão se multiplicando, poderá surgir um clone mutante Mas se a mutação for em uma célula pós-mitótica, que não está se multiplicando, o impacto sobre o fenótipo será desprezível Mutação somática vs germinativa Se a mutação ocorre em células germinativas (reprodutivas), ou em tecidos que darão origem a estas células, ela poderá ser transmitida às gerações seguintes (mutação germinativa) Deve-se, no entanto, excluir a possibilidade de que as diferenças fenotípicas surgiram devido à segregação meiótica e recombinação normais Mutação somática vs germinativa Uma mutação para um alelo que determina orelhas recurvadas surgiu na linhagem germinativa de um gato normal com orelhas retas e expressouse na prole Mutação somática vs germinativa Mutações somáticas NÃO são transmitidas à descendência. Mas se for tirada uma muda de um caule ou uma folha que apresente um setor somático mutante, a planta que crescerá a partir desta muda pode desenvolver tecido germinativo a partir do setor mutante. Ex: mutação produzindo um alelo para pétalas brancas que surgiu originalmente no tecido somático, mas eventualmente tornou-se parte do tecido germinativo e pôde ser transmitida através das sementes. Antes que um novo fenótipo herdável possa ser atribuído a uma mutação, tanto a segregação quanto a recombinação devem ser excluídas como tanto para as mutações causas possíveis. Esta exigência é verdadeira somáticas quanto para as germinativas. Mutação Mutações morfológica: Ex: alteração das asas em Drosophila Asa vestigial Tipo selvagem Asa recurvada Mutação Mutações letais: Ex: alteração da plumagem em codorna japonesa Tipo selvagem Mutação letal Mutação Como as mutações causam diferenças no fenótipo? Gene Fenótipo Selvagem Polipeptídeo ação x Informação x Mutação Novo alelo Polipeptídeo alterado Informação y ação y Fenótipo Mutante Mutação Mutações são muito raras Taxa de mutação: 1/1.000.000.000 A maioria das mutações são deletérias, sendo normalmente eliminadas pela seleção natural Tipo selvagem Mutação letal Mutação Mutações espontâneas: de ocorrência natural. Possíveis causas: Erros na replicação do DNA Elementos genéticos móveis Mutações induzidas: são produzidas quando o organismo é exposto a um agente mutagênico, por exemplo, radiação ionizante (mutagênico físico: raio x, raios alfa, por exemplo) Ex: mutação induzida em Arabdopsis, folhas parcialmente convertidas em pétalas Mecanismos de reparo do DNA A sobrevivência de um indivíduo está diretamente relacionada à sua estabilidade genética A manutenção desta estabilidade requer não apenas um mecanismo bem desenvolvido de replicação do DNA, mas também de mecanismos de reparação do DNA, que reparam as lesões acidentais (mutações) que ocorrem continuamente no DNA Mutações cromossômicas Mutações numéricas (aberrações numéricas): Variações no número de cromossomos Mutações estruturais (aberrações estruturais): Variações na estrutura dos cromossomos Aberrações cromossômicas numéricas Mutações numéricas (aberrações numéricas): envolvem alterações no número cromossômico Euploidias: células ou organismos com múltiplos do número básico de cromossomos (x), ou seja, 3x (triplóides), 4x (tetraplóides), 5x (pentaplóides), etc. Normalmente, os organismos eucariotos são haplóides (x) ou diplóides (2x), ou seja, apresentam apenas uma ou duas cópias do conjunto básico de cromossomos (x) n: corresponde estritamente ao número de cromossomos dos gametas. Ex: Trigo moderno, 2n = 6x = 42. Portanto, n = 3x = 21 (x = 7) Aneuploidias: o organismo tem número anormal de cromossomos, apresentando um ou poucos cromossomos a mais ou a menos que o organismo selvagem Ex: 2n – 1 (organismo com um cromossomo a menos), chamado de monossômico; 2n + 1, organismo trissômico Aberrações cromossômicas numéricas As ABERRAÇÕES NUMÉRICAS são também denominadas de poliploidias Importantes para a agricultura (60% das plantas cultivadas tem origem poliplóide) Maior número de cromossomos e, em geral, frutos, folhas e raízes maiores, aumentando assim a produtividade Euploidias Autopoliploidia Alopoliploidia Autopoliploidia Autopoliploidia: indivíduos com 3 ou mais genomas idênticos Genoma AA (2n) triplica-se, AA (3n) Ex: banana Diferentes níveis de ploidia podem ser selecionados. Ex: n → haplóide (A) 2n → diplóide (AA) 3n → triplóide (AAA) 4n → tetraplóide (AAAA) 6n → hexaplóide (AAAAAA), etc... Autopoliploidia Autopoliplóides: um autotetraplóide AAAA se origina diretamente de um diplóide AA, pela duplicação de seu número de cromossomos ou pela união de 2 gametas diplóides (não reduzidos) Colchicina: impede a formação das fibras do fuso e faz com que os cromossomos não se separem na mitose. Tratamentos prolongados podem criar séries numéricas de 4n, 6n, 8n, etc... Autopoliplóides Artificiais Autopoliploidia Triplóides (3n) Quando plantas tetraplóides (4n) ou diplóides (2n) não reduzidas produzem gametas 2n viáveis que se unem na fertilização com gametas haplóides (n). Triplóides são estéreis devido à irregularidade na meiose. Os triplóides crescem vigorosamente e dão frutos grandes com pouca ou nenhuma semente. Para se estabelecer na natureza a planta se propaga vegetativamente. Exemplos: uva sem sementes, maçã, pera, banana Banana → genoma A, diplóide 2n = AA Um gameta não reduzido (2n) se uniu a um gameta normal (n), produzindo um indivíduo triplóide (3n), com genoma AAA Autopoliploidia Triplóides (3n) Exemplo: melancia sem semente, triplóides (Japão) Cruzamento de plantas diplóides (2n) com tetraplóides (4n), e produção de sementes triplóides (3n) inviáveis Mais saborosa e com mais polpa Problema: quantidade de mão-de-obra para fazer os cruzamentos entre as plantas 2n e 4n Autopoliploidia Tetraplóides (4n) Freqüentemente se originam a partir de uma duplicação de diplóides (2n) Aparecem com maior freqüência na natureza Orquídeas: flores de maior tamanho, intensificação do colorido e durabilidade das flores, além de maior resistência a doenças Rosas tetraplóides: folhas e flores bem maiores (gigantismo) Tomate tetraplóide: mais rico em vitamina C Autopoliploidia Tetraplóides (4n) Gramíneas forrageiras (braquiárias, colonião, jaraguá, etc...) produzem mais massa (forragem) verde que as plantas diplóides Seringueira autotetraplóide produz mais borracha que a diplóide, pois apresenta maior crescimento e diâmetro dos vasos laticíferos. Foi inicialmente desenvolvida no IAC Alopoliploidia Alopoliploidia: indivíduo com no mínimo 2 genomas diferentes Uma espécie nova é formada pela união de 2 genomas distintos Exemplo: algodão G. herbaceum e G. arboreum (diplóides) → Velho Mundo G. barbadense e G. hirsutum (alotetraplóides) → Novo Mundo Novo Mundo Velho Mundo G. arboreum G. herbaceum G. hirsutum G. barbadense 2n = 52 (genoma AADD) 2n = 26 (genoma AA) Alopoliploidia História evolutiva do Trigo: alopoliplóide natural Os alopoliplóides podem ser sintetizados pelo cruzamento de espécies proximamente relacionadas e duplicação dos cromossomos do híbrido, resultando em um indivíduo anfidiplóide ( que significa “diplóide duplicado”) Atualmente, alopoliplóides são sintetizados na agricultura. Os cromossomos do híbrido estéril obtido a partir de um cruzamento interespecífico são duplicados com a utilização de colchicina Fusão de protoplastos: alopoliplóides somáticos Ex: Triticale, um anfidiplóide entre Trigo (Triticum, 2n = 6x = 42) e centeio (Secale, 2n = 2x = 14), combinando a alta produtividade do trigo com a resistência do centeio Alopoliploidia Alopoliploidia pode resultar naturalmente no surgimento de uma nova espécie Aneuploidias Alterações no número de cromossomos, ocasionando ganho ou perda de cromossomos As conseqüências são graves tanto para plantas como para animais Origem de gametas aneuplóides: não-disjunção na primeira ou segunda divisão celular Ex: Síndrome de Down (trissomia do cromossomo 21) Aberrações cromossômicas estruturais Afetam a estrutura dos cromossomos, ou seja, o número ou o arranjo dos genes nos cromossomos Deficiência ou deleção: é a perda de uma porção do cromossomo, resultando na falta de um ou mais genes Aberrações cromossômicas estruturais Duplicação: é o produto da presença de uma porção extra de cromossomo, resultando na repetição de um ou mais genes Aberrações cromossômicas estruturais Inversão: ocorre quando, num determinado segmento de cromossomo, houver duas fraturas, seguidas da subseqüente soldadura do fragmento mediano, agora colocado em posição invertida Normal Paracêntrica Pericêntrica Aberrações cromossômicas estruturais Translocação: ocorre quando dois cromossomos não-homólogos quebram simultaneamente e trocam segmentos As translocações, inversões e deleções produzem uma esterilidade parcial pela geração de produtos meióticos (gametas) desbalanceados, que podem morrer ou gerar zigotos que morram