PARADIGMAS DE PROJETOS DE ALGORITMOS LUCIANO D. ISAIAS THAÍS F. VICENTIN 6766746 7547420 O QUE É UM PARADIGMA? • Um paradigma é um modelo que fornece e determina a visão que o programador possui sobre a estruturação e execução do programa. PROJETO DE ALGORITMO O projeto de algoritmo requer abordagens adequadas: • A forma como um algoritmo aborda o problema pode levar a um desempenho ineficiente. • Em certos casos, o algoritmo pode não conseguir resolver o problema em tempo viável. Não existe um paradigma que seja o melhor dentre todos. TIPOS DE PARADIGMAS • • • • • • Recursividade. Tentativa e erro. Divisão e conquista. Programação dinâmica. Algoritmos gulosos. Algoritmos aproximados. RECURSIVIDADE • Uma função é dita recursiva quando executa a si mesma, ou seja, dentro de um código, tem a capacidade de chamar um “subcódigo” para ser executado. • A recursividade permite descrever algoritmos de formas que utilizem estruturas recursivas, mais claras e concisas, especialmente em problemas complexos. EXEMPLO: QUICKSORT QUICKSORT - PARTICIONAMENTO QUICKSORT – PIOR CASO QUICKSORT – MELHOR CASO QUICKSORT – VANTAGENS E DESVANTAGENS QUANDO NÃO USAR RECURSIVIDADE • Algoritmos recursivos são apropriados quando o problema a ser resolvido ou os dados a serem tratados são definidos em termos recursivos. Entretanto, isso não garante que um algoritmo recursivo seja o melhor caminho para resolver o problema. • Vejamos dois exemplos ilustrativos de algoritmos para calcular os números da sequência de Fibonacci: ALGORITMO 1: FUNÇÃO RECURSIVA function FibRec (n: integer) : integer; begin if n<2 then FibRec := n else FibRec := FibRec(n-1) + FibRec(n-2); end; ALGORITMO 2 : FUNÇÃO ITERATIVA function FibIter (n: integer): integer; var i, k, F: integer; begin i :=1; F :=0; for k :=1 to n do begin F := i+F; i := F-i; end; FibIter :=F; end; COMPLEXIDADES DO ALGORITMO 1 E DO ALGORITMO 2 • O algoritmo 1 é O( log Φ𝑛 ) = O(n), pois cada chamada recursiva é empilhada e esse número é O(n). • O algoritmo 2 tem complexidade de tempo O(n) e complexidade de espaço O(1). n 10 20 30 50 100 FibRec 8 ms 1s 2 min 21 dias 109 anos FibIter 1 1 ½ ms ¾ ms 1,5 ms 6 ms 3 ms TENTATIVA E ERRO • Um algoritmo tentativa e erro é aquele que testa exaustivamente todas as possíveis soluções de um problema, de modo a obter a solução desejada. • A ideia é decompor o processo em um número finito de subtarefas parciais que devem ser exploradas. • O processo geral pode ser visto como um processo de pesquisa ou tentativa que gradualmente constrói e percorre uma árvore de subtarefas. TABULEIRO DE XADREZ TENTA UM PRÓXIMO MOVIMENTO procedure Tenta (i: integer; x,y: TipoIndice; var q: boolean); var u, v, k: integer; q1: boolean; begin k := 0; {inicializa selecao de movimentos} repeat k := k+1; q1 := false; u := x+a[k]; v := y+b[k]; if (u in s) and (v in s) then if t[u,v] = 0 then begin t[u,v] := i; if i<N*N {tabuleiro não esta cheio} then begin Tenta (i+1, u, v, q1); {tenta novo movimento} if not q1 then t [u,v] := 0 {não sucedido apaga reg. Anterior} end else q1 := true; end; until q1 or (k=8); {não há mais casas a visitar a partir de x,y} q := q1; end; PASSEIO DE CAVALO NO TABULEIRO DE XADREZ program PasseioCavalo; const N=8; {Tamanho do lado do tabuleiro} type TipoIndice = 1..N; var i, j: integer; t: array[TipoIndice, TipoIndice] of integer; q: boolean; s: set of TipoIndice; a, b: array[TipoIndice] of integer; {-- Entra aqui o procedimento Tenta do Programa anterior --} begin {programa principal} s := [1,2,3,4,5,6,7,8]; a[1] := 2; a[2] :=1; a[3] :=-1; a[4] :=-2; b[1] := 1; b[2] :=2; b[3] := 2; b[4] :=1; a[5] :=-2; a[6] :=-1; a[7] :=1; a[8] :=2; b[5] :=-1; b[6] :=-2; b[7] :=-2; b[8] :=-1; for i:=1 to N do for j :=1 to N do t[i,j] := 0; t [i,i] :=1; {escolhemos uma casa do tabuleiro} Tenta (2,1,1,q); if q then for i:=1 to N do begin for j :=1 to N do write (t[i,j]:4); writeln; end else writeln (‘Sem soluçao’); end. QUICKSORT - REORDENAÇÃO DIVISÃO E CONQUISTA • Consiste em dividir o problema em partes menores, encontrar soluções para estas partes e combiná-las em uma solução global. • Divide-se em 3 fases: 1. Divisão (particionamento) do problema original em sub-problemas similares ao original mas que são menores em tamanho. 2. Resolução de cada sub-problema sucessivamente e independentemente (em geral de forma recursiva). 3. Combinação das soluções individuais em uma solução global para todo o problema. O uso deste paradigma geralmente leva a soluções eficientes e elegantes, em especial quando é utilizado recursivamente. Como exemplo, vamos considerar o problema de encontrar simultaneamente o maior elemento e o menor elemento de um vetor de inteiros. VERSÃO RECURSIVA PARA OBTER O MÁXIMO E O MÍNIMO procedure MaxMin4 (Linf, Lsup: integer; var Max, Min: integer); var Max1, Max2, Min1, Min2, Meio: integer; begin if Lsup – Linf <= 1 then if A[Linf] < A[Lsup] then begin Max := A[Lsup] ; Min := A[Linf] ; end else begin Max := A[Linf] ; Min := A[Lsup]; end else begin Meio := (Linf + Lsup) div 2; MaxMin4 (Linf, Meio, Max1, Min1); MaxMin4 (Meio+1, Lsup, Max2, Min2); if Max1 > Max2 then Max := Max1 else Max := Max2; if Min1 < Min2 then Min := Min1 else Min := Min2; end; end; COMPLEXIDADE • Seja T uma função de complexidade tal que T(n) é o número de comparações entre os elementos de A, se A tiver n elementos, T(n) = (3n/2) – 2 para o melhor caso, caso médio, e pior caso. • Este algoritmo é ótimo. FIM