unesp
Universidade Estadual Paulista "Júlio de Mesquita Filho"
Faculdade de Engenharia de Ilha Solteira
Departamento de Fitotecnia, Tecnologia de Alimentos e Sócio-Economia
Agronomia
Disciplina:
EVOLUÇÃO
Prof. : Mario Luiz Teixeira de Moraes
COLABORADORES:
Christian Luis Ferreira Berti
Marcela Aparecida de Moraes
Selma Maria Bozzite Moraes
Ilha Solteira, SP
2º Semestre/2010
Princípios básicos de genética de populações
FATORES EVOLUTIVOS
MUTAÇÃO
DERIVA
BASE
GENÉTICA
POPULAÇÃO
BASE
GENÉTICA
FLUXO
GÊNICO
SELEÇÃO
CARGA GENÉTICA
 Corresponde a toda redução que existe
na adaptação real ou potencial de uma
população devido a presença de
variação genética. Assim, os indivíduos
responsáveis pela carga genética são
aqueles cujos valores adaptativos são
inferiores à média dos heterozigotos em
mais de dois desvios-padrão (Mettler &
Gregg, 1973).
CARGA GENÉTICA
1s
x
1s
CARGA GENÉTICA
 UMA REDUÇÃO NA APTIDÃO MÉDIA DOS
MEMBROS DE UMA POPULAÇÃO, POR
CAUSA DOS GENES DELETÉRIOS OU
DAS COMBINAÇÕES DELETÉRIAS DE
GENES QUE ELA CONTÉM (RIDLEY,
2006).
ADAPTAÇÃO
 UMA
PARTICULARIDADE
INDIVÍDUO
QUE
PERMITE
DE
UM
QUE
ELE
SOBREVIVA E REPRODUZA MELHOR EM
SEU AMBIENTE NATURAL DO QUE SE
NÃO A POSSUÍSSE (RIDLEY, 2006).
Aula: 08/10/10
DERIVA
GENÉTICA
DERIVA GENÉTICA
Flutuações
aleatórias
na
frequência de alelos, devido a
erros
de
amostragem,
havendo tendência de fixar-se
um
ou
outro
alelo,
especialmente em populações
de base genética restrita.
EXISTÊNCIA DA DERIVA
 WARWICK KERR & S. WRIGHT:
 Experimental studies of the distribution of
gene frequencies in very small populations of
Drosophila melanogaster.
 I. Forked. Evolution, v.8, p.172-177, 1954.
 II. Bar. Evolution, v.8, p.225-240, 1954.
 III. Aristapedia and spineless. Evolution, v.8,
p.293-302, 1954.
I. CERDAS FORKED (CERDA
BIFURCADA OU RECURVADA)
96 POP (8=4m+4f)
50%
(FORKED)
Após
16
gera
ções
26 POP
SEGREGANDO
50%
(NORMAL)
29 POP
FORKED FIXADO
41 POP
FORKED PERDIDO
29 fixado
26 segragando
41 perdido
96: Populações após 16 gerações com freq (A) = 0,5
Exemplo em que o alelo A foi fixado em 1 Pop com 8 indivíduos
Pop.
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
Ger.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
Freq(A)
0.5625
0.6875
0.8750
0.8750
0.9375
0.9375
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
Freq. Obs.
AA
.375
.500
.750
.750
.875
.875
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
Aa
.375
.375
.250
.250
.125
.125
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
aa
.250
.125
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
Freq. Esp.
AA
3
4
6
6
7
7
8
8
8
8
8
8
8
8
8
8
Aa
4
3
2
2
1
1
0
0
0
0
0
0
0
0
0
0
2
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
aa
Qui-qua
0.2439
0.0238
0.0000
0.0000
0.3200
0.3200
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
Exemplo em que o alelo A foi perdido em 1 Pop com 8 indivíduos
Pop.
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
Freq. Obs.
Ger. Freq(A) AA Aa aa
1
0.4375 .125 .625 .250
2
0.3750 .250 .250 .500
3
0.5000 .125 .750 .125
4
0.2500 .000 .500 .500
5
0.1875 .125 .125 .750
6
0.0625 .000 .125 .875
7
0.0625 .000 .125 .875
8
0.0625 .000 .125 .875
9
0.0000 .000 .000 1.000
10
0.0000 .000 .000 1.000
11
0.0000 .000 .000 1.000
12
0.0000 .000 .000 1.000
13
0.0000 .000 .000 1.000
14
0.0000 .000 .000 1.000
15
0.0000 .000 .000 1.000
16
0.0000 .000 .000 1.000
Freq. Esp.
AA Aa
2
4
1
4
2
4
1
3
0
2
0
1
0
1
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
aa
3
3
2
5
5
7
7
7
8
8
8
8
8
8
8
8
Qui-qua
0.3406
1.2800
1.5313
0.5000
1.8988
0.3200
0.3200
0.3200
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
CONSEQUÊNCIA DA DERIVA
 Deriva tende a produzir
homozigotia e que é o acaso que
determina qual alelo é fixado numa
determinada população.
EFEITOS DA DERIVA
pop pequena
↑ DERIVA=
Fixação
aleatória
↓Ne
↓FG
↓Mu
↓Se
EFEITOS DA DERIVA
FREQUÊNCIAS
ALÉLICAS
SELEÇÃO
(DIRECIONADA)
DERIVA
(ALEATÓRIA)
DERIVA GENÉTICA
Modificação aleatória das frequências gênicas
em consequência da amostragem.
1. Populações grandes: equilíbrio de HardyWeinberg – desvios sem significância.
2.
Populações
pequenas:
desvios
são
comumente muito grandes (deriva genética),
de tal forma que a simples ação do acaso
implica que a frequência de um gene poderá
atingir 0% (eliminação), enquanto a de seu
alelo atinge a de 100% (fixação), sejam eles
neutros, desfavoráveis ou favoráveis.
DERIVA GENÉTICA
3. Prováveis origens de populações pequenas:
a) No seu início (princípio ou efeito de fundador
= founder effect);
b) Em um dado momento de sua história (efeito
gargalo de garrafa, “Bottle neck effect” ou
efeito do afunilamento);
c) Intervalos regulares ao longo do tempo
(variação cíclica);
d) Constantemente.
DERIVA GENÉTICA
A
seleção
pequenas,
poderá,
natural
papel
num
terá,
em
secundário,
dado
momento
populações
pois
e
o
acaso
com
maior
eficiência, agir em sentido contrário ao da
seleção. Assim, em tais populações, a evolução
pode, em função da deriva genética, seguir
linhas
inadaptativas,
contrárias à adaptação.
isto
é,
tomar
direções
AMOSTRAGEM
 EM POPULAÇÕES DE TAMANHO FINITO,
EVENTOS AO ACASO – SOB A FORMA DE
ERRO DE AMOSTRAGEM NA RETIRADA
DOS GAMETAS DO CONJUNTO GÊNICO –
PODEM CAUSAR EVOLUÇÃO (FREEMAN &
HERRON, 2009).
EHW
AA AA
Aa Aa Aa Aa P
1
aa aa
f (A) 
8
 0,5
16
8
f (a ) 
 0,5
16
AA  0,25
Aa  0,50
aa  0,25
AA AA
P
Aa Aa Aa Aa o
aa aa
 δp
Δp SN (AA, Aa)
Aa Aa Aa Aa P
1
aa aa
AA AA
P1
Aa Aa Aa Aa
f (A) 
8
 0,67
12
4
f (a ) 
 0,33
12
f (A) 
AA  0,45
Aa  0,44
aa  0,11
f (a ) 
3
 0,3
10
7
 0,7
10
AA  0,09
Aa  0,42
aa  0,49
DERIVA GENÉTICA
Deriva: perda de variação genética dentro das
populações e na divergência genética
entre elas, inteiramente ao acaso.
(Futuyma, 1992).
DERIVA GENÉTICA X SELEÇÃO
A SELEÇÃO É O SUCESSO REPRODUTIVO
DIFERENCIAL QUE ACONTECE POR ALGUM
MOTIVO;
A DERIVA GENÉTICA É O
SUCESSO REPRODUTIVO DIFERENCIAL
QUE SIMPLESMENTE ACONTECE (FREEMAN
& HERRON, 2009).
Conseqüências da Deriva
Fixação
do alelo
Perda do
alelo
Quando a população efetiva é pequena, as flutuações ao acaso podem
levar à completa fixação de um ou outro alelo.
Assim, o efeito de DERIVA GENÉTICA (flutuações ao acaso nas
frequências alélicas) é negligenciável em grandes populações, mas
adquire importância em populações pequenas. (GARDNER & SNUSTAD, 1987)
População finita de tamanho constante: N=10
Geração
7
Nº de genótipos
A1A1
A1A2
A2A2
0
0
10
0
1
4
5
2
7
3
7*
A1A1
A1A1
A1A1
A1A1
A1A1
A1A1
A1A1
N
Freq. gênicas
p=A1
q=A2
10
0,50
0,50
1
10
0,65
0,35
3
0
10
0,85
0,15
2*
1*
10
0,80
0,20
Amostragem: Produz alterações casuais nas frequências gênicas
f (A1) 
2
A1A2
A1A2
16
 0,80
20
1 A2A2
4
f (A 2 ) 
 0,20
20
Fonte: Adaptado de Stansfield (1985)
Amostragem casual: deriva genética.
Maior dispersão de freqüências gênicas na população de menor tamanho.
t
 
1 
2
σq  poqo 1  1 
 
  2 N  
Estes fatores estão relacionados com a estrutura da população:
Exemplo:
1. As frequências iniciais p0 e q0;
= 0,5
2. O tempo disponível para o processo ter efeito (t);
= 20 gerações
3. O tamanho da população (N).
 {20  200
σ q2  0,0993
σ q2  0,0122
Fonte: Shorrocks, 1980.
Para N=10
Para N=100
t: 28 gerações para fixação ou perda
t:280 gerações para fixação ou perda
2,8 N
1,4N ou 14 gerações
t
 
1

σq2  po (1  po ) 1  1 
 
  2 N  
Fonte: Hartl & Clark, 1989.
WinPop
 AUTORES:
 - Paulo A. S. Nuin – [email protected].
 - Paulo A. Otto – [email protected].
 Instituto de Biociências/USP – São Paulo, SP
Perda
Fixação
Queda na
variabilidade
Fonte: Freire-Maia, 1974.
I curto
I longo
1s
p q
σq2  o o
2 Ne
poq o
σq 
2 Ne
ou
2s
3s
t
 
1 
2

σq  po (1  po ) 1  1 
 
  2 N  
Fonte: Freire-Maia, 1974.
A
B
A(0,5)
a(0,5)
A(0,5)
a(0,5)
N=5000
N=50
0,5.0,5
σq 
2.5000
0,5.0,5
σq 
2.50
σq  0,005
σq  0,05
0,495 ____1s____ 0,505
0,45 ____1s____ 0,55
0,490 ____2s____ 0,510
0,40 ____2s____ 0,60
0,485 ____3s____ 0,515
0,35 ____3s____ 0,45
t
 
1

σq2  pq1  1 
 
  2 N  
1s
2s
x
x
1s
1
 
1 
2
σq  pq1  1 

  2 N  
/ / 1 
2
σq  pq1  1 
2N 

2s
pq
2
σq 
2N
3s
x
3s

pq
q 
2N
Reserva: 287 ha
53 árvores
5 km
27 km
30 km
SHANGRILÁ: 50 ha
10 árvores
18 km
17 km
LARANJA: 23 ha
12 árvores
SANTA: 25 ha
15 árvores
Figura 1. Esquema dos fragmentos amostrados, com suas perspectivas áreas
distâncias entre fragmentos e números de indivíduos. (Fonte: Souza, 1997).
TABELA. Freqüência alélica, número de alelo perdidos e número de alelo
fixados de subpopulações criadas artificialmente e agrupadas em 3
categorias: Fr-25%:Sp-1, Sp2, Sp-3, Sp-4; Fr-50%: Sp-5, Sp-6;
Cs60 (Sp-7), e PO (permanência de todas as árvores da população
original situada na Reserva). (Fonte: SOUZA, 1997).
Loco
Skdh-1
Pgm -1
Mdh-3
Lap
Alelo
(A)
PO
(53)
1
0,845
2
FR25%
(13-13-14-13)
Sp-1
FR50%
(26-27)
CS60
(29)
Sp-2
Sp-3
Sp-4
Sp-5
Sp-6
Sp-7
1,000
0,750
0,909
0,727
0,795
0,900
0,761
0,155
-
0,250
0,091
0,273
0,200
0,100
0,239
1
0,837
0,923
0,708
0,893
0,808
0,846
0,827
0,804
2
0,096
0,077
0,167
0,107
0,038
0,058
0,135
0,107
3
0,067
-
0,125
-
0,154
0,096
0,038
0,089
1
0,872
0,917
0,885
0,857
0,813
0,875
0,870
0,904
2
0,117
0,083
0,077
0,143
0,188
0,125
0,111
0,060
3
0,011
-
0,038
-
-
-
0,019
-
1
0,091
-
0,125
0,083
0,100
0,100
0,083
0,118
2
0,909
1,000
0,875
0,917
0,900
0,900
0,917
0,882
A. Perdidos
0
4
0
2
1
1
0
1
A. Fixados
0
2
0
0
0
0
0
0
DERIVA
Freqüências alélicas de dois locos em três populações de
Eucalyptus grandis: PSG (Ne =35), PSI (Ne = 14) e PSP (Ne =6)
LOCO
LAP-2
SKDH
ALELOS
PSG
PSI
PSP
1
0,514
0,536
0,583
2
0,129
0,179
0,083
3
0,243
0,214
0,333
4
0,071
0,071
0,000
5
0,043
0,000
0,000
1
0,886
0,964
1,0000
2
0,029
0,000
0,000
3
0,057
0,036
0,000
4
0,029
0,000
0,000
Fonte: Mori, 1993.
DERIVA: ↑VARIABILIDADE
Se a deriva está associada
sempre com a redução de
variabilidade e fixação de
alelos, como é que ela pode
ser um mecanismo
amplificador de variabilidade?
DERIVA: ↑VARIABILIDADE
ENTRE POPULAÇÕES
POP 1
POP 2
POP 6
POP 0
POP 3
POP 5
POP 4
DERIVA: ↓VARIABILIDADE DENTRO DE POP. E
↑VARIABILIDADE ENTRE POPULAÇÕES
POP 1
POP 6
POP 2
POP 0
POP 0
POP 5
POP 3
POP 4
REFERÊNCIAS BIBLIOGRÁFICAS
FREEMAN, S.; HERRON, J.C. Análise evolutiva. Trad. BORGES-OSÓRIO, M.R.; FISCHER, R. 4. ed., Porto
Alegre: Artmed Editora, 2009. 848p.
FREIRE-MAIA, N. Genética de populações humanas. São Paulo: Editora da Universidade de São Paulo, 1974.
216p.
FUTUYMA, D.J. Biologia evolutiva. Trad. VIVO, M. e Coord. SENE, F.M. Ribeirão Preto: Sociedade
Brasileira de Genética/CNPq, 1992. 631p.
GARDNER, E.J. & SNUSTAD, D.P. Genética. 7a. edição. Trad. SANTOS, C.N.D.; FREIRE, H.L.;
BONALDO, M.C.; FERREIRA, P.C.G.; FRAGOSO, S.P.; ARENA, J.F.P. Rio de Janeiro: Editora Guanabara
S/A, 1987. 497p.
HARTL, D.L. & CLARK, A.G. Principles of populations genetics. Sunderland, Sinauer Associates, Inc.
Publishers, 1989. 682p.
METTLER, L.E.; GREGG, T.G. Genética de populações e evolução. São Paulo: Editora Polígono, 1973. 262p.
MORI, E.S. Variabilidade genética isoenzimática em uma população de Eucalyptus grandis Hill ex Maiden
submetida a diferentes intensidades de seleção. Piracicaba, 1993. 119p. (Doutorado – ESALQ/USP).
RIDLEY, M. Evolução. Porto Alegre: Artmed Editora, 2006. 752p.
SENE, F.M. Cada Caso, Um Caso... Puro Acaso: Os processos de evolução biológica dos seres vivos.
Ribeirão Preto: SBG, 2009. 252p.
SHORROCKS, B. A origem da diversidade: as bases genéticas da evolução. Trad. MORGANTE, J. & OTTO,
P.G. São Paulo: T.A. Queiroz: Editora da Universidade de São Paulo, 1980. 181p.
SOUZA, L.M.F.I. Estrutura genética de populações naturais de Chorisia speciosa St. Hil. (Bombacaceae) em
fragmentos florestais na região de Bauru (SP) – Brasil. Piracicaba, 1997. 76p. (Mestrado – ESALQ/USP).
STANSFIELD, W.D. Genética. 2ª. Edição. Trad. JAPARDO, T.R.S. São Paulo: McGraw-Hill do Brasil, 1985.
514p.
VEASEY, E.A.; MARTINS, P.S.; BRESSAN, E.A.; MORGANTE, C.V. Evolução. Piracicaba: ESALQ/USP,
2004. 72p.
Download

DERIVA