Chapter 8: Procedure of Time-Domain Harmonics Modeling and Simulation Tutorial on Harmonics Modeling and Simulation Presenter: Paulo F Ribeiro Contributors: C. J. Hatziadoniu, W. Xu, and G. W. Chang 1 IEEE PES General Meeting, Tampa FL June 24-28, 2007 Conferência Brasileira de Qualidade de Energia Santos, São Paulo, Agosto 5-8, 2007 OUTLINE 1. Introduction: Relevance of the Time Solution Procedures 2. The Modeling Approach • • • • Harmonic Sources in the Time Domain Apparatus Modeling Formulation of the Network State Equation Harmonic Solution Procedure 3. Software Demonstration of Harmonic Simulation 4. Summary and Conclusion 2 IEEE PES General Meeting, Tampa FL June 24-28, 2007 Conferência Brasileira de Qualidade de Energia Santos, São Paulo, Agosto 5-8, 2007 INTRODUCTION • Why Time Domain Solution? • When is Time Domain Solution Appropriate? • How Accurate is Time Domain Solution Compared to Direct Methods? • What are the General Characteristics of a Time Domain Solution Procedure? 3 IEEE PES General Meeting, Tampa FL June 24-28, 2007 Conferência Brasileira de Qualidade de Energia Santos, São Paulo, Agosto 5-8, 2007 Why Time Domain Solution? • “Time Domain Simulation is preferable to direct methods in certain line varying conditions involving power converters and non-linear devices.” – It allows detail modeling, especially of non-linear network elements; – It allows the assessment of non-linear feedback loops onto the harmonic output (e.g. study of harmonic instability in line commutated converters). • Example of Direct Methods – PCFLOH; – SuperHarm. 4 IEEE PES General Meeting, Tampa FL June 24-28, 2007 Conferência Brasileira de Qualidade de Energia Santos, São Paulo, Agosto 5-8, 2007 When is Time Domain Solution Appropriate? • Calculations of non-characteristic harmonics from power converters. • Calculation of harmonic instability and harmonic interactions between power converters and the converter control. • Harmonic filter design and harmonic mitigation studies. • The effect of harmonics on equipment and protection devices. • Real time digital simulations-RTDS of harmonics such as hardware-in-loop simulations. 5 IEEE PES General Meeting, Tampa FL June 24-28, 2007 Conferência Brasileira de Qualidade de Energia Santos, São Paulo, Agosto 5-8, 2007 Accuracy of Time Domain Simulation v. Direct Methods • The time response of the system must arrive at a periodic steady state. – Quasi periodic or aperiodic response possible under non-linear feedback control. • Sampling and integration errors. The sampling step is dictated by the highest harmonic order of interest. • Modeling errors approximating the non-linear characteristic of certain apparatuses (e.g. transformer magnetization and arrester v-i characteristics) 6 IEEE PES General Meeting, Tampa FL June 24-28, 2007 Conferência Brasileira de Qualidade de Energia Santos, São Paulo, Agosto 5-8, 2007 What are the General Characteristics of a Time Domain Solution Procedure? • Slow Transient Modeling. May use programs such as EMTP, PSCAD, and SIMULINK. May incorporate local controls of power converters. • Describe a limited part of the system around the harmonic source. • Run simulation until steady state Use FFT within the last simulation cycle to compute harmonics. 7 IEEE PES General Meeting, Tampa FL June 24-28, 2007 Conferência Brasileira de Qualidade de Energia Santos, São Paulo, Agosto 5-8, 2007 Modeling Approach • Harmonic Sources – Power Converters Detail representation including grid control and, possibly, higher level control loops. Equivalency: Represent as rigid source. – Non-Linear Devices Transformer magnetizing and inrush current. Arrester current in over-voltage operation. – Background harmonics: Rigid source representation. 8 IEEE PES General Meeting, Tampa FL June 24-28, 2007 Conferência Brasileira de Qualidade de Energia Santos, São Paulo, Agosto 5-8, 2007 Power Converters: Detail Representation • Detail Valve model • Surge arrester representation in studies of harmonic overvoltages Ls Surge Arrester • Snubber Representation of the grid control 9 IEEE PES General Meeting, Tampa FL June 24-28, 2007 Conferência Brasileira de Qualidade de Energia Santos, São Paulo, Agosto 5-8, 2007 Power Converters: Switching Function id va vb vc ia ib + vd ic - • Voltage-Sourced inverters are more suitable for this representation. • Switching function approach: – Voltage: v a s a (t ) v d , vb sb (t ) v d , v c s c (t ) v d – Current: i d s a (t ) i a sb (t ) ib s c (t ) ic 10 IEEE PES General Meeting, Tampa FL June 24-28, 2007 Conferência Brasileira de Qualidade de Energia Santos, São Paulo, Agosto 5-8, 2007 Non-Linear Devices: Transformer i L2 lA L1 Saturation Characteristic v Lo SA SB LA LB Lo iA • • Aircore Inductance lB Unsaturated Segment Saturated Segment l(i) iB i Piece-wise Linear representation of the core inductance. Switching inductance model (flux controlled switches). 11 IEEE PES General Meeting, Tampa FL June 24-28, 2007 Conferência Brasileira de Qualidade de Energia Santos, São Paulo, Agosto 5-8, 2007 Formulation of the Network Equations • • Pre-integrated Components: Algebraic Equations State Equations: Numerical Integration – Piece-wise Linear Equations – Time Varying Equations x L ALL x A NL N xC ACL ( x, t ) ALN ANN ACN ( x, t ) ALC ( x, t ) x L 0 BL ANC ( x, t ) x N f ( x) BN u (t ) ACC ( x, t ) xC 0 BC ( x, t ) 12 IEEE PES General Meeting, Tampa FL June 24-28, 2007 Conferência Brasileira de Qualidade de Energia Santos, São Paulo, Agosto 5-8, 2007 Summary of The Time Domain Procedure Sart Network and converter data Slow Transient Modeling Run Slow Transient Program Run FFT Fine-Tune Model No Yes Steady State? Met Criteria? No Yes End 13 IEEE PES General Meeting, Tampa FL June 24-28, 2007 Conferência Brasileira de Qualidade de Energia Santos, São Paulo, Agosto 5-8, 2007 SIMULINK Demonstrations • Converter Simulation Using the Switching Function • Non-Linear Resistor • Rigid Harmonic Source • Impedance Measurement • Network Equivalency 14 IEEE PES General Meeting, Tampa FL June 24-28, 2007 Conferência Brasileira de Qualidade de Energia Santos, São Paulo, Agosto 5-8, 2007 Converter Simulation Through the Switching Function (a) A A B B • Linear Network. • Insert the converter as: C C – Voltage source on ac side. – Current source on dc side. (b) Inverter DC Side P1 powergui P2 Discrete 3-phase PWM Generator [Sa] [Sb] + + Vd - Cd V Id s Continuous - Switching Function Generation • [Sc] [Ia] [Sa] [Sb] [Sc] [Ib] [Ic] Inverter AC Side Incorporate high level converter controls. Va [Sa] s [Vd] + - Vb [Ia] [Sb] s + 4 Multimeter - A A B C B C A B C [Ib] Vc [Sc] s + [Ic] Measurements from network - [Vd] 15 IEEE PES General Meeting, Tampa FL June 24-28, 2007 Conferência Brasileira de Qualidade de Energia Santos, São Paulo, Agosto 5-8, 2007 Example of Non-Linear Resistor Using User-Defined Functions Continuous Network Thévenin Equivalent pow ergui node 1 From RT [i] i(v) Series RLC Branch - s C' v + i(v) + + v - Voltage Controlled Resistor + v - v Non-linear voltage controlled resistor i(v ) [i] v RT i(v) V ( x) Goto node 0 • • + - - Scope node 1 V(x) Lookup Table Describing i(v) Voltage Controlled Element: Parasitic capacitance C’ User-defined function describing the i(v) function 16 IEEE PES General Meeting, Tampa FL June 24-28, 2007 Conferência Brasileira de Qualidade de Energia Santos, São Paulo, Agosto 5-8, 2007 Rigid Harmonic Source Using the sFunction A s + 1 - Phase A sfHarm_3ph s Rigid Source - B + 2 Phase B C s + 3 - Phase C • S-Function: Calculation of the harmonic current: i a (t ) I1 cos(t 1 ) • I n cos(nt n n1 ) n 3,5,..,N Simulation time slows down with increasing order N 17 IEEE PES General Meeting, Tampa FL June 24-28, 2007 Conferência Brasileira de Qualidade de Energia Santos, São Paulo, Agosto 5-8, 2007 Impedance Scans Using Rigid Harmonic Sources • Basic assumptions: Procedure: – Linear Network Model. – Single driving point (e.g. location of harmonic source). – The harmonic source is represented by a rigid current source at predefined harmonic orders. • • 1. Inject positive, negative, or zero sequence current separately at unit amplitude; 2. Arrive at steady state 3. Obtain bus voltage 4. Apply FFT 1. Driving point impedance Driving point impedance Zkk jn1 Transfer impedance 2. Transfer Impedance Z mk ( jn1 ) 18 Vk ( jn1 ) Vk ( jn1 ) I k ( jn1 ) Vm ( jn1 ) Vm ( jn1 ) I k ( jn1 ) IEEE PES General Meeting, Tampa FL June 24-28, 2007 Conferência Brasileira de Qualidade de Energia Santos, São Paulo, Agosto 5-8, 2007 Impedance Scan: Transfer Function Method • • Basic Assumptions – The impedance is defined as a current-tovoltage network (transfer) function: Procedure 1. Define network as a subsystem; 2. Define the controlling signals of the current sources as the inputs; Vm ( s) Z mk ( s) I k ( s) 3. Define the voltages at the buses of interest as the outputs; – Network is driven by a signal-controlled current source. More than one inputs can be used. 4. Use the LTI tool box to obtain the driving and transfer impedances. 19 IEEE PES General Meeting, Tampa FL June 24-28, 2007 Conferência Brasileira de Qualidade de Energia Santos, São Paulo, Agosto 5-8, 2007 Impedance Scan: Transfer Function Method—Example V_bus1 V_bus2 V_bus3 Injection Source 1 Bus 1 + Vb1 - Input 1 s + I1 Vb2 aA I1a bB - I1b cC aA A B A B bB C C Feeder 1-2: 2 mi A B C bB A B C cC 700kVAR 750kVAR A B C A B C A B C A B C Vb3 Line Impedance data r'=0.278 Ohm/mi x'=0.733 Ohm/mi + Load 1 2MW 0.7MVAR A B C Feeder 2-3: 2mi cC - Continuous Bus 3 aA A B C s I1c 3 2 Bus 2 A B C s Load 2 2MW 0.7MVAR Load 3 4MW 1.4MVAR • Inputs: Signal node 1 (array input: number of input signals is three). • Outputs: Voltage at network nodes 1, 2, and 3 (each is an array of three). Voltage is measured by the voltmeter or the multimeter block 20 IEEE PES General Meeting, Tampa FL June 24-28, 2007 Conferência Brasileira de Qualidade de Energia Santos, São Paulo, Agosto 5-8, 2007 Network Equivalency • It is often desirable to represent a part of the network (referred to as the external network) by a reduced bus/element equivalent preserving the impedance characteristic at one or more buses (interface or interconnection buses). • The part of the network that is of interest can be represented in detail. 21 IEEE PES General Meeting, Tampa FL June 24-28, 2007 Conferência Brasileira de Qualidade de Energia Santos, São Paulo, Agosto 5-8, 2007 Network Equivalency Using SIMULINK • The procedure replaces the external network by a TF block representing the driving point impedance at the interface bus. • The TF block is embedded into the network of interest: 1. Drive the block input by the interface bus voltage; 2. Connect the block output to the input of a signal driven current source; 3. Connect the current source to the interface bus; 22 IEEE PES General Meeting, Tampa FL June 24-28, 2007 Conferência Brasileira de Qualidade de Energia Santos, São Paulo, Agosto 5-8, 2007 Network Equivalency: Example Admittance Phase a Injection Source Bus 1 (s+0.1)(s+100) (s+100)(s+40-800i)(s+40+800i) s + aA Admittance Phase b - I1a Ih (s+0.1)(s+100) + bB V_bus1 (s+100)(s+40-800i)(s+40+800i) s A B C Admittance Phase c - I1b (s+0.1)(s+100) (s+100)(s+40-800i)(s+40+800i) s cC + - Load 1 2MW 0.7MVAR A B C A B C I1c Continuous 700kVAR • Method becomes cumbersome for multiple interface buses. • Mutual phase impedances are omitted. 23 IEEE PES General Meeting, Tampa FL June 24-28, 2007 Conferência Brasileira de Qualidade de Energia Santos, São Paulo, Agosto 5-8, 2007 Summary 1. Time domain harmonic computation is useful in cases where detail modeling of the harmonic source is required; 2. The modeling approach is the same as the slow transient modeling approach; 3. The size of the network simulated is limited to a few buses around the harmonic source; 4. Software like SIMULINK combine several useful features that can provide insight into a problem, especially for educational purposes. 24 IEEE PES General Meeting, Tampa FL June 24-28, 2007 Conferência Brasileira de Qualidade de Energia Santos, São Paulo, Agosto 5-8, 2007