Lista Equação e Inequação do 1º Grau Profº Pinda 1. (Udesc 2014) No caixa de uma loja havia somente cédulas de 50 e 20 reais, totalizando R$ 590,00. Após receber o pagamento, integralmente em dinheiro, de uma venda de R$ 940,00, o comerciante da loja notou que a quantidade inicial de cédulas de 50 reais triplicara, e a quantidade inicial de cédulas de 20 reais duplicara, sem que houvesse notas ou moedas de outros valores. Dessa forma, a quantidade total de cédulas disponíveis inicialmente no caixa da loja era igual a: a) 16 b) 22 c) 25 d) 19 e) 13 2. (Uece 2014) O pagamento de uma dívida da empresa AIR.PORT foi dividido em três parcelas, nos seguintes termos: a primeira parcela igual a um terço do total da dívida; a segunda igual a dois quintos do restante, após o primeiro pagamento, e a terceira, no valor de R$204.000,00. Nestas condições, pode-se concluir acertadamente que o valor total da dívida se localiza entre a) R$ 475.000,00 e R$ 490.000,00. b) R$ 490.000,00 e R$ 505.000,00. c) R$ 505.000,00 e R$ 520.000,00. d) R$ 520.000,00 e R$ 535.000,00. 3. (Enem 2013) Um dos grandes problemas enfrentados nas rodovias brasileiras é o excesso de carga transportada pelos caminhões. Dimensionado para o tráfego dentro dos limites legais de carga, o piso das estradas se deteriora com o peso excessivo dos caminhões. Além disso, o excesso de carga interfere na capacidade de frenagem e no funcionamento da suspensão do veículo, causas frequentes de acidentes. Ciente dessa responsabilidade e com base na experiência adquirida com pesagens, um caminhoneiro sabe que seu caminhão pode carregar, no máximo, 1500 telhas ou 1200 tijolos. Considerando esse caminhão carregado com 900 telhas, quantos tijolos, no máximo, podem ser acrescentados à carga de modo a não ultrapassar a carga máxima do caminhão? a) 300 tijolos b) 360 tijolos c) 400 tijolos d) 480 tijolos e) 600 tijolos 4. (Insper 2012) Em uma sequência, cada termo, a partir do terceiro, é igual à soma dos dois termos anteriores. Se o primeiro termo vale 18 e o sétimo termo vale 122, então o segundo termo da sequência é a) 2. b) 4. c) 6. d) 8. e) 10. 5. (Ime 2012) Um curso oferece as disciplinas A, B, C e D. Foram feitas as matriculas dos alunos da seguinte forma: — 6 alunos se matricularam na disciplina A; — 5 alunos se matricularam na disciplina B; — 5 alunos se matricularam na disciplina C; e — 4 alunos se matricularam na disciplina D. Sabe-se que cada aluno se matriculou em, no mínimo, 3 disciplinas. Determine a quantidade mínima de alunos que se matricularam nas 4 disciplinas. a) 0 b) 1 c) 2 d) 3 e) 4 6. (Uff 2012) Colocando-se 24 litros de combustível no tanque de uma caminhonete, o ponteiro do 1 marcador, que indicava do tanque, passou a indicar 4 5 . 8 Determine a capacidade total do tanque de combustível da caminhonete. Justifique sua resposta. 7. (Enem 2014) Ao final de uma competição de ciências em uma escola, restaram apenas três candidatos. De acordo com as regras, o vencedor será o candidato que obtiver a maior média ponderada entre as notas das provas finais nas disciplinas química e física, considerando, respectivamente, os pesos 4 e 6 para elas. As notas são sempre números inteiros. Por questões médicas, o candidato II ainda não fez a prova final de química. No dia em que sua avaliação for aplicada, as notas dos outros dois candidatos, em ambas as disciplinas, já terão sido divulgadas. O quadro apresenta as notas obtidas pelos finalistas nas provas finais. Candidato I Química 20 Física 23 II X 25 III 21 18 A menor nota que o candidato II deverá obter na prova final de química para vencer a competição é a) 18. b) 19. c) 22. d) 25. e) 26. 8. (Ufg 2013) Um comerciante comprou um lote de um produto A por R$ 1.000,00 e outro, de um produto B, por R$ 3.000,00 e planeja vendê-los, durante um certo período de tempo, em kits contendo um item de cada produto, descartando o que não for vendido ao final do período. Cada kit é vendido ao preço de R$ 25,00, correspondendo a R$ 10,00 do produto A e R$ 15,00 do B. Tendo em vista estas condições, o número mínimo de kits que o comerciante precisa vender, para que o lucro obtido com o produto B seja maior do que com o A, é: a) 398 b) 399 c) 400 d) 401 e) 402 9. (Ufu 2012) Suponha que, para realizar traduções de textos egípcios para um museu brasileiro, um tradutor X cobre um valor fixo de R$ 440,00, acrescidos de R$ 3,20 por linha traduzida. Por outro lado, um tradutor Y, para executar o mesmo trabalho, cobra um fixo de R$ 800,00, mais R$ 2,30 por linha traduzida. Nessas condições, o número que corresponde à quantidade mínima de linhas a serem traduzidas de modo que o custo seja menor se for realizado pelo tradutor Y é a) um quadrado perfeito. b) divisível por 5. c) um número ímpar. d) divisível por 3. 10. (Enem 2011) Uma indústria fabrica um único tipo de produto e sempre vende tudo o que produz. O custo total para fabricar uma quantidade q de produtos é dado por uma função, simbolizada por CT , enquanto o faturamento que a empresa obtém com a venda da quantidade q também é uma função, simbolizada por FT . O lucro total (LT) obtido pela venda da quantidade q de produtos é dado pela expressão LT(q) FT(q) CT(q) . Considerando-se as funções FT(q) 5q e CT(q) 2q 12 como faturamento e custo, qual a quantidade mínima de produtos que a indústria terá de fabricar para não ter prejuízo? a) 0 b) 1 c) 3 d) 4 e) 5