2os ANOS LISTA DE RECUPERAÇÃO Professor: MATEMÁTICA DATA: 10 / 12 / 2015 1. Com os algarismos 0, 1, 2, 3, 4 e 5, quantos são os múltiplos de 5, compostos de 3 algarismos, que podemos formar? a) 32 b) 36 c) 40 d) 60 e) 72 2 Uma rede de supermercados fornece a seus clientes um cartão de crédito cuja identificação é formada por 3 letras distintas (dentre 26), seguidas de 4 algarismos distintos. Uma determinada cidade receberá os cartões que têm L como terceira letra, o último algarismo é zero e o penúltimo é 1. A quantidade total de cartões distintos oferecidos por tal rede de supermercados para essa cidade é a) 33 600. b) 37 800. c) 43 200. d) 58 500. e) 67 600. 3. Uma pessoa vai retirar dinheiro num caixa eletrônico de um banco, mas na hora de digitar a senha, esquece-se do número. Ela lembra que o número tem 5 algarismos, começa com 6, não tem algarismos repetidos e tem o algarismo 7 em alguma posição. O número máximo de tentativas para acertar a senha é a) 1680 b) 1344 c) 720 d) 224 e) 136 4. Deseja-se criar uma senha para os usuários de um sistema, começando por três letras escolhidas entre as cinco A, B, C, D e E seguidas de quatro algarismos escolhidos entre 0, 2, 4, 6 e 8. Se entre as letras puder haver repetição, mas se os algarismos forem todos distintos, o número total de senhas possíveis é: a) 78125 b) 7200 c) 15000 d) 6420 e) 50 5. Num grupo de 10 pessoas temos somente 2 homens. O número de comissões de 5 pessoas que podemos formar com 1 homem e 4 mulheres é: a) 70. b) 84. c) 140. d) 210. e) 252. 6. Doze professores, sendo 4 de matemática, 4 de geografia e 4 de inglês, participam de uma reunião com o objetivo de formar uma comissão que tenha 9 professores, sendo 3 de cada disciplina. O número de formas distintas de se compor essa comissão é: a) 36 b) 108 c) 12 d) 48 e) 64 CHICO 7. A câmara municipal de um determinado município tem exatamente 20 vereadores, sendo que 12 deles apóiam o prefeito e os outros são contra. O número de maneiras diferentes de se formar uma comissão contendo exatamente 4 vereadores situacionistas e 3 oposicionistas é: a) 27720. b) 13860 c) 551 d) 495 e) 56 8. A partir do grupo de 12 professores, quer se formar uma comissão com um presidente, um relator e cinco outros membros. O número de formas de se compor a comissão é: a) 25 940 b) 33 264 c) 27 746 d) 12 772 e) 13 024 9. Quatro amigos calcularam a média e a mediana de suas alturas, tendo encontrado como resultado 1,72 m e 1,70 m, respectivamente. A média entre as alturas do mais alto e do mais baixo, em metros, é igual a a) 1,70. b) 1,71. c) 1,72. d) 1,73. e) 1,74. 10. Uma prova foi aplicada em duas turmas distintas. Na primeira, com 30 alunos, a média aritmética das notas foi 6,40. Na segunda, com 50 alunos, foi 5,20. A média aritmética das notas dos 80 alunos foi: a) 5,65 b) 5,70 c) 5,75 d) 5,80 e) 5,90 11. Os 40 alunos de uma turma fizeram uma prova de Matemática valendo 100 pontos. A nota média da turma foi de 70 pontos e apenas 15 dos alunos conseguiram a nota máxima. Seja M a nota média dos alunos que não obtiveram a nota máxima. Então, é CORRETO afirmar que o valor de M é a) 53. b) 50. c) 51. d) 52. e) 54. 12. As notas de um candidato em suas provas de um concurso foram: 8,4; 9,1; 7,2; 6,8; 8,7 e 7,2. A média, a mediana e a moda dessas notas, são respectivamente: a) 7,9; 7,8; 7,2 b) 7,2; 7,8; 7,9 c) 7,8; 7,8; 7,9 d) 7,2; 7,8; 7,9 e) 7,8; 7,9; 7,2 13.(CESGRANRIO) Uma turma tem 25 alunos, dos quais 40% são meninas. Escolhendo-se, ao acaso, um dentre todos os grupos de 2 alunos que se pode formar com os alunos dessa turma, a probabilidade de que este seja composto por uma menina e um menino é de: a) 1/6 b) 1/5 c) 1/4 d) 1/3 e) 1/2 14. Uma urna contém 4 bolas brancas e 5 bolas pretas. Duas bolas, escolhidas ao acaso, são sacadas dessa urna, sucessivamente e sem reposição. A probabilidade de que as bolas sejam de mesma cor e: a) 1/6 b) 2/9 c) 4/9 d) 16/81 e) 20/81 15. Um dado não viciado foi lançado duas vezes e em cada uma delas o resultado foi anotado. Qual é a probabilidade da soma dos números anotados ser igual a 7? a) 1/12 b) 4/9 c) 5/36 d) 1/6 e) 7/36 16. Um ambulante tem, para venda, 20 bilhetes do metrô, dos quais 2 são falsos; comprando aleatoriamente, a probabilidade de uma pessoa adquirir 2 bilhetes que não sejam falsos é a) 17/19 b) 153/190 c) 51/190 d) 135/380 e) 37/190 GABARITO 01.d 02.a 09.e 10.a 03.b 11.d 04.c 12.a 05.c 13.e 06.e 1 4.a 07.a 15.b 08.b 16.b