XII CONGRESSO DE ECOLOGIA DO BRASIL INFLUENCE OF TEMPERATURE ON THE BEHAVIOR OF Solenopsis saevissima COLONIES Elisa Furtado Fernandes, Universidade Federal de Juiz de Fora, Laboratório de Ecologia Comportamental e Bioacústica (Labec), Juiz de Fora, Minas Gerais. [email protected] Mariana Monteiro de Castro, Universidade Federal de Juiz de Fora, Laboratório de Ecologia Comportamental e Bioacústica (Labec), Juiz de Fora, Minas Gerais. Flávio Lucas Macanha, Universidade Federal de Juiz de Fora, Laboratório de Ecologia Comportamental e Bioacústica (Labec), Juiz de Fora, Minas Gerais. Tayrine Carvalho, Universidade Federal de Juiz de Fora, Laboratório de Ecologia Comportamental e Bioacústica (Labec), Juiz de Fora, Minas Gerais. Mateus Detoni, Universidade Federal de Juiz de Fora, Laboratório de Ecologia Comportamental e Bioacústica (Labec), Juiz de Fora, Minas Gerais. Fábio Prezoto, Universidade Federal de Juiz de Fora, Laboratório de Ecologia Comportamental e Bioacústica (Labec), Juiz de Fora, Minas Gerais. INTRODUCTION The Solenopsis saevissima ants, also known as “fire ants”, can be found throughout the Brazilian territory and are endemic in the Amazon Bay (Trager, 1991; Ross et al. 2010). They are considered to be urban pests as they cause various injuries to society, also being part of Funasa’s list of venomous animals of medical and economic importance (Funasa, 2001). According to Silveira Neto et al. (1976), temperature is the main ecological aspect influencing the life of insects, either by affecting its behavior and development or its feeding habits. The importance of soil temperature to the nesting habits of Solenopsis is know in science such as in Korzukhin et al. (2001), who described the soil as the main colony growth and reproduction regulator. Ants can regulate their temperature by moving between hotter or colder underground chambers, thus selecting temperatures that allow maximum offspring production (Potter & Tschinkel, 1993). OBJECTIVE This study aims to register temperature fluctuations over a day, examining how these influence on the behavior of Solenopsis saevissima colonies. METHODOLOGY Study location 1 XII CONGRESSO DE ECOLOGIA DO BRASIL The research was carried out in the campus of Universidade Federal de Juiz de Fora, Minas Gerais, southeastern Brazil, in February 2015. For each found colony, temperature records were measured in every hour from 07:00 to 20:00. Sampling project We sampled a total 36 colonies, measuring the temperature on their external areas and the nearby substratum with the help of a laser digital thermometer; for the measuring of the internal areas, we used a digital skewer thermometer. To verify the relation between the recorded temperatures, we used Spearman’s correlation coefficient and ANOVA, both through the freeware BioEstat 5.3. RESULTS Temperature means for the external area, nearby substratum and internal area were, respectively, 30.54ºC, 31.30ºC and 29.19ºC. These temperatures were compared through the ANOVA test, revaling significant differences between all treatments (p>0,01). We found positive correlation between internal and external areas temperature (r=0.87, p<0.0001). Regarding the substract, there were no significant differences between the nest temperatures (p=0.33). DISCUSSION The temperature means recorded in this study are similar to the ones found by Porter & Tschinkel (1993), who state that those ants are able to keep the colony’s internal temperature independent from the environments’s, thus attesting their termorregulation capability. After analysis of the internal temperature mean (30.54ºC), we found a value similar to the proposed by Morrison et al. (2005), who claims that a Solenopsis colony grows at a optimum temperature of 31ºC. CONCLUSION Solenopsis saevissima ants are able to maintain the colonies’ internal temperature stable independently from the exterior environment, thus keeping a optimum offspring production value. REFERENCES FUNASA. 2001. Manual de diagnóstico e tratamento de acidentes por animais peçonhentos. Ministério da Saúde, Fundação Nacional de Saúde, 2 Ed, Brasília. 112p. KORZUKHIN, M.D.; PORTER, S.D.; THOMPSON, L.C.; WILEY, S. 2001. Modeling temperature-dependent range limits for the fire ant Solenopsis invicta (Hymenoptera: Formicidae) in the United States. Physiological and Chemical Ecology 30 (4) 645- 655. MORRISON, L. W.; KORZUKHIN, M. D.; PORTER, S. D. 2005. Predicted range expansion of the invasive fire ant, Solenopsis invicta, in the eastern United States based on the VEMAP global warming scenario. Diversity and Distributions 11: 199-204. 2 XII CONGRESSO DE ECOLOGIA DO BRASIL TSCHINKEL, W.R. 2005. Fire ant thermal preferences: behavioral control of growth and metabolism. Behavioral Ecology and Sociobiology 32: 321-32. PORTER, S.D.; TSCHINKEL, W.R. 1993. Fire ant thermal preferences: behavioral control of growth and metabolism. Behavioral Ecology and Sociobiology 32: 321-329. ROSS, K. G.; GOTZEK, D.; ASCUNCE, M. S.; SHOEMAKER, D. D. 2010. Species delimitation: a case study in a problematic ant táxon. Systematic Biology 59 (2) 162-184. SILVEIRA, N. S.; NAKANO, O.; BARBIN, D.; Nova, V. A. N. 1976. Fatores ecológicos, 48-76. In: SILVEIRA, N. S. (ed.). 1976. Manual de ecologia dos insetos. Piracicaba, São Paulo, Ano 75º da Escola Superior de Agricultura Luiz de Queiroz. 419p. TRAGER J. C. 1991. A revision of the fire ants, Solenopsis geminata Group (Hymenoptera: Formicidae: Myrmicinae). J. New York Entomol. S. 99: 141-198. 3