Environmental and Ecological Statistics manuscript No. (will be inserted by the editor) Electronic Supplementary Material on the article "Modeling carcass removal time for avian mortality assessment in wind farms using survival analysis" Regina Bispo · Joana Bernardino · Tiago A. Marques · Dinis Pestana Received: date / Accepted: date R. Bispo Departamento de Estatística, ISPA - Instituto Universitário, Rua Jardim do Tabaco, 34, 1149-041 Lisboa, Portugal and CEAUL - Centro de Estatística e Aplicações da Universidade de Lisboa, Portugal, Phone: +351 218 811 700, Fax: +351 218 860 954, E-mail: [email protected] J. Bernardino Bio3 - Estudos e Projectos em Biologia e Valorização de Recursos Naturais, Rua D. Francisco Xavier de Noronha, 37B, 2800-092 Almada, Portugal T. A. Marques Centre for Research into Ecological and Environmental Modeling, The Observatory, University of St Andrews, St Andrews KY16 9LZ, Scotland UK and CEAUL - Centro de Estatística e Aplicações da Universidade de Lisboa, Portugal D. Pestana Departamento de Estatística e Investigação Operacional, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, Lisboa, Portugal and CEAUL - Centro de Estatística e Aplicações da Universidade de Lisboa, Portugal 2 Table 1 Final fitted parametric survival models. xi and yi are the values of the explanatory variables Season (X) and Size (Y). For sites where trials included three carcass size categories, y1i and y2i are the values of the dummy variables Y1 and Y2 with values (0,0) for the small carcass size, (0,1) for the medium carcass size and (1,0) for the large carcass size Wind farm Distribution WF1 Log-normal Ŝ(t)=1 − Φ WF2 Log-logistic Ŝ(t)= 1 + (0.284t)1.846 WF3 Log-normal Ŝ(t)=1 − Φ WF4 Log-normal Ŝ(t)=1 − Φ WF5 Log-logistic Ŝ(t)= 1 + (0.426t)1.850 WF6 Log-normal Ŝ(t)=1 − Φ WF7 Log-normal Ŝ(t)=1 − Φ WF8 Weibull Ŝ(t)=exp WF9 Weibull Ŝ(t)=exp WF10 Log-logistic Survival model log t−1.368 0.943 log t−2.272 1.429 log t−0.937 0.719 log t−1.466 0.982 −1 −1 log t−1.754+0.808xi 1.100 − exp log t−1.010−1.330xi 0.580 log t−1.785−0.518xi +1.028y1i +0.734y2i 0.607 −1 log t−1.733+1.503xi −1.103yi 0.426 − exp Ŝ(t)= 1 + exp