Detection of Radar Pulse signals through the global wavelet spectrum* Ademilson Zanandrea, Osamu Saotome, Sérgio Viana de Freitas Divisão de Engenharia Eletrônica–IEE, Instituto Tecnológico da Aeronáutica-ITA, 12228-900, São José dos Campos - SP E-mail: [email protected] In this paper, the continuous wavelets transform Interception of Radar Signals. Norwood, [1,5] is applied to detect the scale or period of Massachusetts: Artech House, 1985. interleaved radar pulses signals [2,3,4,6]. Two [7] Zanandrea, A.; Saotome, O.; De Farias, S. V.; Motta, mother wavelets are tested, the Rectangular wavelet J. M.; Pavlov, A., Detecção de sinais de pulsos de with compact support in time and the Morlet radar através da análise espectral de wavelets, Série wavelet, both containing an adjustable width Arquimedes, Vol 2, Anais do DINCON 2003 - 2º parameter M [2,7]. The time-scale analysis Congresso Temático de Aplicações de Dinâmica e (scalograms) using the Morlet wavelet presents Control, São José dos Campos, SP, Brasil, 18-23 better concentration of the power spectral peaks for Agosto, ISBN: 85-86883-15-8, 2003. complex sequences and the implementation of the wavelet transform in the frequency domain decreases considerably the computational cost, without losses in the detection efficiency [7]. The wavelets detection was shown to be robust to the missing pulse and sensitive for simple and complex sequences. The wavelets analysis suppresses the complications of multiple harmonics and same spectral “shadows” that appear in same scalograms of more complex pulse sequences. ___________________ • Ademilson Zanandrea thanks to Fapesp for the financial support to the project under process n. 00/10043-9. Referências [1] Daubechies, I., Ten lectures on wavelets. Philadelphia: SIAM, 1992. [2] Driscoll, D. E. e Howard, S.D., The detection of Radar Pulse Sequence by Means of a Continuous Wavelet Transform, IEEE. Procedings on International Conference, Acoustics, Speech, and Signal Processing, 3, p. 1389-1392, 1999. [3] Gautschi, W. A survey of Gauss-Christoffel quadrature formulae, em "E.B. Christoffel -The influence of his work in mathematics and physical sciences" (P.L. Butzer e F. Fehér, eds.) pp. 72-147, Birkhãuser Verlag, Basel, 1981. [4] Howard, S. and Driscoll., D, “Pulse train detection using a continuous wavelet transform,” Proceedings of the Second Workshop on Signal Processing Applications, pp. 155– 158, Brisbane, Australia, 1997. [5] Mallat, S., A Wavelet Tour of Signal Processing, Academic Press, 2a- Edição, 1999. [6] Wiley, R. G., Electronic Intelligence: The