MÉTODO RACIONAL
PROCESSO DE FORMAÇÃO DAS ENCHENTES
Enchente corresponde ao fenômeno da ocorrência de vazões relativamente
grandes de escoamento superficial.
Normalmente, causam inundação isto é, as águas extravasam o canal natural
do rio.
A ocorrência desse fenômeno está ligado aos fatores meteorológicos e
hidrológicos:
Fatores meteorológicos
Fatores hidrológicas:
Naturais: tipo de precipitação, cobertura vegetal, capacidade
de drenagem, forma da bacia.
Artificiais. relaciona-se a modificação humana - obras
hidráulicas, forma de ocupação do solo, erosão, desmatamentos, entre outros.
MÉTODO RACIONAL
FORMAÇÃO DAS ENCHENTES
Processo de formação das enchentes - trata-se de analisar o escoamento
superficial ao longo da bacia.
Principais etapas envolvidas (ciclo hidrológico) - escoamento superficial
precipitação na bacia.
Escoamento superficial - Fatores relevantes
distribuição temporal e espacial da precipitação
fatores fisiográficos - área, a forma, a permeabilidade e a capacidade
de infiltração, e a topografia da bacia.
Precipitação – Fatores relevantes
intensidade da chuva
duração da chuva
MÉTODO RACIONAL
DEFINIÇÕES BÁSICAS
Bacia de Drenagem
Uma bacia de drenagem tem um único ponto de despejo, que é o ponto de
interseção entre o divisor de água e o talvegue considerado. Logo, para cada
ponto de um curso d'água ou de um talvegue corresponde uma determinada
bacia de drenagem ou bacia contribuinte. E os pontos de despejo são
comumente chamados de enxutórios, esultórios ou deságüe.
A bacia de drenagem urbana é a similar da bacia hidrográfica, quando se considera a
presença de vias urbanas e a modificação do relevo pelas implantações de edifícios.
Em semelhança à bacia hidrográfica, a Bacia de Drenagem é limitada por divisores de
água e talvegues.
Os divisores de água destas bacias podem ser meios-fios, pontos altos de vias, muros e
pontos altos de terrenos, dentre muitas opções. Já os talvegues passam a ser sarjetas,
valetas, canaletas, galerias tubulares e celulares, canais, etc.
MÉTODO RACIONAL
DEFINIÇÕES BÁSICAS
Comprimento do talvegue principal
Desnível do talvegue principal
Estima-se sua declividade, dividindo-se a diferença entre as cotas máxima e
mínima do perfil pelo comprimento do talvegue;
S1 = ΔH / L [m/km] ou [m/m]
ΔH
S1 = declividade
ΔH = Diferença de cota
L = Comprimento
MÉTODO RACIONAL
DEFINIÇÕES BÁSICAS
Tempo de Concentração (tc )
É o tempo de escoamento da água pluvial no talvegue principal, ou seja é o
tempo necessário para que a água precipitada, ao atingir o solo, no ponto mais
remoto de uma bacia, leva para chegar no enxutório.
MÉTODO RACIONAL
DEFINIÇÕES BÁSICAS
Período de Retorno (T)
Período de retorno ou tempo de recorrência de uma chuva é o intervalo de
tempo médio em que uma determinada chuva terá a probabilidade de ocorrer
ou ser superada em pelo menos uma vez. Quanto maior for o período de
recorrência, maior será o valor da vazão de projeto encontrada e,
consequentemente, mais segura e cara será a obra.
MÉTODO RACIONAL
DEFINIÇÕES BÁSICAS
Precipitação (P)
É a quantidade de água da chuva, ou seja, é o volume da chuva, geralmente
medidos através de pluviômetros e pluviógrafos. No trabalho desenvolvido
por Otto Pfeifsteter e apresentado no livro Chuvas Intensas no Brasil, foram
tratados os dados dos postos pluviométricos brasileiros e geradas equações
características para cada posto.
Intensidade Pluviométrica (i)
Intensidade Pluviométrica: é o fluxo da chuva, ou seja, é a vazão da água que
precipita.
Deflúvio Superficial (Q)
Deflúvio Superficial: é a vazão de água precipitada que efetivamente atinge o
enxutório da bacia de drenagem, ou seja, é a vazão de água que efetivamente
escorre na superfície da bacia.
MÉTODO RACIONAL
GRANDEZAS HIDROLÓGICAS
Método racional
Hidrograma Unitário Triangular
Equações específicas de chuva para cidades
MÉTODO RACIONAL
MÉTODO RACIONAL
O método racional é dos mais conhecidos e antigos modelos para o cálculo da
vazão de pico à saída de uma bacia hidrográfica.
Aplica-se a pequenas bacias hidrográficas, ou seja, as que atendem aos
seguintes critérios:
- pode-se assumir a distribuição uniforme da precipitação, no tempo e
no espaço;
- a duração da precipitação usualmente excede o tempo de
concentração da bacia;
- há predomínio de escoamento superficial, como é o caso em áreas
urbanizadas;
- efeitos de armazenamento superficial, durante o escoamento, são
desprezíveis.
MÉTODO RACIONAL
MÉTODO RACIONAL
Tempo de Concentração (equação de Kirpich)
 L3 

t c  57 
 H 


0,385
Onde:
tc = tempo de concentração, em minutos;
L = comprimento do talvegue principal, em Km;
H = desnível do talvegue principal, em metros.
MÉTODO RACIONAL
MÉTODO RACIONAL
 Precipitação

PT
Onde:
P=
T=
a, b, c =
a, b =
tc =

T 0,25
a.tc  b.log1  c.tc 
precipitação, em mm
período de retorno, em anos;
constantes dos postos pluviométricos;
constantes que variam com o tempo de concentração e o posto
pluvioétrico;
tempo de concentração, em horas.
MÉTODO RACIONAL
MÉTODO RACIONAL
 Período de Retorno
Dispositivos de condução de águas superficiais: T = 5 a 10 anos;
Galerias tubulares, galerias celulares e bueiros: T = 10 a 15 anos;
Bueiros funcionando sob pressão: T = 15 a 25 anos;
Canais: T = 50 a 100 anos;
Pontes: T = 50 a 100 anos;
Vertedores de barragens: T = 1000 a 10000 anos.
MÉTODO RACIONAL
MÉTODO RACIONAL
Constantes:
Constante α
tc 5min 15min 30min 1 h
2h
4h
8h
14 h 24 h 48 h
 0,108 0,122 0,138 0,156 0,166 0,174 0,176 0,174 0,170 0,166
Constante - Postos pluviométricos
P
9
13
15
20
51
52
55
83
87
LOCAL
Barbacena
Belo Horizonte
Bonsucesso
Caxambu
Ouro Preto
Paracatu
Passa Quatro
Sete Lagoas
Teófilo Otoni
a
b
c
0,5
0,6
0,8
0,5
0,6
1,2
0,7
0,4
0,4
18
26
18
23
23
43
21
27
24
60
20
60
20
20
10
20
20
20
5min 15min
0,12 0,12
0,12 0,12
0,04 0,04
0,08 0,08
0,00 0,12
0,04 0,00
0,04 0,04
0,08 0,08
0,00 0,08

30min 1h a 6d
0,08
0,04
0,12
0,04
0,04
0,04
0,08
0,08
0,12
0,04
0,04
0,12
0,04
0,08
0,08
0,08
0,08
0,08
MÉTODO RACIONAL
MÉTODO RACIONAL
 Intensidade Pluviométrica
P
i
tc
Onde:
P=
tc =
precipitação, em mm
tempo de concentração, em horas.
MÉTODO RACIONAL
MÉTODO RACIONAL
 Deflúvio Superficia
CiA
Q
360
Onde:
Q = deflúvio superficial, em m3/s
C = coeficiente de deflúvio superficial (run off);
i = intensidade pluviométrica;
A = área da bacia hidrográfica, em hectares (ha).
Q  0,278C i A
Quando “ A = [km²]”
MÉTODO RACIONAL
MÉTODO RACIONAL
Parâmetro C para Áreas urbanas
Oupação do solo
C
DE EDIFICAÇÃO MUITO DENSA: Partes centrais, densamente
construídas de uma cidade com rua e calçadas pavimentadas
0,70 a 0,95
DE EDIFICAÇÃO NÃO MUITO DENSA: Partes adjacentes ao
centro, de menor densidade de habitações, mas com ruas e calçadas
pavimentadas
0,60 a 0,70
DE EDIFICAÇÃO COM POUCAS SUPERFÍCIES LIVRES: Partes
residenciais com construções cerradas, ruas pavimentadas
0,50 a 0,60
DE EDIFICAÇÃO COM MUITAS SUPERFÍCIES LIVRES: Partes
residenciais com ruas macadamizadas ou pavimentadas, mas com
muitas áreas verdes
0,25 a 0,50
DE SUBÚRBIOS COM ALGUMA EDIFICAÇÃO: Partes de
arrabaldes e subúrbios com pequena densidade de construções
0,10 a 0,25
DE MATAS, PARQUES E CAMPOS DE ESPORTES: Partes rurais,
áreas verdes, superfícies arborizadas, parques ajardinados e campos
de esporte sem pavimentação
0,05 a 0,20
MÉTODO RACIONAL
MÉTODO RACIONAL
Parâmetro C para bacias urbanas
UTILIZAÇÃO OU COBERTURA DO SOLO
Zonas cultivadas: sem conservação do solo
com conservação do solo
Pastagens ou terrenos em más condições
Baldios em boas condições
Prado em boas condições
Bosques ou zonas de cobertura ruim
Florestais: cobertura boa
Espaços abertos, relvados, parques, campos
de golf, cemitérios, boas condições:
com relva em mais de 75% da área
com relva de 50 a 75% da área
Zonas comerciais e de escritórios
Zonas industriais
A
72
62
68
39
30
45
25
B
81
71
79
61
58
66
55
C
88
78
86
74
71
77
70
D
91
81
89
80
78
83
77
39
49
89
81
61
69
92
88
74
79
94
91
80
84
95
93
MÉTODO RACIONAL
MÉTODO RACIONAL
Parâmetro C para bacias urbanas
UTILIZAÇÃO OU COBERTURA DO SOLO
Zonas residênciais;
lotes de (m2) -% média impermeável
<500 - 65
1000 - 38
1300 - 30
2000 - 25
4000 - 20
Parques de estacionamentos, telhados, viadutos, etc
Arruamentos e estradas
asfaltadas e com drenagem de águas pluviais
paralelepípedos
terra
A B C D
77
61
57
54
51
85
75
72
70
68
90
83
81
80
79
92
87
86
85
84
98 98 98 98
98 98 98 98
76 85 89 91
72 82 87 89
MÉTODO RACIONAL
MÉTODO RACIONAL
Parâmetro C para bacias urbanas
SOLO A: solos argilosos impermeáveis a semi-permeáveis com capacidade
de infiltração de 0 a 1 mm/h;
SOLO B: solos siltosos de características semi-permeáveis com capacidade
de infiltração de 1 a 4 mm/h;
SOLO C: solos siltosos de características semi-permeáveis com capacidade
de infiltração de 4 a 8 mm/h;
SOLO D: solos siltosos de características semi-permeáveis com capacidade
de infiltração de 8 a 12 mm/h.
MÉTODO RACIONAL
MÉTODO RACIONAL
Equação de chuva para belo horizonte
Equação geral das chuvas para durações inferiores a 1 hora
i
795,18xT
(t  5)
0,1598
0, 7039 T 0 , 0106
Equação geral das chuvas para durações superiores a 1 hora
1172,4 xT 0,1454
i
t 0,8331
MÉTODO RACIONAL
MÉTODO RACIONAL
L 

t c  57 
 H 


3
PT


T 0,25
0,385
a.tc  b.log1  c.tc 
P
i
tc
i
i
795,18xT 0,1598
(t  5)
0, 7039 T 0 , 0106
1172,4 xT 0,1454
t 0,8331
Q
CiA
360
Q  0,278C i A
MÉTODO RACIONAL
MÉTODO RACIONAL
Oupação do solo
C
DE EDIFICAÇÃO MUITO DENSA: Partes centrais, densamente
construídas de uma cidade com rua e calçadas pavimentadas
0,70 a 0,95
DE EDIFICAÇÃO NÃO MUITO DENSA: Partes adjacentes ao
centro, de menor densidade de habitações, mas com ruas e calçadas
pavimentadas
0,60 a 0,70
DE EDIFICAÇÃO COM POUCAS SUPERFÍCIES LIVRES: Partes
residenciais com construções cerradas, ruas pavimentadas
0,50 a 0,60
DE EDIFICAÇÃO COM MUITAS SUPERFÍCIES LIVRES: Partes
residenciais com ruas macadamizadas ou pavimentadas, mas com
muitas áreas verdes
0,25 a 0,50
DE SUBÚRBIOS COM ALGUMA EDIFICAÇÃO: Partes de
arrabaldes e subúrbios com pequena densidade de construções
0,10 a 0,25
DE MATAS, PARQUES E CAMPOS DE ESPORTES: Partes rurais,
áreas verdes, superfícies arborizadas, parques ajardinados e campos
de esporte sem pavimentação
0,05 a 0,20
MÉTODO RACIONAL
MÉTODO RACIONAL
Exemplo
Encontrar um coeficiente de escoamento adequado para uma área de
pequena inclinação, bem urbanizada, onde 22% corresponde a ruas
asfaltadas e bem conservadas, 8% de passeios cimentados, 36% de pátios
ajardinados e 34% de telhados cerâmicos.
MÉTODO RACIONAL
MÉTODO RACIONAL
Exemplo
Encontrar um coeficiente de escoamento adequado para uma área de
pequena inclinação, bem urbanizada, onde 22% corresponde a ruas
asfaltadas e bem conservadas, 8% de passeios cimentados, 36% de pátios
ajardinados e 34% de telhados cerâmicos.
C = 0,22 x 0,95 + 0,08 x 0,80 + 0,36 x 0,10 + 0,34 x 0,90 = 0,615
C = 0,62
MÉTODO RACIONAL
MÉTODO RACIONAL
Exemplo
Encontrar um coeficiente de escoamento adequado para uma área de
pequena inclinação, bem urbanizada, onde 80.000 m² corresponde a ruas
asfaltadas e bem conservadas, 800 m² de passeios cimentados, 60.000 m² de
pátios ajardinados e 400.000 m² de casas com áreas verdes.
MÉTODO RACIONAL
MÉTODO RACIONAL
Exemplo
Calcular a vazão de projeto de uma galeria pluvial em Barbacena, para um
período de retorno de 20 anos, numa área de 5 km², a ser urbanizada
futuramente, com extensão da drenagem de 3 km e com declividade de 3%.
Método Racional (Q=CiA) para a vazão na condição do solo natural.
Dados: i=70,07 mm/h e C = 0,82.
MÉTODO RACIONAL
MÉTODO RACIONAL
Exemplo 2
Na figura abaixo está indicada a planta de um conjunto de residências que
serão construídas em uma microbacia urbana. Calcular a vazão de projeto
pelo método racional para construção de um bueiro no final do canal
indicado na figura.
MÉTODO RACIONAL
MÉTODO RACIONAL
Exemplo 2 – cont.
É ainda informado que:
- os lotes residenciais (com iguais dimensões, indicadas na figura) serão
totalmente impermeáveis;
-
as demais áreas serão adotadas com permeabilidade média de 60%;
-
o bueiro será construído para suportar apenas a drenagem correspondente
à área indicada na figura;
-
para o cálculo da intensidade pluviométrica será adotado um período de
retorno de 20 anos;
-
adotar uma declividade média de 3%
MÉTODO RACIONAL
MÉTODO RACIONAL
Exemplo 3
Um determinado trecho de galeria deverá receber e escoar o deflúvio
superficial oriundo de uma área de 185.000 m², banhada por uma chuva
intensa, onde 18% corresponde a ruas asfaltadas e bem conservadas, 6% de
passeios cimentados, 46% de pátios e canteiros gramados, além de 30% de
telhados. A sua inclinação média é de 2%. Se o tempo de concentração
previsto para o início do trecho é de 14 minutos, calcular a vazão de jusante do
mesmo sabendo-se que a equação de chuva máxima local é dada pela
expressão desenvolvida por Otto Pfafstetter para Belo Horizonte (duração até
1 hora).
Download

método racional método racional