Chapter Four Arithmetic for Computers Mario Côrtes - MO401 - IC/Unicamp- 2002s1 1998 Morgan Kaufmann Publishers Ch4-1 Arithmetic • • Where we've been: – Performance (seconds, cycles, instructions) – Abstractions: Instruction Set Architecture Assembly Language and Machine Language What's up ahead: – Implementing the Architecture operation a 32 ALU result 32 b 32 Mario Côrtes - MO401 - IC/Unicamp- 2002s1 1998 Morgan Kaufmann Publishers Ch4-2 Numbers • • • • Bits are just bits (no inherent meaning) — conventions define relationship between bits and numbers Binary numbers (base 2) 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001... decimal: 0...2n-1 Of course it gets more complicated: numbers are finite (overflow) fractions and real numbers negative numbers e.g., no MIPS subi instruction; addi can add a negative number) How do we represent negative numbers? i.e., which bit patterns will represent which numbers? Mario Côrtes - MO401 - IC/Unicamp- 2002s1 1998 Morgan Kaufmann Publishers Ch4-3 Possible Representations • Sign Magnitude: 000 = +0 001 = +1 010 = +2 011 = +3 100 = -0 101 = -1 110 = -2 111 = -3 • • One's Complement Two's Complement 000 = +0 001 = +1 010 = +2 011 = +3 100 = -3 101 = -2 110 = -1 111 = -0 000 = +0 001 = +1 010 = +2 011 = +3 100 = -4 101 = -3 110 = -2 111 = -1 Issues: balance, number of zeros, ease of operations Which one is best? Why? Mario Côrtes - MO401 - IC/Unicamp- 2002s1 1998 Morgan Kaufmann Publishers Ch4-4 MIPS • 32 bit signed numbers: 0000 0000 0000 ... 0111 0111 1000 1000 1000 ... 1111 1111 1111 0000 0000 0000 0000 0000 0000 0000two = 0ten 0000 0000 0000 0000 0000 0000 0001two = + 1ten 0000 0000 0000 0000 0000 0000 0010two = + 2ten 1111 1111 0000 0000 0000 1111 1111 0000 0000 0000 1111 1111 0000 0000 0000 1111 1111 0000 0000 0000 1111 1111 0000 0000 0000 1111 1111 0000 0000 0000 1110two 1111two 0000two 0001two 0010two = = = = = + + – – – 2,147,483,646ten 2,147,483,647ten 2,147,483,648ten 2,147,483,647ten 2,147,483,646ten maxint minint 1111 1111 1111 1111 1111 1111 1101two = – 3ten 1111 1111 1111 1111 1111 1111 1110two = – 2ten 1111 1111 1111 1111 1111 1111 1111two = – 1ten Mario Côrtes - MO401 - IC/Unicamp- 2002s1 1998 Morgan Kaufmann Publishers Ch4-5 Two's Complement Operations • Negating a two's complement number: invert all bits and add 1 – remember: “negate” and “invert” are quite different! • Converting n bit numbers into numbers with more than n bits: – MIPS 16 bit immediate gets converted to 32 bits for arithmetic – copy the most significant bit (the sign bit) into the other bits 0010 -> 0000 0010 1010 -> 1111 1010 – "sign extension" (lbu vs. lb) Mario Côrtes - MO401 - IC/Unicamp- 2002s1 1998 Morgan Kaufmann Publishers Ch4-6 Novas instruções • • • instruções “unsigned”: (exemplo de aplicação, cálculo de memória) sltu $t1, $t2, $t3 # diferença é “sem sinal” slti e sltiu # envolve imediato, com ou sem sinal • Exemplo pag 215: supor $s0 = FF FF FF FF e $s1 = 00 00 00 01 slt $t0, $s0, $s1 como $s0 < 0 e $s1 > 0 $s0<$s1 $t0 = 1 sltu $t0, $s0, $s1 como $s0 e $s1 não tem sinal $s0>$s1 $t0 = 0 Mario Côrtes - MO401 - IC/Unicamp- 2002s1 1998 Morgan Kaufmann Publishers Ch4-7 Cuidados com extensão 16 bits • • • • • beq $s0, $s1, nnn # salta para PC + nnn se teste OK nnn tem 16 bits e PC tem 32 bits – estender de 16 para 32 bits antes daoperação aritmética se nnn > 0 – preencher com zeros à esquerda se nnn < 0 CUIDADO – preencher com 1´s à esquerda – verificar por este motivo operação é chamada de – EXTENSÃO DE SINAL Mario Côrtes - MO401 - IC/Unicamp- 2002s1 1998 Morgan Kaufmann Publishers Ch4-8 Addition & Subtraction • Just like in grade school (carry/borrow 1s) 0111 0111 0110 + 0110 - 0110 - 0101 • Two's complement operations easy – subtraction using addition of negative numbers 0111 + 1010 • Overflow (result too large for finite computer word): – e.g., adding two n-bit numbers does not yield an n-bit number 0111 + 0001 note that overflow term is somewhat misleading, 1000 it does not mean a carry “overflowed” Mario Côrtes - MO401 - IC/Unicamp- 2002s1 1998 Morgan Kaufmann Publishers Ch4-9 Detecting Overflow • • • No overflow when adding a positive and a negative number No overflow when signs are the same for subtraction CONDIÇÕES DE OVERFLOW op A B resultado A+B + + - A+B - - + A-B + - - A-B - + + Em hardware, comparar o “vai-um” e o “vem-um” com relação ao bit de sinal Mario Côrtes - MO401 - IC/Unicamp- 2002s1 1998 Morgan Kaufmann Publishers Ch4-10 Effects of Overflow • • An exception (interrupt) occurs – Control jumps to predefined address for exception (EPC — EXCEPTION PROGRAM COUNTER) – Interrupted address is saved for possible resumption • mfc0 (move from system control): copia endereço do EPC para qualquer registrador Don't always want to detect overflow — new MIPS instructions: addu, addiu, subu note: addiu still sign-extends! note: sltu, sltiu for unsigned comparisons Mario Côrtes - MO401 - IC/Unicamp- 2002s1 1998 Morgan Kaufmann Publishers Ch4-11 Instruções (fig 4.52 - pag 309) add add immediate add unsigned add immediate unsigned subtract subtract unsigned and and immediate or or immediate shift left logical shift right logical load upper immediate load word store word load byte unsigned store byte branch on equal branch on not equal jump jump and link jump register set less than set less than immediate set less than unsigned set less than immediate unsigned add addi addu addiu sub subu and andi or ori sll srl lui lw sw lbu sb beq bne j jal jr slt slti sltu sltiu Mario Côrtes - MO401 - IC/Unicamp- 2002s1 R I R I R R R I R I R R I I I I I I I J J R R I R I multiply multiply unsigned divide divide unsigned move from Hi move from Lo move from system control (EPC) fp add single fp add doublr fp subtract single fp subtract double fp multiply single fp multiply double fp divide single fp divide double load word to fp single store word to fp single branch on fp true branch on fp false fp compare single (x= eq,neq,lt,le,gt,ge) fp compare double (x= eq,neq,lt,le,gt,ge) 1998 Morgan Kaufmann Publishers mult multu div divu mfhi mflo mfc0 add.s add.d sub.s sub.d mul.s mul.d div.s div.d lwc1 swc1 bclt bclf c.x.s R R R R R R R R R R R R R R R I I I I R c.x.d R Ch4-12 Review: Boolean Algebra & Gates • Problem: Consider a logic function with three inputs: A, B, and C. Output D is true if at least one input is true Output E is true if exactly two inputs are true Output F is true only if all three inputs are true • Show the truth table for these three functions. • Show the Boolean equations for these three functions. • Show an implementation consisting of inverters, AND, and OR gates. Mario Côrtes - MO401 - IC/Unicamp- 2002s1 1998 Morgan Kaufmann Publishers Ch4-13 An ALU (arithmetic logic unit) • Let's build an ALU to support the andi and ori instructions – we'll just build a 1 bit ALU, and use 32 of them operation a op a b res result b • Possible Implementation (sum-of-products): Mario Côrtes - MO401 - IC/Unicamp- 2002s1 1998 Morgan Kaufmann Publishers Ch4-14 Review: The Multiplexor • Selects one of the inputs to be the output, based on a control input S • A 0 B 1 C note: we call this a 2-input mux even though it has 3 inputs! Lets build our ALU using a MUX: Mario Côrtes - MO401 - IC/Unicamp- 2002s1 1998 Morgan Kaufmann Publishers Ch4-15 Different Implementations • Not easy to decide the “best” way to build something • – Don't want too many inputs to a single gate – Dont want to have to go through too many gates – for our purposes, ease of comprehension is important Let's look at a 1-bit ALU for addition: CarryIn a Sum b cout = a b + a cin + b cin sum = a xor b xor cin CarryOut • How could we build a 1-bit ALU for add, and, and or? • How could we build a 32-bit ALU? Mario Côrtes - MO401 - IC/Unicamp- 2002s1 1998 Morgan Kaufmann Publishers Ch4-16 Building a 32 bit ALU CarryIn a0 b0 Operation CarryIn ALU0 Result0 CarryOut Operation CarryIn a1 a 0 b1 CarryIn ALU1 Result1 CarryOut 1 Result a2 2 b b2 CarryIn ALU2 Result2 CarryOut CarryOut a31 b31 Mario Côrtes - MO401 - IC/Unicamp- 2002s1 CarryIn ALU31 1998 Morgan Kaufmann Publishers Result31 Ch4-17 What about subtraction (a – b) ? • • • Two's complement approch: just negate b and add. a - b = a + (- b) How do we negate? (- a) = comp2(a) = comp1(a) + 1 A very clever solution: Binvert Operation CarryIn a 0 1 b 0 Result 2 1 CarryOut Mario Côrtes - MO401 - IC/Unicamp- 2002s1 1998 Morgan Kaufmann Publishers Ch4-18 Subtrator B ~B 0 1 B equivalente à Binv Binv Binv + + + + Mario Côrtes - MO401 - IC/Unicamp- 2002s1 1998 Morgan Kaufmann Publishers Ch4-19 Tailoring the ALU to the MIPS • Need to support the set-on-less-than instruction (slt) – remember: slt is an arithmetic instruction – produces a 1 if rs < rt and 0 otherwise – use subtraction: (a-b) < 0 implies a < b • Need to support test for equality (beq $t5, $t6, $t7) – use subtraction: (a-b) = 0 implies a = b Mario Côrtes - MO401 - IC/Unicamp- 2002s1 1998 Morgan Kaufmann Publishers Ch4-20 Supporting slt Binvert Operation CarryIn a • 0 Can we figure out the idea? 1 Result b 0 2 1 Less Rs 0 bit de sinal 3 a. CarryOut Rt subtração Rd Binvert Operation CarryIn a 0 1 Result b 0 2 1 Less 3 Set Overflow detection b. Overflow Operation CarryIn Binvert a0 b0 CarryIn ALU0 Less CarryOut a1 b1 0 CarryIn ALU1 Less CarryOut a2 b2 0 CarryIn ALU2 Less CarryOut Result0 Result1 Result2 CarryIn a31 b31 0 Mario Côrtes - MO401 - IC/Unicamp- 2002s1 CarryIn ALU31 Less Result31 Set Overflow 1998 Morgan Kaufmann Publishers Ch4-22 Test for equality • Notice control lines: 000 001 010 110 111 = = = = = and or add subtract slt Bnegate Operation a0 b0 CarryIn ALU0 Less CarryOut Result0 a1 b1 0 CarryIn ALU1 Less CarryOut Result1 a2 b2 0 CarryIn ALU2 Less CarryOut Result2 Zero •Note: zero is a 1 when the result is zero! a31 b31 0 Mario Côrtes - MO401 - IC/Unicamp- 2002s1 CarryIn ALU31 Less Result31 Set 1998 Morgan Kaufmann Publishers Overflow Ch4-23 ALU ALUop A 32 bits: A, B, result Zero 1 bit: Zero, Overflow Result B 3 bits: ALUop Overflow ALUop Binv-OP Instrução 0 00 and 0 01 or 0 10 add 1 10 sub 1 11 slt 1 10 beq Mario Côrtes - MO401 - IC/Unicamp- 2002s1 1998 Morgan Kaufmann Publishers Ch4-24 Conclusion • We can build an ALU to support the MIPS instruction set – key idea: use multiplexor to select the output we want – we can efficiently perform subtraction using two’s complement – we can replicate a 1-bit ALU to produce a 32-bit ALU • Important points about hardware – all of the gates are always working – the speed of a gate is affected by the number of inputs to the gate – the speed of a circuit is affected by the number of gates in series (on the “critical path” or the “deepest level of logic”) • Our primary focus: comprehension, however, – Clever changes to organization can improve performance (similar to using better algorithms in software) – we’ll look at two examples for addition and multiplication Mario Côrtes - MO401 - IC/Unicamp- 2002s1 1998 Morgan Kaufmann Publishers Ch4-25 Problem: ripple carry adder is slow CarryIn • • Is a 32-bit ALU as fast as a 1-bit ALU? atraso (ent soma ou carry = 2G) n estágios 2nG Is there more than one way to do addition? – two extremes: ripple carry (2nG) sum-of-products (2G) a0 b0 Operation CarryIn ALU0 Result0 CarryOut a1 b1 CarryIn ALU1 Result1 CarryOut a2 b2 CarryIn ALU2 Result2 CarryOut Can you see the ripple? How could you get rid of it? c1 c2 c3 c4 = = = = b0c0 b1c1 b2c2 b3c3 + + + + a0c0 a1c1 a2c2 a3c3 + + + + a0b0 a1b1 a2b2 a3b3 c2 = c3 = c4 = a31 b31 CarryIn ALU31 Result31 Not feasible! Why? Mario Côrtes - MO401 - IC/Unicamp- 2002s1 1998 Morgan Kaufmann Publishers Ch4-26 Carry-lookahead adder • • An approach in-between our two extremes Motivation: – If we didn't know the value of carry-in, what could we do? – When would we always generate a carry? gi = ai bi – When would we propagate the carry? pi = ai + bi • Did we get rid of the ripple? c1 c2 c3 c4 = = = = • g0 g1 g2 g3 + + + + p0c0 p1c1 p2c2 p3c3 c2 = c3 = c4 = Feasible! Why? atraso: ent gi pi (1G) gi pi carry (2G) total: 5G independente de n carry saídas (2G) Mario Côrtes - MO401 - IC/Unicamp- 2002s1 1998 Morgan Kaufmann Publishers Ch4-27 Use principle to build bigger adders CarryIn a0 b0 a1 b1 a2 b2 a3 b3 CarryIn Result0--3 ALU0 P0 G0 pi gi Carry-lookahead unit C1 a4 b4 a5 b5 a6 b6 a7 b7 a8 b8 a9 b9 a10 b10 a11 b11 a12 b12 a13 b13 a14 b14 a15 b15 ci + 1 CarryIn Result4--7 ALU1 P1 G1 • • • pi + 1 gi + 1 C2 ci + 2 CarryIn Result8--11 ALU2 P2 G2 pi + 2 gi + 2 C3 ci + 3 Can’t build a 16 bit adder this way... (too big) Could use ripple carry of 4-bit CLA adders Better: use the CLA principle again! – super propagate (ver pag 243) – super generate (ver pag 245) – ver exercícios 4.44, 45 e 46 (não será cobrado) CarryIn Result12--15 ALU3 P3 G3 pi + 3 gi + 3 C4 ci + 4 CarryOut Mario Côrtes - MO401 - IC/Unicamp- 2002s1 1998 Morgan Kaufmann Publishers Ch4-28 Multiplication • • • More complicated than addition – accomplished via shifting and addition More time and more area Let's look at 3 versions based on gradeschool algorithm 810 910 1000 multiplicando 1001 multiplicador 1000 0000 produtos parciais 0000 1000 7210 1001000 max= (24–1) *(24–1) = 225 225 > 128 8 bits 32 * 32 bits 64 bits • Negative numbers: convert and multiply – there are better techniques, we won’t look at them Mario Côrtes - MO401 - IC/Unicamp- 2002s1 1998 Morgan Kaufmann Publishers Ch4-29 Multiplication: Implementation Start Multiplier0 = 1 1. Test Multiplier0 Multiplier0 = 0 1a. Add multiplicand to product and place the result in Product register 2. Shift the Multiplicand register left 1 bit 3. Shift the Multiplier register right 1 bit Multiplicand 32nd repetition? Shift left No: < 32 repetitions Yes: 32 repetitions 64 bits Done Multiplier Shift right 64-bit ALU 32 bits Product Write Control test 64 bits Mario Côrtes - MO401 - IC/Unicamp- 2002s1 1998 Morgan Kaufmann Publishers Ch4-30 Second Version Start Multiplier0 = 1 1. Test Multiplier0 Multiplier0 = 0 1a. Add multiplicand to the left half of the product and place the result in the left half of the Product register 2. Shift the Product register right 1 bit 3. Shift the Multiplier register right 1 bit Multiplicand 32nd repetition? 32 bits No: < 32 repetitions Yes: 32 repetitions Done Multiplier Shift right 32-bit ALU 32 bits Product Shift right Write Control test 64 bits Mario Côrtes - MO401 - IC/Unicamp- 2002s1 1998 Morgan Kaufmann Publishers Ch4-31 Final Version Multiplicand Start 32 bits Product0 = 1 1. Test Product0 Product0 = 0 1a. Add multiplicand to the left half of the product and place the result in the left half of the Product register 32-bit ALU 2. Shift the Product register right 1 bit 32nd repetition? No: < 32 repetitions Yes: 32 repetitions Product Shift right Write Control test Done 64 bits • No MIPS: • dois novos registradores de uso dedicado para multiplicação: Hi e Lo (32 bits cada) • mult $t1, $t2 # Hi Lo $t1 * $t2 • mfhi $t1 # $t1 Hi • mflo $t1 # $t1 Lo Mario Côrtes - MO401 - IC/Unicamp- 2002s1 1998 Morgan Kaufmann Publishers Ch4-32 Algoritmo de Booth (visão geral) • • • • • • Idéia: “acelerar” multiplicação no caso de cadeia de “1´s” no multiplicador: 0 1 1 1 0 * (multiplicando) = + 1 0 0 0 0 * (multiplicando) - 0 0 0 1 0 * (multiplicando) Olhando bits do multiplicador 2 a 2 – 00 nada – 01 soma (final) – 10 subtrai (começo) – 11 nada (meio da cadeia de uns) Funciona também para números negativos Para o curso: só os conceitos básicos Algoritmo de Booth estendido – varre os bits do multiplicador de 2 em 2 Vantagens: – (pensava-se: shift é mais rápido do que soma) – gera metade dos produtos parciais: metade dos ciclos Mario Côrtes - MO401 - IC/Unicamp- 2002s1 1998 Morgan Kaufmann Publishers Ch4-33 Geração rápida dos produtos parciais X0 Y0 X2 X1 X0 X1 Y0 X0 Y1 Y0 Y1 Y2 X0 X1 X2 X2 Y0 X2 Y1 X2 Y2 X1 Y1 X0Y2 X1 Y2 Y0 Y1 X2 Y0 X1 Y0 X0 Y0 Mario Côrtes - MO401 - IC/Unicamp- 2002s1 Y2 X2 Y1 X1 Y1 X0 Y1 1998 Morgan Kaufmann Publishers X2 Y 2 X1 Y 2 X0 Y 2 Ch4-34 Carry Save Adders (soma de produtos parciais) a3 b3 a2 b2 a1 b1 a0 b0 A e3 e2 e1 B E F Traditional adder e0 Traditional adder f3 f2 f1 f0 Traditional adder s5 s4 s3 b3 e3 s2 f3 b2 e2 s1 f2 S s0 b1 e1 f1 b0 e0 f0 A B E F Carry save adder a3 a2 a1 a0 Carry save adder C' s'4 c'3 s'3 c'2 s'2 c'1 s'1 c'0 S' s'0 Traditional adder S s5 s4 s3 Mario Côrtes - MO401 - IC/Unicamp- 2002s1 s2 s1 s0 1998 Morgan Kaufmann Publishers Ch4-35 Divisão 29 3 29 = 3 * Q + R = 3 * 9 + 2 2910 = 011101 011101 11 310 = 11 11 01001 00101 11 10 Mario Côrtes - MO401 - IC/Unicamp- 2002s1 Q=9 R=2 Como implementar em hardware? 1998 Morgan Kaufmann Publishers Ch4-36 Alternativa 1: divisão com restauração • hardware não sabe se “vai caber ou não” • registrador para guardar resto parcial • verificação do sinal do resto parcial • caso negativo restauração 29 – 3 * 24 = -19 -19 + 3 * 24 = 29 q4 = 1 q4 = 0 29 – 3 * 23 = 5 q3 = 1 5 – 3 * 22 = -7 -7 + 3 * 22 = 5 q2 = 1 q2 = 0 Restauração 5 – 3 * 21 = -1 -1 + 3 * 21 = 5 q1 = 1 q1 = 0 Restauração 5 – 3 * 20 = q0 = 1 2 R = 11 = 2 Restauração q4q3q2q1q0 = 01001 = 9 Mario Côrtes - MO401 - IC/Unicamp- 2002s1 1998 Morgan Kaufmann Publishers Ch4-37 Alternativa 2: divisão sem restauração Regras se resto parcial se resto parcial > 0 próxima operação < 0 próxima operação se operação corrente se operação corrente + - soma subtração qi = 1 qi = 1 29 – 3 * 24 = -19 < 0 -19 + 3 * 23 = 5 > 0 5 – 3 * 22 = -7 < 0 -7 + 3 * 21 = -1 < 0 -1 + 3 * 20 = 2 próx = SOMA próx = SUB próx = SOMA próx = SOMA q4 = 1 q3 = 1 q2 = 1 q1 = 1 q0 = 1 Resto = 2 Quociente = 11111 ?? Mario Côrtes - MO401 - IC/Unicamp- 2002s1 objetivo R0 1998 Morgan Kaufmann Publishers Ch4-38 Alternativa 2: conversão do resultado 1 1 1 1 1 (24 23 22 21 20 ) 16 - 8 + 4 - 2 - 1 ...1 1 ... 2 2( n1) 2( n1) (2 1) 2( n1) n 1 111 1 0101 1 01 • Nº de somas: 3 • Nº de subtrações:2 • Total: 5 • OBS: se resto < 0 deve haver correção de um divisor para que resto > 0 Mario Côrtes - MO401 - IC/Unicamp- 2002s1 1998 Morgan Kaufmann Publishers Ch4-39 Comparação das alternativas 29 29 5 5 5 5 -1 2 -7 -1 2 com sem -7 -19 Mario Côrtes - MO401 - IC/Unicamp- 2002s1 1998 Morgan Kaufmann Publishers Ch4-40 Hardware para divisão: terceira alternativa Start 1. Shift the Remainder register left 1 bit Divisor 2. Subtract the Divisor register from the left half of the Remainder register and place the result in the left half of the Remainder register 32 bits Remainder > – 0 Test Remainder Remainder < 0 32-bit ALU 3a. Shift the Remainder register to the left, setting the new rightmost bit to 1 Remainder Shift right Shift left Write Control test 3b. Restore the original value by adding the Divisor register to the left half of the Remainder register and place the sum in the left half of the Remainder register. Also shift the Remainder register to the left, setting the new rightmost bit to 0 32nd repetition? 64 bits No: < 32 repetitions Yes: 32 repetitions Done. Shift left half of Remainder right 1 bit Mario Côrtes - MO401 - IC/Unicamp- 2002s1 1998 Morgan Kaufmann Publishers Ch4-41 Instruções • No MIPS: • dois novos registradores de uso dedicado para multiplicação: Hi e Lo (32 bits cada) • mult $t1, $t2 # Hi Lo $t1 * $t2 • mfhi $t1 # $t1 Hi • mflo $t1 # $t1 Lo • Para divisão: • div $s2, $s3 • divu $s2, $s3 Mario Côrtes - MO401 - IC/Unicamp- 2002s1 # Lo $s3 / $s3 Hi $s3 mod $s3 # idem para “unsigned” 1998 Morgan Kaufmann Publishers Ch4-42 Ponto Flutuante • • • Objetivos: – representação de números não inteiros – aumentar a capacidade de representação (maiores ou menores) Formato padronizado 1.XXXXXXXXX ..... * 2yyy (no caso geral Byyy) No MIPS: S exp mantissa ou significando 8 23 exp faixa mantissa precisão sinal-magnitude (-1)S F * 2E Mario Côrtes - MO401 - IC/Unicamp- 2002s1 1998 Morgan Kaufmann Publishers Ch4-43 Ponto Flutuante e padrão IEEE 754 expoente [-128 , 127] se 210 103 128 = 8 + 10 * 12; 2128 = 2(8 + 10 * 12) = 28 * 2(10 * 12) 2 * 1038 overflow Nº > 1038 underflow Nº < 10-38 um implícito PADRÃO IEEE 754 1.XXXXXXXXXXX S exp mantissa ou significando 8 23 mantissa: precisão simples: 23 bits (+1) precisão dupla: 52 bits (+1) Mario Côrtes - MO401 - IC/Unicamp- 2002s1 1998 Morgan Kaufmann Publishers Ch4-44 Padrão IEEE754: bias Nº = (-1)S (1 + Mantissa) * 2E Para simplificar a ordenação (sorting): BIAS 0 127 exp Bias 255 No padrão: 2 (nE - 1) - 1 = 127 EXP = CAMPOEXP - BIAS exp Exemplo: representar - 0,7510 = - (1/2 + 1/4) - 0,7510 = - 0,112 = -1,11 * 2-1 mantissa = 1000000 ...... (23 bits) campo expoente: - 1 + 127 = 12610 = 0111 11102 1 0111 1110 Mario Côrtes - MO401 - IC/Unicamp- 2002s1 1000 0000 0000 0000 0000 000 1998 Morgan Kaufmann Publishers Ch4-45 Tabela de faixas de representação do IEEE 754 Precisão simples Precisão dupla Expoente Mantissa Expoente Mantissa Significado 0 0 0 0 0 0 0 0 0 Número não normalizado 1 – 254 qquer 1 – 2046 qquer Número normalizado 255 0 2047 0 infinito 255 0 2047 0 NaN (not a number) 8bits 23(+1) 11 52(+1) Mario Côrtes - MO401 - IC/Unicamp- 2002s1 1998 Morgan Kaufmann Publishers Ch4-46 Soma em ponto flutuante Start 1. Compare the exponents of the two numbers. Shift the smaller number to the right until its exponent would match the larger exponent 2. Add the significands 3. Normalize the sum, either shifting right and incrementing the exponent or shifting left and decrementing the exponent Overflow or underflow? Yes No Exception 4. Round the significand to the appropriate number of bits No Still normalized? Yes Done Mario Côrtes - MO401 - IC/Unicamp- 2002s1 1998 Morgan Kaufmann Publishers Ch4-47 ULA para soma em ponto flutuante Sign Exponent Significand Sign Exponent Significand Compare exponents Small ALU Exponent difference 0 1 0 Control 1 0 1 Shift smaller number right Shift right Big ALU 0 1 0 Increment or decrement 1 Shift left or right Rounding hardware Sign Mario Côrtes - MO401 - IC/Unicamp- 2002s1 Exponent Add Normalize Round Significand 1998 Morgan Kaufmann Publishers Ch4-48 Multiplicação em ponto flutuante Start 1. Add the biased exponents of the two numbers, subtracting the bias from the sum to get the new biased exponent 2. Multiply the significands 3. Normalize the product if necessary, shifting it right and incrementing the exponent Overflow or underflow? Yes No Exception 4. Round the significand to the appropriate number of bits No Still normalized? Yes 5. Set the sign of the product to positive if the signs of the original operands are the same; if they differ make the sign negative Done Mario Côrtes - MO401 - IC/Unicamp- 2002s1 1998 Morgan Kaufmann Publishers Ch4-49 Conjunto de instruções do MIPS para fp Fig 4.47 Mario Côrtes - MO401 - IC/Unicamp- 2002s1 Pag 291 1998 Morgan Kaufmann Publishers Ch4-50