Chapter Four Arithmetic for Computers Mario Côrtes - MO401 - IC/Unicamp- 2004s2 1998 Morgan Kaufmann Publishers Ch4-1 Arithmetic • • Where we've been: – Performance (seconds, cycles, instructions) – Abstractions: Instruction Set Architecture Assembly Language and Machine Language What's up ahead: – Implementing the Architecture operation a 32 ALU result 32 b 32 Mario Côrtes - MO401 - IC/Unicamp- 2004s2 1998 Morgan Kaufmann Publishers Ch4-2 Numbers • • • • Bits are just bits (no inherent meaning) — conventions define relationship between bits and numbers Binary numbers (base 2) 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001... decimal: 0...2n-1 Of course it gets more complicated: numbers are finite (overflow) fractions and real numbers negative numbers e.g., no MIPS subi instruction; addi can add a negative number) How do we represent negative numbers? i.e., which bit patterns will represent which numbers? Mario Côrtes - MO401 - IC/Unicamp- 2004s2 1998 Morgan Kaufmann Publishers Ch4-3 Possible Representations • Sign Magnitude: 000 = +0 001 = +1 010 = +2 011 = +3 100 = -0 101 = -1 110 = -2 111 = -3 • • One's Complement Two's Complement 000 = +0 001 = +1 010 = +2 011 = +3 100 = -3 101 = -2 110 = -1 111 = -0 000 = +0 001 = +1 010 = +2 011 = +3 100 = -4 101 = -3 110 = -2 111 = -1 Issues: balance, number of zeros, ease of operations Which one is best? Why? Mario Côrtes - MO401 - IC/Unicamp- 2004s2 1998 Morgan Kaufmann Publishers Ch4-4 MIPS • 32 bit signed numbers: 0000 0000 0000 ... 0111 0111 1000 1000 1000 ... 1111 1111 1111 0000 0000 0000 0000 0000 0000 0000two = 0ten 0000 0000 0000 0000 0000 0000 0001two = + 1ten 0000 0000 0000 0000 0000 0000 0010two = + 2ten 1111 1111 0000 0000 0000 1111 1111 0000 0000 0000 1111 1111 0000 0000 0000 1111 1111 0000 0000 0000 1111 1111 0000 0000 0000 1111 1111 0000 0000 0000 1110two 1111two 0000two 0001two 0010two = = = = = + + – – – 2,147,483,646ten 2,147,483,647ten 2,147,483,648ten 2,147,483,647ten 2,147,483,646ten maxint minint 1111 1111 1111 1111 1111 1111 1101two = – 3ten 1111 1111 1111 1111 1111 1111 1110two = – 2ten 1111 1111 1111 1111 1111 1111 1111two = – 1ten Mario Côrtes - MO401 - IC/Unicamp- 2004s2 1998 Morgan Kaufmann Publishers Ch4-5 Two's Complement Operations • Negating a two's complement number: invert all bits and add 1 – remember: “negate” and “invert” are quite different! • Converting n bit numbers into numbers with more than n bits: – MIPS 16 bit immediate gets converted to 32 bits for arithmetic – copy the most significant bit (the sign bit) into the other bits 0010 -> 0000 0010 1010 -> 1111 1010 – "sign extension" (lbu vs. lb) Mario Côrtes - MO401 - IC/Unicamp- 2004s2 1998 Morgan Kaufmann Publishers Ch4-6 Novas instruções • • • instruções “unsigned”: (exemplo de aplicação, cálculo de memória) sltu $t1, $t2, $t3 # diferença é “sem sinal” slti e sltiu # envolve imediato, com ou sem sinal • Exemplo pag 215: supor $s0 = FF FF FF FF e $s1 = 00 00 00 01 slt $t0, $s0, $s1 como $s0 < 0 e $s1 > 0 $s0<$s1 $t0 = 1 sltu $t0, $s0, $s1 como $s0 e $s1 não tem sinal $s0>$s1 $t0 = 0 Mario Côrtes - MO401 - IC/Unicamp- 2004s2 1998 Morgan Kaufmann Publishers Ch4-7 Cuidados com extensão 16 bits • • • • • beq $s0, $s1, nnn # salta para PC + nnn se teste OK nnn tem 16 bits e PC tem 32 bits – estender de 16 para 32 bits antes daoperação aritmética se nnn > 0 – preencher com zeros à esquerda se nnn < 0 CUIDADO – preencher com 1´s à esquerda – verificar por este motivo operação é chamada de – EXTENSÃO DE SINAL Mario Côrtes - MO401 - IC/Unicamp- 2004s2 1998 Morgan Kaufmann Publishers Ch4-8 Addition & Subtraction • Just like in grade school (carry/borrow 1s) 0111 0111 0110 + 0110 - 0110 - 0101 • Two's complement operations easy – subtraction using addition of negative numbers 0111 + 1010 • Overflow (result too large for finite computer word): – e.g., adding two n-bit numbers does not yield an n-bit number 0111 + 0001 note that overflow term is somewhat misleading, 1000 it does not mean a carry “overflowed” Mario Côrtes - MO401 - IC/Unicamp- 2004s2 1998 Morgan Kaufmann Publishers Ch4-9 Detecting Overflow • • • No overflow when adding a positive and a negative number No overflow when signs are the same for subtraction CONDIÇÕES DE OVERFLOW op A B re s u lta d o A+B + + - A+B - - + A -B + - - A -B - + + Em hardware, comparar o “vai-um” e o “vem-um” com relação ao bit de sinal Mario Côrtes - MO401 - IC/Unicamp- 2004s2 1998 Morgan Kaufmann Publishers Ch4-10 Effects of Overflow • • An exception (interrupt) occurs – Control jumps to predefined address for exception (EPC — EXCEPTION PROGRAM COUNTER) – Interrupted address is saved for possible resumption • mfc0 (move from system control): copia endereço do EPC para qualquer registrador Don't always want to detect overflow — new MIPS instructions: addu, addiu, subu note: addiu still sign-extends! note: sltu, sltiu for unsigned comparisons Mario Côrtes - MO401 - IC/Unicamp- 2004s2 1998 Morgan Kaufmann Publishers Ch4-11 Instruções (fig 4.52 - pag 309) add add R m u ltip ly mult R a d d im m e d ia te addi I m u ltip ly u n sig n e d multu R a d d u n sig n e d addu R d ivid e div R a d d im m e d ia te u n sig n e d addiu I d ivid e u n sig n e d divu R su b tra ct sub R m o ve fro m H i mfhi R su b tra ct u n sig n e d subu R m o ve fro m L o mflo R and and R m o ve fro m s yste m co n tro l (E P C ) mfc0 R a n d im m e d ia te andi I fp a d d sin g le add.s R or or R fp a d d d o u b lr add.d R o r im m e d ia te ori I fp su b tra ct sin g le sub.s R sh ift le ft lo g ic a l sll R fp su b tra ct d o u b le sub.d R sh ift rig h t lo g ica l srl R fp m u ltip ly sin g le mul.s R lo a d u p p e r im m e d ia te lui I fp m u ltip ly d o u b le mul.d R lo a d w o rd lw I fp d ivid e sin g le div.s R sto re w o rd sw I fp d ivid e d o u b le div.d R lo a d b yte u n sig n e d lbu I lo a d w o rd to fp sin g le lwc1 I sto re b yte sb I sto re w o rd to fp sin g le swc1 I b ra n ch o n e q u a l beq I b ra n ch o n fp tru e bclt I b ra n ch o n n o t e q u a l bne I b ra n ch o n fp fa ls e bclf I ju m p j J c.x.s R ju m p a n d lin k jal J fp co m p a re sin g le (x= eq,neq,lt,le,gt,ge) ju m p re g iste r jr R c.x.d R se t le ss th a n slt R fp co m p a re d o u b le (x= eq,neq,lt,le,gt,ge) se t le ss th a n im m e d ia te slti I se t le ss th a n u n sig n e d sltu R sltiu se t le ss th a n im m e d ia te u n sig n e d Mario Côrtes - MO401 - IC/Unicamp- 2004s2 I 1998 Morgan Kaufmann Publishers Ch4-12 Review: Boolean Algebra & Gates • Problem: Consider a logic function with three inputs: A, B, and C. Output D is true if at least one input is true Output E is true if exactly two inputs are true Output F is true only if all three inputs are true • Show the truth table for these three functions. • Show the Boolean equations for these three functions. • Show an implementation consisting of inverters, AND, and OR gates. Mario Côrtes - MO401 - IC/Unicamp- 2004s2 1998 Morgan Kaufmann Publishers Ch4-13 An ALU (arithmetic logic unit) • Let's build an ALU to support the andi and ori instructions – we'll just build a 1 bit ALU, and use 32 of them operation a op a b res result b • Possible Implementation (sum-of-products): Mario Côrtes - MO401 - IC/Unicamp- 2004s2 1998 Morgan Kaufmann Publishers Ch4-14 Review: The Multiplexor • Selects one of the inputs to be the output, based on a control input S • A 0 B 1 C note: we call this a 2-input mux even though it has 3 inputs! Lets build our ALU using a MUX: Mario Côrtes - MO401 - IC/Unicamp- 2004s2 1998 Morgan Kaufmann Publishers Ch4-15 Different Implementations • Not easy to decide the “best” way to build something • – Don't want too many inputs to a single gate – Dont want to have to go through too many gates – for our purposes, ease of comprehension is important Let's look at a 1-bit ALU for addition: C arryIn a Sum b cout = a b + a cin + b cin sum = a xor b xor cin C arryO u t • How could we build a 1-bit ALU for add, and, and or? • How could we build a 32-bit ALU? Mario Côrtes - MO401 - IC/Unicamp- 2004s2 1998 Morgan Kaufmann Publishers Ch4-16 Building a 32 bit ALU C a rr yIn a0 b0 O p e ra tio n C a rry In A LU 0 R e su lt0 C a rry O u t O p e ra tio n C a rry In a1 a 0 b1 C a rry In A LU 1 R e su lt1 C a rry O u t 1 R e su lt a2 2 b b2 C a rry In A LU 2 R e su lt2 C a rry O u t C a rry O u t a3 1 b3 1 Mario Côrtes - MO401 - IC/Unicamp- 2004s2 C a rry In A LU 3 1 1998 Morgan Kaufmann Publishers R e su lt3 1 Ch4-17 What about subtraction (a – b) ? • • • Two's complement approch: just negate b and add. a - b = a + (- b) How do we negate? (- a) = comp2(a) = comp1(a) + 1 A very clever solution: B in ve rt O pe ration C a rry In a 0 1 b 0 R e su lt 2 1 C a rry O ut Mario Côrtes - MO401 - IC/Unicamp- 2004s2 1998 Morgan Kaufmann Publishers Ch4-18 Subtrator B ~B 0 1 B equivalente à Binv Binv Binv + + + + Mario Côrtes - MO401 - IC/Unicamp- 2004s2 1998 Morgan Kaufmann Publishers Ch4-19 Tailoring the ALU to the MIPS • Need to support the set-on-less-than instruction (slt) – remember: slt is an arithmetic instruction – produces a 1 if rs < rt and 0 otherwise – use subtraction: (a-b) < 0 implies a < b • Need to support test for equality (beq $t5, $t6, $t7) – use subtraction: (a-b) = 0 implies a = b Mario Côrtes - MO401 - IC/Unicamp- 2004s2 1998 Morgan Kaufmann Publishers Ch4-20 Supporting slt B inv e rt O p era tio n C arr yIn a 0 • Can we figure out the idea? 1 R e s ult b 0 2 1 L ess Rs 0 bit de sinal 3 a. C ar ryO u t Rt subtração Rd B in ve rt O p er ation C ar ryIn a 0 1 R es u lt b 0 2 1 L e ss 3 Set O v e rflo w de te c tion b. O ve rflo w O p era tio n C a rryIn B in ve rt a0 b0 C a rryIn ALU0 Le ss C a rryO u t a1 b1 C a rryIn ALU1 Le ss C a rryO u t 0 a2 b2 0 R es ult0 R es ult1 C a rryIn ALU2 Le ss C a rryO u t R es ult2 C a rry In a3 1 b3 1 0 Mario Côrtes - MO401 - IC/Unicamp- 2004s2 C a rryIn A L U 31 Le ss R es ult31 S et O v e rflo w 1998 Morgan Kaufmann Publishers Ch4-22 Test for equality • Notice control lines: 000 001 010 110 111 = = = = = and or add subtract slt B n eg ate O p era tion a0 b0 C a rry In ALU0 Le ss C a rry O ut a1 b1 C a rry In ALU1 Le ss C a rry O ut 0 a2 b2 0 C a rry In ALU2 Le ss C a rry O ut R e su lt0 R e su lt1 Z ero R e su lt2 •Note: zero is a 1 when the result is zero! a 31 b 31 0 Mario Côrtes - MO401 - IC/Unicamp- 2004s2 R e su lt31 C a rry In ALU31 Le ss S et 1998 Morgan Kaufmann Publishers O v erflow Ch4-23 ALU ALUop A 32 bits: A, B, result Zero 1 bit: Zero, Overflow Result B 3 bits: ALUop Overflow ALUop B in v-O P Mario Côrtes - MO401 - IC/Unicamp- 2004s2 In s tru ç ã o 0 00 and 0 01 or 0 10 add 1 10 sub 1 11 s lt 1 10 beq 1998 Morgan Kaufmann Publishers Ch4-24 Conclusion • We can build an ALU to support the MIPS instruction set – key idea: use multiplexor to select the output we want – we can efficiently perform subtraction using two’s complement – we can replicate a 1-bit ALU to produce a 32-bit ALU • Important points about hardware – all of the gates are always working – the speed of a gate is affected by the number of inputs to the gate – the speed of a circuit is affected by the number of gates in series (on the “critical path” or the “deepest level of logic”) • Our primary focus: comprehension, however, – Clever changes to organization can improve performance (similar to using better algorithms in software) – we’ll look at two examples for addition and multiplication Mario Côrtes - MO401 - IC/Unicamp- 2004s2 1998 Morgan Kaufmann Publishers Ch4-25 Problem: ripple carry adder is slow C a rr yIn • • Is a 32-bit ALU as fast as a 1-bit ALU? atraso (ent soma ou carry = 2G) n estágios 2nG Is there more than one way to do addition? – two extremes: ripple carry (2nG) sum-of-products (2G) a0 b0 O p e ra tio n C a rry In A LU 0 R e su lt0 C a rry O u t a1 b1 C a rry In A LU 1 R e su lt1 C a rry O u t a2 b2 C a rry In A LU 2 R e su lt2 C a rry O u t Can you see the ripple? How could you get rid of it? c1 c2 c3 c4 = = = = b0c0 b1c1 b2c2 b3c3 + + + + a0c0 a1c1 a2c2 a3c3 + + + + a0b0 a1b1 a2b2 a3b3 c2 = c3 = c4 = a3 1 b3 1 C a rry In A LU 3 1 R e su lt3 1 Not feasible! Why? Mario Côrtes - MO401 - IC/Unicamp- 2004s2 1998 Morgan Kaufmann Publishers Ch4-26 Carry-lookahead adder • • An approach in-between our two extremes Motivation: – If we didn't know the value of carry-in, what could we do? – When would we always generate a carry? gi = ai bi – When would we propagate the carry? pi = ai + bi • Did we get rid of the ripple? c1 c2 c3 c4 = = = = • g0 g1 g2 g3 + + + + p0c0 p1c1 p2c2 p3c3 c2 = c3 = c4 = Feasible! Why? atraso: ent gi pi (1G) gi pi carry (2G) total: 5G independente de n carry saídas (2G) Mario Côrtes - MO401 - IC/Unicamp- 2004s2 1998 Morgan Kaufmann Publishers Ch4-27 Use principle to build bigger adders C a rry In a0 b0 a1 b1 a2 b2 a3 b3 C a rry In R e s ult0--3 ALU0 P0 G0 pi gi C ar ry-loo k ah ea d u n it C1 a4 b4 a5 b5 a6 b6 a7 b7 a8 b8 a9 b9 a1 0 b1 0 a1 1 b1 1 a1 2 b1 2 a1 3 b1 3 a1 4 b1 4 a1 5 b1 5 ci + 1 C a rry In R e s ult4--7 ALU1 P1 G1 • • • pi + 1 gi + 1 C2 ci + 2 C a rry In R e s ult8--1 1 ALU2 P2 G2 pi + 2 gi + 2 C3 ci + 3 Can’t build a 16 bit adder this way... (too big) Could use ripple carry of 4-bit CLA adders Better: use the CLA principle again! – super propagate (ver pag 243) – super generate (ver pag 245) – ver exercícios 4.44, 45 e 46 (não será cobrado) C a rry In R e s ult12 --1 5 ALU3 P3 G3 pi + 3 gi + 3 C4 ci + 4 C a rryO u t Mario Côrtes - MO401 - IC/Unicamp- 2004s2 1998 Morgan Kaufmann Publishers Ch4-28 Multiplication • • • More complicated than addition – accomplished via shifting and addition More time and more area Let's look at 3 versions based on gradeschool algorithm 8 10 9 10 10 0 0 10 0 1 10 0 0 0 00 0 0 0 00 1000 7 2 1 0 1 0 0 1 00 0 m u ltip lic a n d o m u ltip lic a d o r p ro d u to s p a rc iais 4 4 m a x = (2 –1 ) *(2 – 1 ) = 2 2 5 2 2 5 > 1 2 8 8 b its 3 2 * 3 2 b its 6 4 b its • Negative numbers: convert and multiply – there are better techniques, we won’t look at them Mario Côrtes - MO401 - IC/Unicamp- 2004s2 1998 Morgan Kaufmann Publishers Ch4-29 Multiplication: Implementation S ta rt M ultip lier0 = 1 1. Test M u ltip lier0 M ultip lie r0 = 0 1 a. A dd m u ltip lica n d to p rod u ct an d plac e the re s ult in P ro d u c t re gister 2. S h ift the M ultip lica n d re gis ter le ft 1 b it 3. S h ift th e M ultip lier reg is te r righ t 1 bit M u ltip lica n d N o : < 3 2 re pe titio ns 3 2n d rep e tition ? S h ift le ft Y e s: 3 2 r e p etitio ns 6 4 b its D o ne M u ltip lie r S h ift rig h t 6 4 -b it A L U 3 2 b its P ro d u ct W rite C o n tro l te s t 6 4 b its Mario Côrtes - MO401 - IC/Unicamp- 2004s2 1998 Morgan Kaufmann Publishers Ch4-30 Second Version S tart M ultip lie r0 = 1 1. Test M u ltip lie r0 M u ltip lie r0 = 0 1 a . A d d m u ltip lic a n d to th e le ft h a lf of th e p ro d u ct a n d p la c e th e re su lt in th e le ft h a lf o f th e P ro d u c t re giste r 2 . S h ift th e P ro d u c t re g is te r rig h t 1 b it 3 . S h ift th e M u ltip lie r re g is te r rig h t 1 bit M u ltiplic an d N o : < 3 2 re p e titio n s 3 2 n d re p e tition ? 3 2 b its Y e s: 3 2 r e p e titio n s D on e M u ltip lie r S h ift rig h t 32 -b it A L U 3 2 b its P ro d u ct S h ift rig ht W rite C o n tro l tes t 6 4 b its Mario Côrtes - MO401 - IC/Unicamp- 2004s2 1998 Morgan Kaufmann Publishers Ch4-31 Final Version M u ltiplic an d S tart 3 2 b its P ro du ct0 = 1 1. Test P rod uc t0 P ro du c t0 = 0 1 a. A dd m u ltiplic an d to the le ft ha lf of th e p ro du ct an d plac e the re su lt in the le ft ha lf of the P ro d uc t re gister 3 2- b it A L U 2 . S h ift th e P rod uc t reg is te r rig h t 1 bit N o : < 3 2 re p etitio ns 3 2 nd rep e tition ? Y e s: 3 2 r ep etitio n s P rod uct S h ift rig h t W rite C o n trol te s t D on e 6 4 b its • No MIPS: • dois novos registradores de uso dedicado para multiplicação: Hi e Lo (32 bits cada) • mult $t1, $t2 # Hi Lo $t1 * $t2 • mfhi $t1 # $t1 Hi • mflo $t1 # $t1 Lo Mario Côrtes - MO401 - IC/Unicamp- 2004s2 1998 Morgan Kaufmann Publishers Ch4-32 Algoritmo de Booth (visão geral) • • • • • • Idéia: “acelerar” multiplicação no caso de cadeia de “1´s” no multiplicador: 0 1 1 1 0 * (multiplicando) = + 1 0 0 0 0 * (multiplicando) - 0 0 0 1 0 * (multiplicando) Olhando bits do multiplicador 2 a 2 – 00 nada – 01 soma (final) – 10 subtrai (começo) – 11 nada (meio da cadeia de uns) Funciona também para números negativos Para o curso: só os conceitos básicos Algoritmo de Booth estendido – varre os bits do multiplicador de 2 em 2 Vantagens: – (pensava-se: shift é mais rápido do que soma) – gera metade dos produtos parciais: metade dos ciclos Mario Côrtes - MO401 - IC/Unicamp- 2004s2 1998 Morgan Kaufmann Publishers Ch4-33 Geração rápida dos produtos parciais X0 Y0 X2 X1 X0 Y0 Y1 Y2 X0 X1 X2 X2 Y0 X2 Y1 X2 Y2 X1 Y0 X1 Y1 X1 Y2 X0 Y1 X 0Y2 Y0 Y1 X2 Y0 X1 Y0 X0 Y0 Mario Côrtes - MO401 - IC/Unicamp- 2004s2 Y2 X2 Y1 X1 Y1 X0 Y1 1998 Morgan Kaufmann Publishers X2 Y 2 X1 Y 2 X0 Y 2 Ch4-34 Carry Save Adders (soma de produtos parciais) a3 b3 a2 b2 a1 b1 a0 b0 A B E F T rad itio n al a dd e r e3 e2 e1 e0 T r ad itio n a l ad d e r f3 f2 f1 f0 T ra ditio na l ad de r S s5 s4 s3 b3 e3 s2 f3 b2 e2 s1 f2 b1 s0 e1 f1 b0 e0 f0 A B E F C arry s av e ad de r a3 a2 a1 a0 C a rry s a v e a d de r C' s '4 c '3 s '3 c '2 s '2 c'1 s '1 c'0 S' s'0 T ra d ition al ad de r S s5 s4 s3 Mario Côrtes - MO401 - IC/Unicamp- 2004s2 s2 s1 s0 1998 Morgan Kaufmann Publishers Ch4-35 Divisão 29 3 29 = 3 * Q + R = 3 * 9 + 2 2910 = 011101 011101 11 310 = 11 11 01001 00101 11 10 Mario Côrtes - MO401 - IC/Unicamp- 2004s2 Q=9 R=2 Como implementar em hardware? 1998 Morgan Kaufmann Publishers Ch4-36 Alternativa 1: divisão com restauração • hardware não sabe se “vai caber ou não” • registrador para guardar resto parcial • verificação do sinal do resto parcial • caso negativo restauração 29 – 3 * 2 4 = -1 9 4 29 q4 = 0 3 5 q3 = 1 2 -7 q2 = 1 2 5 q2 = 0 1 -1 q1 = 1 1 5 q1 = 0 0 2 q0 = 1 -1 9 + 3 * 2 = 29 – 3 * 2 = 5 – 3 * 2 = -7 + 3 * 2 = 5 – 3 * 2 = -1 + 3 * 2 = 5 – 3 * 2 = R = 11 = 2 q4 = 1 R e s ta u ra çã o R e s ta u ra çã o R e s ta u ra çã o q4q3q2q1q0 = 01001 = 9 Mario Côrtes - MO401 - IC/Unicamp- 2004s2 1998 Morgan Kaufmann Publishers Ch4-37 Alternativa 2: divisão sem restauração Regras s e re s to p a rc ia l > 0 p ró x im a o p e raç ã o som a s e re s to p a rc ia l < 0 p ró x im a o p e raç ã o s u b tra ç ão s e o p e ra ç ã o c o rre n te + qi = 1 s e o p e ra ç ã o c o rre n te - qi = 1 29 – 3 * 2 4 = -1 9 < 0 p ró x = S O M A q4 = 1 3 5 > 0 p ró x = S U B q3 = 1 2 -7 < 0 p ró x = S O M A q2 = 1 1 -1 < 0 p ró x = S O M A q1 = 1 -1 9 + 3 * 2 = 5 – 3 * 2 = -7 + 3 * 2 = -1 + 3 * 2 = 0 2 R e s to = 2 Mario Côrtes - MO401 - IC/Unicamp- 2004s2 o b je tivo R 0 q0 = 1 Q u o c ie n te = 11111 ?? 1998 Morgan Kaufmann Publishers Ch4-38 Alternativa 2: conversão do resultado 1 1 1 1 1 (2 2 2 2 2 ) 4 3 2 1 0 16 - 8 + 4 - 2 - 1 ... 1 1 ... 2 n 2 ( n 1 ) 2 ( n 1 ) ( 2 1) 2 1 111 1 • Nº de somas: 3 01011 01 • Nº de subtrações:2 ( n 1 ) • Total: 5 • OBS: se resto < 0 deve haver correção de um divisor para que resto > 0 Mario Côrtes - MO401 - IC/Unicamp- 2004s2 1998 Morgan Kaufmann Publishers Ch4-39 Comparação das alternativas 29 29 5 5 5 5 -1 2 -7 -1 c om 2 sem -7 -19 Mario Côrtes - MO401 - IC/Unicamp- 2004s2 1998 Morgan Kaufmann Publishers Ch4-40 Hardware para divisão: terceira alternativa S ta rt 1 . S hift th e R e m a in d e r re g iste r left 1 b it D iviso r 2 . S u b tra c t the D iv is o r re g iste r fro m th e le ft h alf o f th e R e m aind e r re g is te r a n d p la c e th e re s u lt in th e le ft h a lf o f th e R e m a in d e r re g is te r 3 2 bits R e m a in d e r > – 0 R e m a in d e r < 0 T e st R e m a in d e r 3 2- bit A L U 3 a . S h ift th e R e m a in d e r reg is te r to th e le ft, s e ttin g th e n e w rig h tm os t b it to 1 3 b . R e sto re th e o rig in a l v a lu e b y ad d in g th e D iv is o r reg is te r to th e le ft h alf o f th e R e m a in d e r re g iste r a n d p la ce th e su m in th e left h alf o f th e R e m a ind e r re g is te r. A ls o sh ift th e R e m aind e r re g is te r to th e le ft, s ettin g th e n ew rig h tm o s t b it to 0 S h ift righ t R e m a in de r S hift left W rite C on trol te s t N o : < 3 2 re pe titio n s 3 2 n d rep e titio n ? Y e s: 3 2 r e p e titio n s 6 4 bits D o n e. S h ift le ft h a lf o f R e m a in d e r rig ht 1 b it Mario Côrtes - MO401 - IC/Unicamp- 2004s2 1998 Morgan Kaufmann Publishers Ch4-41 Instruções • No MIPS: • dois novos registradores de uso dedicado para multiplicação: Hi e Lo (32 bits cada) • mult $t1, $t2 # Hi Lo $t1 * $t2 • mfhi $t1 # $t1 Hi • mflo $t1 # $t1 Lo • Para divisão: • div $s2, $s3 • divu $s2, $s3 Mario Côrtes - MO401 - IC/Unicamp- 2004s2 # Lo $s3 / $s3 Hi $s3 mod $s3 # idem para “unsigned” 1998 Morgan Kaufmann Publishers Ch4-42 Ponto Flutuante • • • Objetivos: – representação de números não inteiros – aumentar a capacidade de representação (maiores ou menores) Formato padronizado 1.XXXXXXXXX ..... * 2yyy (no caso geral Byyy) No MIPS: S exp mantissa ou significando 8 23 exp faixa mantissa precisão sinal-magnitude (-1)S F * 2E Mario Côrtes - MO401 - IC/Unicamp- 2004s2 1998 Morgan Kaufmann Publishers Ch4-43 Ponto Flutuante e padrão IEEE 754 expoente [-128 , 127] se 210 103 128 = 8 + 10 * 12; 2128 = 2(8 + 10 * 12) = 28 * 2(10 * 12) 2 * 1038 overflow Nº > 1038 underflow Nº < 10-38 um implícito PADRÃO IEEE 754 1.XXXXXXXXXXX S exp mantissa ou significando 8 23 mantissa: precisão simples: 23 bits (+1) precisão dupla: 52 bits (+1) Mario Côrtes - MO401 - IC/Unicamp- 2004s2 1998 Morgan Kaufmann Publishers Ch4-44 Padrão IEEE754: bias Nº = (-1)S (1 + Mantissa) * 2E Para simplificar a ordenação (sorting): BIAS 0 127 exp Bias 255 No padrão: 2 (nE - 1) - 1 = 127 EXP = CAMPOEXP - BIAS exp Exemplo: representar - 0,7510 = - (1/2 + 1/4) - 0,7510 = - 0,112 = -1,11 * 2-1 mantissa = 1000000 ...... (23 bits) campo expoente: - 1 + 127 = 12610 = 0111 11102 1 0111 1110 Mario Côrtes - MO401 - IC/Unicamp- 2004s2 1000 0000 0000 0000 0000 000 1998 Morgan Kaufmann Publishers Ch4-45 Tabela de faixas de representação do IEEE 754 P re c is ã o s im p le s P re c is ã o d u p la S ig n ific ad o E x p o e n te M a n tis s a E x p o e n te M a n tis s a 0 0 0 0 0 0 0 0 0 N ú m e ro n ão n o rm a liza d o 1 – 25 4 qquer 1 – 20 4 6 qquer N ú m e ro n o rm a liza d o 255 0 2047 0 in fin ito 255 0 2047 0 N a N (n o t a n u m b e r) 8 b its 2 3 (+ 1 ) 11 5 2 (+ 1 ) Mario Côrtes - MO401 - IC/Unicamp- 2004s2 1998 Morgan Kaufmann Publishers Ch4-46 Soma em ponto flutuante S ta r t 1. C om pa re th e e x p o n e n ts o f the tw o n u m b e rs . S h ift th e sm a lle r n u m b e r to the rig h t u n til its e xp on e nt w ou ld m atc h th e larg e r e x p o n e n t 2 . A dd th e sig n ifica n d s 3 . N o rm aliz e the s u m , e ith e r s hiftin g rig h t an d inc rem e nting th e e x p o n en t o r s h iftin g le ft a nd d ec re m e n ting th e ex po n e n t O ve rflow o r u n d e rflo w ? Y es No E x c ep tio n 4. R ou nd th e sign ifica n d to th e ap p ro p r ia te n u m be r o f b its No S till n orm a liz ed ? Y es D on e Mario Côrtes - MO401 - IC/Unicamp- 2004s2 1998 Morgan Kaufmann Publishers Ch4-47 ULA para soma em ponto flutuante S ig n E xp on e nt S ig n ifica n d S ig n E xp on en t S ig n ifica nd C om p a r e ex p o ne nts S m all A LU E x p on en t diffe ren c e 0 1 0 C o ntrol 1 0 1 S h ift s m a lle r nu m b er rig h t S h ift rig h t A dd B ig A L U 0 1 0 In c rem e nt or de c rem e nt 1 S h ift le ft o r rig h t R o u n d in g ha rd w are S ign Mario Côrtes - MO401 - IC/Unicamp- 2004s2 E x po ne nt N or m a liz e R ou nd S ign ific an d 1998 Morgan Kaufmann Publishers Ch4-48 Multiplicação em ponto flutuante S ta rt 1 . A d d the b ia s e d e x po ne n ts o f th e tw o n um be rs , s ub tra ctin g th e bias fr om th e su m to ge t th e ne w b ia se d e x po ne nt 2 . M u ltiply th e s ig nific an ds 3 . N o rm aliz e the p ro d uc t if n ec e ss ar y, sh iftin g it righ t a nd in c rem e nting th e ex po ne n t O v e rflo w o r u n d e rflo w ? Yes No E x ce p tion 4 . R o un d the s ig nific an d to th e a pp ro p ria te n u m b er o f b its No S till n o r m a lize d? Yes 5 . S et the s ig n o f the p r od uc t to p o s itiv e if th e sign s of the o rig in al o p er an ds a re th e s a m e ; if th ey d iffer m a k e the s ig n n eg ativ e D o ne Mario Côrtes - MO401 - IC/Unicamp- 2004s2 1998 Morgan Kaufmann Publishers Ch4-49 Conjunto de instruções do MIPS para fp Fig 4.47 Mario Côrtes - MO401 - IC/Unicamp- 2004s2 Pag 291 1998 Morgan Kaufmann Publishers Ch4-50