Ferramentas de Mineração de Informação Não Estruturada Eduardo Massao Arakaki DI-UFPE Roteiro O que é Text Mining e Web Mining? Motivação e Paradigmas Ferramentas • • • • • • • IBM’s Intelligent Miner for Text AltaVista Discovery Agentware SemioMap TextAnalyst Cambio KPS Comparação da ferramentas Conclusão sobre estado da arte Referências Mining e mining: don’t believe the hype! Crucial distinguir: • Formato da informação ASCII, MLs, DBs, KBs • Assunto da informação Web visits, sales data, sport statistics • Localização da informação Internet, Intranet, stand-alone computer Text Mining e Web Mining ainda: • Muito ambíguos • Usados de forma inapropriadas Mining e mining: don’t believe the hype! Descoberta de conhecimento • a partir de dados completamente estruturados (BD) Data mining, Web visit mining (SOBRE a Web) Intelligent Miner for Data, DBminer, PRIM • a partir de dados semi-estruturados (HTML, XML, SGML) Web page mining (NA web) KPS • a partir de dados não estruturados (ASCII) Text Mining Intelligent Miner for Text, Agentware, TextAnalyst Mining e mining: don’t believe the hype! Recuperação de informação • a partir de dados completamente estruturados (BD) SQL • a partir de dados semi-estruturados (HTML, XML, SGML) AltaVista, eXcite, Bright! • a partir de dados não estruturados (ASCII) RI clássica, pré-Web (ex, Smart por Salton) Extração de informação • estruturar informação semi ou não estruturada em BD Mining e mining: don’t believe the hype! Text Mining • Análogo a data mining • Descobre relacionamentos em dados. Diferente de data mining Trabalha com informações armazenadas numa coleção de dados não estruturados (textos) • Utiliza duas tecnologias ferramenta de busca na Internet metodologia de análise de texto • “Pode se dizer que representa uma nova geração de ferramentas de busca na Internet” Mining e mining: don’t believe the hype! Web Page Mining • Refere ao processo de busca e extração de dados “escondidos” numa página Web Web Visit Mining • Descobre relacionamentos significantes e tendências através da integração e análise de informação do tráfego da Web (Internet/intranet) e dos dados tradicionais do negócio. • Serve para analisar investimentos online de uma empresa, num esforço para maximizar o retorno Web Visit Mining Mining e mining: don’t believe the hype! ASCII ASCII+ esquema Text mining Aprendizagem Data Mining True Web Mining SQL DB Wrappers IR KB Info extraction Web search ML Usuário O que é text mining e web mining? Web visit mining Information retrieval Web searching Semi-structured data query Data Mining Text mining Wrappers Information Extraction Web page mining Motivação Estatística sobre crescimento da Web 80% dos dados numa empresa não são estruturados (ex. documentos, manuais, E-mail, apresentações, na Web) Informação on-line cada vez: • mais numerosa • mais universalmente acessível • menos estruturada Web potencialmente formidável fonte de dados para mineração de dados e KDD Desafios: • não apenas integrar aprendizagem+DB • mais também IR, NLP, linguagens de mark-up, agents, wrappers, Web -> Conhecimento: qual caminho? ASCII IR ASCII+DB esquema ML Web search Info extraction SQL DB Data Mining KB Usuário True Web Mining botar ferramentas a apresentar no arcos corretos + termos da transparencia de batatoide Aplicações específicas Qualquer aplicação de KDD sem DB e com informação textual Mais especificamente: • • • • • • bibliotecas digitais gerência de emails gerência de documentos help desk automático pesquisa de mercado agrupamento inteligente de informações de mercado Exemplos comerciais: Ferramentas IBM’s Intelligent Miner for Text Ferramenta de Text Mining online (web mining) Funcionalidades: • Extrai padrões de atributos semânticos a partir de texto (extração de informação) • Organiza documentos por assunto (agrupamento conceitual) • Encontra temas predominantes numa coleção de documentos (um passo da sumarização automática) • Busca por documentos relevantes (recuperação de informação) Possui ferramentas de análise de texto e ferramenta de busca IBM’s Intelligent Miner for Text Examina numa página Web Máquina de busca. Aplicativo Permite apara construção construção de os significativos links outras páginas sist. deReconhece recuperação deitens serviços depara informação de busca avançado Web no texto. Ex. nomes de pessoas, Usa características e estatísticas extraídas empresas, lugares, datas, etc. criando Extrai sentenças de um documento do texto para executar uma tarefa. Baseada um sumário HTML) num esquema deASCII categorias predefinidas. Divide um(em conjunto deoudocumentos em grupos. Metodologias: Agrup. Relacional e agrup. Hierárquico. Feature Extraction - Nomes <HTML> <TITLE>Local Education Outreach </TITLE><BODY> At IBM Corp., they take seriously the responsibility to help schools achieve the goal articulatedby President Clinton and the National Governors Associationthat ... Together with Learning Inc. of Somers, New York,IBM is starting ... At the IBM Thomas J. Watson Research Center in WestchesterCounty, Dr. James J. Smith manages the Local Education OutreachProgram, and organizes activities for students and teachers fromschool districts in the area, including New York City. Smithalso co-ordinates IBM's participation in the National Scienceand Technology Week. NSTW is an annual event sponsored byThe National Science Foundation to foster public understandingof science and technology. </BODY> </HTML> Feature Extraction - Nomes <IMZ ID>demo.txt</IMZ ID> <IMZ TITLE>Local Education Outreach</IMZ TITLE> <IMZ CONTENT> NC 3 IBM ORG NC 1 IBM Thomas J. Watson Research Center in Westchester County ORG NC 2 James J. Smith PERSON NC 1 Learning ORG NC 1 Local Education Outreach Program ORG NC 1 National Governors Association ORG NC 2 National Science and Technology Week ORG NC 1 National Science Foundation ORG NC 1 New York City PLACE NC 1 President Clinton PERSON NC 1 Somers , New York PLACE? </IMZ CONTENT> IBM’s Intelligent Miner for Text O que utilizar para realizar essas tarefas? • • • • • • • • • • • • Atribuir documentos a categorias predefinidas Dividir documentos em grupos não predefinidos Prover um visão de uma grande coleção de documentos Identificar similaridades escondidas em documentos Identificar características de documentos Pesquisa por texto Pesquisa através da Intranet Pesquisa rápida na Web Marketing Busca com categorias Tratamento de e-mails Indexação seletiva de páginas Web AltaVista Discovery Assistente de pesquisa que habilita aos usuários encontrar informação indiferente de sua localização Funcionalidades: • • • • • Sumariza documentos Encontra páginas similares as já encontradas Encontra todas páginas referenciadas por um página Encontra mais documentos a partir de um site de interesse Provê indexação automática de todas páginas acessadas pelo usuário AltaVista Discovery Agentware Text mining online Composto de três elementos: • Knowledge Server • Knowledge Update • Knowledge Builder Agentware Knowledge Server • Categorização automática e precisa eliminando a necessidade de processamento manual. Agentware Knowledge Update • Monitora centenas de sites da Internet e Intranet, novos documentos e repositórios internos de documentos. • Cria um relatório personalizado destes conteúdos Agentware Knowledge Builder • Permite as empresas customizar os produtos de Autonomy a fim de atender suas necessidades individuais. • São APIs (Application Programming Interfaces). TextAnalyst Sistema de busca semântica de informação e Text Mining (análise de texto) Implementa uma rede semâtica para processamento de textos escritos em linguagem natural. Destinado para operação interativa com documentos já reunidos (offline) Tarefas de TextAnalyst Tarefas: • Identificação dos principais conceitos de textos bem como relações semânticas entre estes conceitos, com avaliação da importância destas relações • Criação de bases de conhecimento expressadas em linguagem natural para criação de hipertext e sistemas especialistas • Criação automática de uma estrutura hierárquica de tópicos • Criação de uma rede semântica ajustada do texto investigado • Indexação automática de textos com a criação de hipertext • Busca semântica por informações no texto (palavras chaves) • Abstração automática de textos TextAnalyst SemioMap Produzido pela Semio Corporation SemioMap extrai todas frases relevantes a partir de coleção de textos Facilita a exploração de conceitos numa grande coleção de documentos sem ter de examiná-los manualmente SemioMap podem processar diversos tipos de documentos: • ASCII, HTML, Microsoft Word, WordPerfect, e outros Não tem interface com a Internet SemioMap SemioMap constrói uma estrutura conceitual de coleções de textos dinâmicos, usando análise lingüística a fim de identificar relacionamentos de conceitos em documentos diferentes. Aplicações • Ferramentas de Busca • Sistemas de gerenciamento de documentos • Groupware • Visualização SemioMap Como ele trabalha? • Software de extração léxica lê automaticamente grandes bases de textos não estruturados e extrai tadas frases relevantes a partir da coleção de textos. • Agrupamento de Informação Identifica os relacionamentos entre estas frases. Constrói uma “rede léxica” • Visualização gráfica Mapa gráfico permitindo aos usuários navegar rapidamente através de frases chaves e relacionamentos dentro de um texto Arquitetura do SemioMap Cambio Examina documentos e extrai dados significativos para um arquivo de banco de dados Documentos podem ser arquivos ASCII, páginas Web, emails Metodologia utilizada: • Particionamento • Reconhecimento de padrões • Tags para atribuição de elementos de dados no documento analisado Cambio Ferramenta offline e não totalmente automática Pode trabalhar em conjunto com um webcrawler Não tem funções de análise semântica Pode representar o nível de entrada de um sistema de Text Mining Apresenta uma boa interface Conclusões Ranking em termos de complexidade de tecnologia - + Intelligent Agentware SemioMap TextAnalyst AltaVista Cambio Miner Discovery Falta de maior clareza na explicação de como as for ferramentas Text trabalham Todas ferramentas são recentes (menos de cinco anos) O que se vende e se pesquisa agora como text mining: • é integração de recuperação de informação, extração de informação e gerenciamento de informação semi-estruturada • tem quase nada a ver com data mining: não envolve aprendizagem seu produto final é texto ou templates e não conhecimento Referências Online Text Mining • http://allen.comm.virginia.edu/jtl5t/index.htm