Exemplos de análises ambientais - EPA • • • • • • • • • • • • • • • • Analytical Capabilities General Chemistry Analyses The Lab performs a full range of classical water quality analyses including: Alkalinity Ammonia Anions BOD Cyanide Hardness Nitrate/Nitrite-N Sulfide Total Dissolved Solids (TDS) Total Suspended Solids (TSS) Total Kjeldahl Nitrogen (TKN) Total Organic Carbon Perchlorate • • • • • In addition, the following determinations for soil are performed: Total organic carbon Grain Size Moisture in soil pH in soil INUAF Set-Dez 2005 Exemplos de análises ambientais – EPA (continuação) • • Metals Metals in water, soil and animal tissue are determined by a variety of techniques at the Region 9 Laboratory. • Inductively Coupled Plasma Spectrometry (ICP) - The Region 9 Lab operates an ICP coupled with an atomic emission spectrometer and an ICP coupled with a mass spectrometer. After applying one of several digestion techniques to a sample, the digested sample is introduced into the ICP which is capable of measuring up to 24 inorganic elements simultaneously. Concentrations are usually in the parts per billion (ppb) to parts per million (ppm) range. • Graphite Furnace Atomic Absorbance (GFAA) - After applying one of several digestion techniques to a sample, the digested sample is introduced into the GFAA system which measures a single element at a time. Concentrations are usually in the sub ppb range. • Cold Vapor Atomic Absorbance Mercury Analyzer (CVAA) - Is used for determine mercury concentration. Currently a quanitation limit down to 30 ppt is possible. Typical metals analyses available from the Region 9 Laboratory are: • • Antimony, Arsenic, Barium, Beryllium, Boron, Cadmium, Calcium, Chromium, Copper, Cobalt, Iron, Lead, Magnesium, Manganese, Mercury, Molybdenum, Nickel, Potassium, Selenium, Silver, Sodium, Strontium, Thallium, Tin, Vandium, Zinc • INUAF Set-Dez 2005 Exemplos de análises ambientais – EPA (continuação) Volatile Organic Chemicals/Pesticides Gas Chromatography - The Region 9 Laboratory uses several gas chromatographs equipped with different selective detectors to measure a variety of organic chemical constituents in environmental samples. These include: Petroleum hydrocarbons in water and soil with a GC equipped with a flame ionization detector (FID) Chlorinated Pesticides and Polychlorinated Biphenyls (PCBs) in water, soil/sediment and animal tissue with a GC equipped with an electron capture detector (ECD). 1,2-Dibromoethane (EDB) and 1,2-Dibromo-3-Chloropropane (DBCP) in water by GC-ECD. Gas Chromatography/Mass Spectrometry - A gas chromatograph (GC) coupled with a mass spectrometer (MS) is used to separate, identify and quantitate volatile organic compounds in water and soil and semivolatile organic compounds in water, soil and animal tissue. The fuel oxygenate, Methyl Tert-Butyl Ether (MTBE) is a recent addition to the target analyte list of volatile organic compounds, bringing the total number of compounds on the list to 42. The target analyte list of semi-volatile organic compounds includes over 60 compounds including phenol, naphthalene, and benzo(a)pyrene. INUAF Set-Dez 2005 1 Exemplos de análises ambientais – EPA (continuação) • Pesticide Screening by Immunoassay - Using an immunochemical analytical technique (ELISA), the Region 9 Lab can analyze samples for individual pesticides. This method can be applied to either solid or liquid media and offers fast turnaround time and low cost relative to traditional pesticide methods. ELISA (short for EnzymeLinked ImmunoSorbent Assay) is not suitable for compliance monitoring purposes, although it can provide determinative data for preliminary sample screening in a larger study. • • Air Toxics Using a cryofocusing preconcentrator and a GC/MS, the Region 9 Laboratory analyzes for 39 volatile organic compounds in air down to the 1 ppb level. The procedures used are consistent with EPA Methods TO-14 and TO-15. • • Other Analyses Bulk Asbestos by Polarized Light Microscopy (PLM) INUAF Set-Dez 2005 Alkalinity • Measure of acid-neutralizing capacity (ANC) • Analysis by titration with mineral acid (HCl or H2SO4) – determination using pH indicators or potentiometers • Chemical species involved (CO3)-2, (HCO3)- & OH• Oily matter, ppcts. may interfere but cannot be removed since they contribute to ANC • For low alkalinity samples (<20), the equivalence point must be determined by extrapolation INUAF Set-Dez 2005 Hardness • Defined as the sum of [Ca] e [Mg] and expressed as CaCO3 • Total hardness = Temporary hardness (alkalinity) + Permanent hardness • Determination by complexometric titration with EDTA INUAF Set-Dez 2005 2 Conductivity • Measures the ability of an aqueous solution to carry an electrical current • Reflects the degree of mineralization of a water: the higher the amount of dissolved salts the higher the conductivity • Measured by conductivimeters and expressed in micro-Siemens/cm C= K R where: C= conductivity in mS/cm or μS/cm, K= cell constant and R=electric resistance INUAF Set-Dez 2005 Solids • Total Solids (TS): residue left after heating the sample at a defined temperature (103ºC, 175ºC/185ºC or 525ºC) • The difference between the total solids determined at 175ºC/185ºC and the same parameter determined at 575ºC corresponds to the organic matter content of the sample. • Total Suspended Solids (TSS): portion of the solids retained by a filter. • Total Dissolved Solids (TDS): portion of the solids that passes through a filter. INUAF Set-Dez 2005 DISSOLVED OXYGEN (DO) • Electrometric (Electrode) – More common – Rate of diffusion of molecular O2 across membrane • Winkler Method – Add Mn+2 + strong base, DO oxidizes Mn+2 to higher ordered Mn(OH)x+2. Add I-/H+; Mn goes back to Mn+2 and equivalent I- is liberated. Titrate with (S2O3)-2 w/starch indicator. (S2O3)-2 must be standardized at least quarterly. INUAF Set-Dez 2005 3 ANIONS BY ION CHROMATOGRAPHY • HPLC w/conductivity detection (300.0, 4110) • Multi-element capability @ μg/l sensitivity • Anions: F-, Cl-, Br-, (NO2)-, (NO3)-, (SO4)-2, (PO4)-3 and others • F- often difficult to quantify; can be done INUAF Set-Dez 2005 ION CHROMATOGRAPHY INUAF Set-Dez 2005 HALOGEN IONS (F-, Cl-, Br-, I-) • Analytical Options – Colorimetric – Titrimetric – IC – Ion-Selective Electrodes (ISE) INUAF Set-Dez 2005 4 ION SELECTIVE ELECTRODES • Measure the activity of free ions in solution • Interferences known & controllable • Must control T & ionic strength • Can measure halides, S-2, NH3 and (CN)- INUAF Set-Dez 2005 CYANIDE (CN-) • All CN groups that can be determined as CN• Total Cyanide measures all free & bound CN• Measurement Options – Titration – Colorimetry – ISE INUAF Set-Dez 2005 NITROGEN SPECIES • Forms of N to be measured: – (NO3)– (NO2)– NH3 – Organic N • AMMONIA (NH3 ) • Measurement Options – Titration – ISE – Phenate w/ or w/o automation INUAF Set-Dez 2005 5 AMMONIA (NH3 ) • Titration – – – – Only used after distillation H3BO3 added to decrease hydrolysis of organo-N species Titrate w/std. H2SO4; end-pt. either w/indicator or electrometrically Useful below 5 mg/L • ISE – Gas-permeable membrane to measure NH3(aq) & (NH4)+ converted to NH3(aq) by pH adjust. to 10-11 • Phenate – Indophenol (VERY blue) is made from reaction between NH3, (ClO3)- & phenol catalyzed by nitroprusside – Measure spectrophotometrically @ 640 nm – Interfering Ca & Mg can be complexed – Can be easily automated – RSD’s much better than titrimetry or ISE INUAF Set-Dez 2005 (NO2)- and (NO3)- • Both can be done by IC • (NO2)- can also be done by spectrophotometry • (NO3)– UV-Spec. – ISE – Cd Reduction INUAF Set-Dez 2005 ORGANIC (KJELDAHL) N • Measures N as NH3 • Kjeldahl N is the same as organic N. • Digest sample, convert to NH3, and measure as per NH3 options. • Does not measure e.g., azide, azo, nitro, nitroso, nitrite or nitrate N species • Macro: low [NH3], requires larger sample volume (500 ml.) Micro: higher [NH3] INUAF Set-Dez 2005 6 PHOSPHOROUS SPECIES • P analyses consist of 2 steps – Digestion converts phosphorous to orthophosphate – Colorimetric determination • Reactive P (Orthophosphate): respond to colorimetry w/o hydrolysis or oxidation • Organic P: Fraction convertible to orthophosphate by destruction of organic matter INUAF Set-Dez 2005 SULFITE (SO3)-2 • Occurs in boilers, feedwaters and treatment plant effluents • Method Options – Iodometric: KI titration with starch indicator – Colorimetric: (easier) Reaction with 1,10-phenanthroline and vis. detection at 510 nm. SULFATE (SO4)-2 – IC (BEST CHOICE) – Turbidimetry: BaSO4 ppct. light scattering is measured (MOST COMMON) – Gravimetry: (Ppct. as BaSO4) – Titrimetry: xs. Ba is complexed w/methylthymol blue to yield blue color INUAF Set-Dez 2005 SULFIDE (S-2) • “Total S-2” includes both H2S & HS- as well as acid-soluble metallic sulfides; [S-2] very low • There are several qualitative tests • Quantitative Methods: I- oxidizes S-2 / H+ – Titration: OK if [S-2] > 1 ppm – Iodimetric – ISE INUAF Set-Dez 2005 7 Biochemical Oxygen Demand • Measures molecular O2 used during the biochemical degradation of organic matter (C) in water • Usually applied to determine waste loadings to treatment plants & efficiency of control measures • • • 5 day test: BOD5 20 day test: BOD20 60-90 day test: UBOD Fill sample to overflow & seal airtight Incubate for fixed time Measure DO initially & @ end BOD = Final[DO] - Initial[DO] INUAF Set-Dez 2005 TOTAL ORGANIC CARBON (TOC) • Better expression of organic content than BOD • TOC is independent of the ox. state of the organic matter and does not measure H or N • Organic molecules ⇒ C ⇒ CO2 INUAF Set-Dez 2005 Metals • Analytical Tecniques: • • • • Inductively Coupled Plasma Spectrometry (ICP) – ICP coupled with an atomic emission spectrometer: ICP-AES ICP coupled with a mass spectrometer: ICP-MS ICP is capable of measuring up to 24 inorganic elements simultaneously. Concentrations are usually in the parts per billion (ppb) to parts per million (ppm) range. • Graphite Furnace Atomic Absorbance (GFAA) - After applying one of several digestion techniques to a sample, the digested sample is introduced into the GFAA system which measures a single element at a time. Concentrations are usually in the sub ppb range. • Cold Vapor Atomic Absorbance Mercury Analyzer (CVAA) - Is used for determine mercury concentration. Currently a quanitation limit down to 30 ppt is possible. INUAF Set-Dez 2005 8 ICP - Inductively Coupled Plasma • • • ICP, abbreviation for Inductively Coupled Plasma, is one method of optical emission spectrometry. When plasma energy is given to an analysis sample from outside, the component elements (atoms) are excited. When the excited atoms return to low energy position, emission rays (spectrum rays) are released and the emission rays that correspond to the photon wavelength are measured. The element type is determined based on the position of the photon rays, and the content of each element is determined based on the rays' intensity. • • To generate plasma, first, argon gas is supplied to torch coil, and high frequency electric current is applied to the work coil at the tip of the torch tube. Using the electromagnetic field created in the torch tube by the high frequency current, argon gas is ionized and plasma is generated. This plasma has high electron density and temperature (10000K) and this energy is used in the excitation-emission of the sample. Solution samples are introduced into the plasma in an atomized state through the narrow tube in the center of the torch tube. INUAF Set-Dez 2005 INUAF Set-Dez 2005 Typical metal analysis in environmental samples Antimony Arsenic Barium Beryllium Boron Cadmium Calcium Chromium Copper Cobalt Iron Lead Magnesium Manganese Mercury Molybdenum Nickel Potassium Selenium Silver Sodium Strontium Thallium Tin Vandium Zinc INUAF Set-Dez 2005 9 INUAF Set-Dez 2005 INUAF Set-Dez 2005 Etapas da análise cromatográfica 1. Extracção dos analitos a partir da matriz na qual se encontram 2. Purificação e concentração dos compostos a quantificar 3. Introdução da amostra no sistema cromatográfico 4. Separação cromatográfica 5. Detecção: Os detectores cromatográficos produzem sinais eléctricos que são enviados para registadores ou integradores Cada detector produz uma resposta (sinal eléctrico) cuja intensidade é proporcional à concentração do analito. Esta resposta do detector depende também da natureza do analito o que torna obrigatória a utilização de padrões dos compostos a quantificar. INUAF Set-Dez 2005 10 Picos cromatográficos Linha de base: resposta do detector quando nenhum analito está a ser detectado Deverá ser estável ao longo da corrida cromatográfica e corresponder a um sinal eléctrico baixo e sem flutuações (razão sinal/ruído grande) Para que se possam quantificar os picos cromatográficos deverão estar razoávelmente resolvidos: deve ser possível localizar o início e o fim de cada pico bem como o seu máximo. INUAF Set-Dez 2005 Determinar a concentração • Normalização interna • Utilização de factores de resposta • Calibração externa • Calibração com padrão interno INUAF Set-Dez 2005 Normalização interna •Calcular a área total de todos os picos da amostra (excepto o de solvente) e assumir que: •Cada componente produz um pico •A resposta do detector não depende da natureza da substância •Nestas condições admite-se que a concentração de um componente 1, C1 é dada por: C1 (%) = (Area 1 / Area total ) x 100 •É apenas um valor indicativo pois não tem em consideração a influência da natureza dos vários compostos detectados na resposta do detector INUAF Set-Dez 2005 11 Calibração Externa • A calibração deve ser efectuada com uma mistura de padrões que inclui todos os analitos a ser quantificados numa gama de concentrações idêntica à das amostras reais • As condições de análise devem ser reproductíveis: estado do equipamento, condições de introdução da amostra, volume de amostra, etc. • Nestas condições: – Avalia-se a gama na qual a relação entre a resposta do detector e a concentração do componente é linear. – Determina-se a resposta da mistura de padrões a quantificar em pelo menos 5 níveis de concentração uniformemente distribuídos pela gama de linearidade – Calcula-se a equação de correlacção entre área e concentração INUAF Set-Dez 2005 Método do padrão interno •Um composto que não faz parte da amostra (padrão interno) é adicionado, numa concentração conhecida, antes de se efectuar à análise. •Procede-se como no caso da calibração externa mas: • Utiliza-se a razão A1 / Api em vez de A1 onde A1 é a area do pico correspondente ao componente 1 e Api é a area do pico correspondente ao padrão interno e Utiliza-se a razão C1 / Cpi em vez de C1 onde C1 é a concentração do componente 1 e Api é a concentração do padrão interno Desta forma eliminam-se fontes de erro associadas ao processo de injecção: variação do volume de injecção, actividade no injector ou no topo da coluna, etc INUAF Set-Dez 2005 Unidade de Biotecnologia Ambiental, FCT/UNL Características de um bom padrão interno • Não pode existir na matriz a partir da qual se extraem as amostras reais • Padrões deuterados • Deve ser estável nas condições da análise • Não pode co-eluir com outros componentes da amostra (analitos ou impurezas). • Não pode afectar o padrão de eluição dos outros componentes da amostra • Tem que ser adicionado numa concentração constante a todas as amostras e todos os padrões de calibração INUAF Set-Dez 2005 12 Representação esquemática de um cromatógrafo gasoso INUAF Set-Dez 2005 INUAF Set-Dez 2005 INUAF Set-Dez 2005 13 Specific detectors INUAF Set-Dez 2005 HPLC system with multidetection INUAF Set-Dez 2005 INUAF Set-Dez 2005 Unidade de Biotecnologia Ambiental, FCT/UNL 14 INUAF Set-Dez 2005 Air Toxics • Type of Compounds Determined Sample Collection Device • • • • • • • • • Volatile organic compounds Volatile organic compounds Volatile organic compounds Pesticides/PCBs Aldehydes/Ketones Phosgene Anilines Phenols Dioxins Tenax® solid sorbent Molecular sieve sorbent Cryotrap Polyurethane foam Impinger Impinger Adsorbent Impinger Polyurethane foam • • • • • • • • Pesticides/PCBs Aldehydes/ketones Non-methane org. comp. (NMOC) Polycyclic aromatic hydrocarbons Volatile organic comp. (nonpolar) Volatile org. comp. (polar/nonpolar) Volatile organic compounds Volatile organic compounds Polyurethane foam Adsorbent Canister or on-line Polyurethane foam Specially-treated canister Specially-treated canister Open path monitoring Single/multi-bed adsorbent Analytical Methodology GC/MS GC/MS GC/FID GC/MD HPLC HPLC GC/MS HPLC HRGC/HRMS GC/MD HPLC FID GC/MS GC/MS and GC/MD GC/MS FTIR GC/MS, FID, etc. INUAF Set-Dez 2005 15