THE DES IGN OF SAMPLE UNITS FOR INVENTORY OF URB AN AFFORES TATION IN CURITIB A CITY, PARANÁ STATE, B RAZIL Everaldo Marques de Lima Neto 1 2 , Daniela Biondi 3 ABSTRACT Inventories of urban trees are carried out by using sampling methods, which are often complex because they require delineation of fields for data collection and the city structure can be an obstacle to delineate a plot. The objective of this research was to compare the area of p lots measured in the conventional way with areas calculated in a GIS environ ment. We used three square-shaped plots of an inventory conducted in 1984 (500 x 500 meters). We used the street map of the city of Curit iba, Paraná State, Brazil, containing streets, blocks and neighborhoods in a vector format. The areas of the plots were stored in the polygon type in GIS and measured with a measuring tape. The differences in the measurement of three parcels in a GIS environ ment with those found in the conventional inventory were 0.005, 0.638 and 0.723 ha. These differences occurred due to limit ing factors in field measurements related to systematic and random errors of observation in conventional inventories, such as topographic conditions and equipment defects. We observed that GIS programs greatly facilitate fieldwork, especially in the plots delineation. Key words: Geographic Informat ion System; Samp ling; inventory costs. DELINEAMENTO DE UNIDADES AMOSTRAIS PARA O INVENTÁRIO DA ARBORIZAÇÃO DE RUAS EM CURITIBA, PR RES UMO Os inventários de arborização urbana feitos por métodos de amostragem são, muitas vezes, complexos porque necessitam da delimitação de parcelas para as coletas de dados e a estrutura da cidade pode ser uma barreira para o caminhamento da parcela. O objetivo desta pesquisa foi comparar a área de parcelas medidas em inventário convencional co m áreas calcu ladas em ambiente SIG. Foram ut ilizadas 03 parcelas de u m inventário realizado em 1984 com forma de um quadrilátero (500 x 500 m). Utilizou-se o mapa de arruamento de Curitiba, contendo ruas, quadras e bairros em fo rmato vetorial. As áreas das parcelas foram armazenadas com o tipo polígono em amb iente SIG e mensuradas em campo com trena. As diferenças na medição das 3 parcelas em amb iente SIG com as encontradas no inventário convencional foram: 0,005, 0,638 e 0,723 ha. A obtenção destas diferenças foi devido aos fatores limitantes para med ições que ocorrem em campo relacionado com os erros sistemáticos e aleatórios de observação em inventários convencionais, tais como: a topografia do terreno e defeitos em equipamentos. Constatou-se que os programas de SIG facilitam muito a execução dos trabalhos de campo, principalmente na delimitação de parcelas a serem inventariadas na forma convencional. Palavras-chave: Sistema de informações geográficas; Amostragem; Custos do inventário. 1 2 3 Eng. Florestal, Doutorando em Engenharia Florestal, UFPR - Curitiba – PR, [email protected] Data recebimento: 06/10/2011 - Data de publicação: 15/12/2012 Drª. Profa Associada, UFPR - Departamento de Ciências Florestais, Curitiba – PR, [email protected] Soc. Bras. de Arborização Urbana REVSBAU, Piracicaba – SP, v.7, n.4, p.107-117, 2012 INTRODUCTION The completion of an inventory of street trees is the population structure. S.U. can be a street, block, surest way to know the city’s tree asset, providing street sections, a block group, or it may be the result informat ion to priorit ize interventions, such as of a process of dividing areas in maps of the city or phytosanitary treatments, removal and/or planting area to be inventoried (SILVA et al., 2005). and replanting of trees. It also indicates the need for Schreuder et al. (1993) state that a sample unit pruning procedures. should have a size that can includes a representative A conventional inventory of afforestation requires a number of trees, but small enough that does not large nu mber of variables to be measured in the demand long time for data collection and does not streets demanding high costs, once it involves increase costs. walking along the streets, a number of people for The inventory accuracy will depend on the data collection, in addition to a great amount of variability of the tree population represented in the time required to measure variables. S.U. and on the intensity of sampling emp loyed. Many techniques have been disseminated in order Among the S.U. used are sizes, shapes and to promote the implementation, maintenance and arrangements that better represent the several monitoring variations of tree populations. This allows to of afforestation, including data computerization that allows analysis, updating and inventory storage of the large amount of informat ion accuracy at reduced cost (SOARES, 1980). S.U. are generated by an inventory. Data computerizat ion mostly found in square and rectangular shapes. reduces an Inventories demand huge amounts of resources, and indispensable tool for management of urban trees the greater the number of variab le studied, the (SILVA et al., 2007). higher the costs to carry out the inventory (SILVA Thus, the use of Geographic Informat ion Systems et al., 2007). (GIS) has been an efficient tool in many urban Thus, when planning an inventory, we should avoid studies to minimize the difficult ies encountered in oversizing S.U. Therefore, it is necessary to collecting data in loco, although research on GIS establish a pilot sampling to prevent the final applications in urban forestry inventories is still product scarce. For Lima Neto et al. (2010), GIS integrates representativeness. Another problem is to establish a number of trees with large capacity of storage and objective criteria in the delineation of S.U., i.e., spatial representation of data at multip le levels of those S.U. must have well-defined and accessible detail. Therefore, it is important to have available vertices when the fieldwork is performed. Access to satellite imag ing and/or aerial photographs of high the sample units is relevant regard ing in loco survey spatial resolution and quality to obtain area for inventory implementation. In urban areas, delineation corners and vertices of the parcels that are located costs, and providing city dendrometric managers variab les in each tree from being population measured with greater beyond its inventories of urban afforestation. in lots and/or residences hamper an efficient Furthermore, it is essential to mark the areas to be execution of the inventory. surveyed. The first step when planning an inventory Study on S.U. is also important for adequate is to identify Sample Units (S.U.) and tree planning of human and financial resources in the Everaldo Marques de Lima Neto and Daniela Biondi 108 Soc. Bras. de Arborização Urbana REVSBAU, Piracicaba – SP, v.7, n.4, p.107-117, 2012 qualitative and quantitative surveys and inventories In this sense, this research aims to compare the area of urban afforestation (SILVA et al., 2005). Such of S.U. measured in conventional inventories with importance is justified by the need to increase areas delineated in the GIS environ ment in order to probability of better distribution of S.U., reduce facilitate inventory implementation by reducing survey time, and obtain maximu m efficiency of time spent for measurements with greater accuracy. work teams, among other aspects (MILANO et al., 1992). MATERIALS AND METHODS Location and characterization of the study area (1984). The author divided the map of Curit iba at a scale 1:20.000, using 15 S.U. with a dimension of The municipality of Curitiba, capital city of Paraná 500 x 500 meters. Based on the 15 S.U. used by State, Brazil, is located in the southern region of Milano (1984), we selected three S.U. (Figure 2) in Brazil. It is situated in the east of the state at our study due to the limited orthophotos provided latitude 25o 25'40”S and longitude 49o 16'23”W by IPPUC. (Ground Zero – Tiradentes Square) (Figure 1). The S.U. chosen had the greatest number of trees In the Köppen classification, Curitiba has Cfb and highest species diversity in the inventory climate, defined as temperate (sub-tropical) humid, carried out by Milano (1984), which are Samp le mesothermal, cool Unit Bigorrilho; Sample Un it Água Verde and summers and winters with frequent frosts and Sample Unit Jard im Social. All data on the trees occasional snowfalls. The average temperatures that comprise these three S.U. were updated in an range fro m 20.87 ºC in the summer (2000-2009) to inventory carried out in 2010. without dry season with 14.77 ºC in the winter (2000-2009). The average altitude is 934.6m above sea level and the area of Spatial delineation of the S.U. the municipality covers 435 km², stretching 35 km fro m south to north and 20 km fro m east to West Based on the map of the area elaborated by Milano (IPPUC, 2009). (1984), we used GPS Garmin to obtain geographic coordinates at the vertices of the S.U. analyzed. The data plotting provided by GPS Garmin was Methodol ogy carried out in the Geoprocessing software ArcView The selection of sample units (S.U.) was based on 9.2, adopting the UTM (Universal Transversal de the qualitative and quantitative analysis of urban Mercator) and Datum SAD 69 (South American afforestation in Curitiba City carried out by Milano Datum), 22S. THE DESIGN OF SAMPLE UNITS FOR… Soc. Bras. de Arborização Urbana REVSBAU, Piracicaba – SP, v.7, n.4, p.107-117, 2012 109 Figure 1 – Location of Curitiba City – Paraná State, Brazil. Figure 2 – Location of S.U. chosen for construction of cartographic databases and analysis of street trees Source: LIMA NETO (2011) Everaldo Marques de Lima Neto and Daniela Biondi 110 Soc. Bras. de Arborização Urbana REVSBAU, Piracicaba – SP, v.7, n.4, p.107-117, 2012 We used a map of Curitiba City containing streets, to their respective data plans, allowing to define the blocks and neighborhoods in vectorial format plots analyzed. For the delineation of S.U., we used provided by IPPUC, wh ich allo wed to delineate the maps elaborated by Milano (1984) in his field work. areas of the S.U. These areas were stored in Next, we performed a vectorial representation of vectorial format. The shapefile is an archive format the delineations of the S.U., grouping them under of ArcView that is capable of storing a point, a line layers with the orthophotos, establishing the or a polygon. For the vectorial representation, we classification area of street afforestation. defined the polygon type to represent the area of the Therefore, the areas obtained from processing in a S.U. selected. GIS environ ment were similar to the area used in Sequentially, we started to import vectorial data the study of 1984 and in the follo w-up inventory in (.shp) containing streets, blocks and neighborhoods 2010. RES ULTS AND DISCUSS ION In his study on street afforestation, Milano (1984) found 46 species (Table 1), represented for 554 arboreal and shrub individuals. TABLE 1 – Species studied in the tree streets of Curitiba city in 1984 Scientific name Popular name Acacia mearnsii Acacia podalyriaefolia Acacia polyphyla Acer negundo Araucaria angustifolia Caesalpinia peltophoroides Cassia leptophylla Cassia macranthera Cassia multijuga Chorisia especiosa Citrus reticulata Cryptomeria japonica Cunninghamia lanceolata Cytharexylum myrianthum Enterelobium contortisiliquum Eryobotrya Erythrina Erythrina falcata Eucalyptus cinerea Eucalyptus viminalis Eugenia Eugenia uniflora Euphorbia cotinifolia Ficus elastica Hibiscus rosasinenses Jacaranda mimosifolia Acácia-negra Acácia-mimosa Monjoleiro Acer Araucária Sib ipiruna Cassia-fastuosa Cassia-manduirana Cassia-multijuga Paineira Limoeiro Cedro-japonês Pinheiro-chinês Pau-de-tamanco Tamboril Nêspera Água Verde Bigorrilho X X X X X X X X X X Jardim Social X X X X X X X X X X X X X X X X X X Corticeira-da-serra Eucalipto-prateado Eucalipto X X X Pitangueira Leiteiro-vermelho Ficus Hib isco Jacarandá X X X X X X X X X X X X X X X X X X X X X THE DESIGN OF SAMPLE UNITS FOR… Soc. Bras. de Arborização Urbana REVSBAU, Piracicaba – SP, v.7, n.4, p.107-117, 2012 111 Jacaranda purberula Lafoensia pacari Lagerstroemia indica Ligustrum lucidum Magnolia gradiflora Melia azedarach Hovenia dulcis Nerium oleander Palmeira Paraptadenia Pinus eliottii Populus Prunus persica Psidium catleianum Salix babylonica Schinus terebentifolius Sebastiana klotzchiana Sesbanea punicia Spathodea campanulata Tabebuia Tabebuia alba Tabebuia avellanedae Tabebuia chrysotricha Tibouchina Tibouchina granulosa Tibouchina pulchra Tibouchina sellowiana Tipuana tipu Taxodium distichum TOTA L Carobinha Dedaleiro Extremosa Alfeneiro Magnólia Cinamo mo Uva-do-japão Espirradeira Palmeira X X X X X X X X X X X X X X X X X X X X X Pinus Pessegueiro Araçá-rosa Chorão Aroeira Branquilho Acácia-vermelha Tulipeira X X X X X X X X X X X X X X X X X X X Ipê-amarelo Ipê-ro xo Ipê-amarelo-miúdo Quaresmeira Manacá-da-Serra Quaresmeira Tipuana Pinheiro-do-brejo X X X X X X X X X X X X X 35 24 46 Source: Adapted fro m MILA NO (1984) established for the height of the buildings, but they Sample Unit Bigorrilho must comply with restrictions imposed by the This sample unit covers two neighborhoods Ministry of Aeronautics and Protection of Bigorrilho and Mercês (Figure 3), both located in Microwave Channels of Telecommunication for the the Matriz region. The neighborhood Bigorrilho Paraná State. covers an area of 350.30 ha with a population of In the Sample Un it Bigorrilho, Milano (1984) found 30,065 inhabitants. The neighborhood Mercês is 24 species (Table 1), represented by 381 arboreal also situated in the same region, covering an area of and shrub individuals (MILANO, 1984). 327.60 ha with 14,191 inhabitants (IPPUC, 2010). Sample Unit Água Verde This neighborhood is situated in the Residential This sample un it is situated in the neighborhood Zone of Mercês (ZR-M). In this region, there are Água Verde (Figure 4) located in the Portão axes of urban growth, characterized as expansion Region. It covers an area of 476.40 ha with 53,228 area of the tradit ional city center and as corridors inhabitants, which shows the highest demographic for co mmerce, services and transportation, using as density of the municipal territory. support a trinary circulation system (IPPUC, 2010). The buildings are high and alternate with two or three-floored build ings. There are no limits Everaldo Marques de Lima Neto and Daniela Biondi 112 Soc. Bras. de Arborização Urbana REVSBAU, Piracicaba – SP, v.7, n.4, p.107-117, 2012 Figure 3 – Representation in GIS environ ment of the area o f Samp le Unit Bigorrilho Legend Parcel Neighborhood Bigorrilho Neighborhood Mercês The zoning typology in this S.U. is Residential Zone 4 (ZR-4) where constructions of six floors are Sample Unit Jardi m Social allo wed (IPPUC, 2010). The use of the area is predominantly residential and there are houses and This sample unit is located in the neighborhood residential buildings. Jardim Social (Figure 5) wh ich is situated in the Milano (1984) found 35 different species (Table 1) Matriz reg ion. According to IPPUC (2009), this corresponding neighborhood has 6,113 inhabitants and covers an to 341 arboreal and shrub area of 188.5 ha. individuals. THE DESIGN OF SAMPLE UNITS FOR… Soc. Bras. de Arborização Urbana REVSBAU, Piracicaba – SP, v.7, n.4, p.107-117, 2012 113 Figure 4 – Representation in GIS environ ment of the area o f Samp le Unit Água Verde Legend Parcel Neighborhood Água Verd e This is a Residential Zone considered as ZR-1, according to the criteria Comparison of the methods for land use and is As mentioned in the methodology, the S.U. were predominantly residential are constructions of up to selected based on the study conducted by Milano two floors are permitted (IPPUC, 2010). (1984) with 500 x 500 meters. occupation. The pattern of constructions In the relocation of the S.U. in a GIS environment, we observed a difference in size of the S.U. delineated in the imaging than the inventory carried out in 1984 (Table 2). Everaldo Marques de Lima Neto and Daniela Biondi 114 Soc. Bras. de Arborização Urbana REVSBAU, Piracicaba – SP, v.7, n.4, p.107-117, 2012 Figure 5 – Representation in GIS environ ment of the area o f Samp le Unit Jardim Social Legend Parcel Neighborhood Jardim Social Table 2 – Area of S.U. obtained in GIS co mpared to inventory of afforestation of 1984 Sample Units Jardim Social Água Verde Bigorrilho (1) Established area in 1984 25 25 25 (2) Sample area 24.99 25.63 25.72 Difference between (1) and (2) (m²) 50 6.83 7.23 We observe that the Samp le Unit Jardim Social The inaccuracy of delineation of the S.U. in the showed smaller area than in the inventory of 1984, inventory carried out in 1984 is attributed to and the difference was 50m². The other S.U. scarcity of large-scale cartographic resources, such showed a larger area (Table 2). The differences as data on topography, curves of level, detailed observed in the streets of Sample Unit Bigorrilho maps of streets, roads, blocks and sidewalks axes. and Água Verde may be considered high, given that Furthermore, the mapping was carried out manually many street trees may be embedded in these on graph paper with cm incurring errors in field differences causing extrapolation in the results and measurements by the user. Currently, GIS programs therefore alterations in the representativeness of the have made the accomplishment of fieldwo rk easier inventory. through delineation inventories of S.U. in a GIS environment. THE DESIGN OF SAMPLE UNITS FOR… Soc. Bras. de Arborização Urbana REVSBAU, Piracicaba – SP, v.7, n.4, p.107-117, 2012 115 Silva (2003) states that it is very important to and OLIVEIRA FILHO, 2002; DISPERATI et al. measure the representativeness of the data in 2007a; DISPERATI et al., 2007b ).b projects developed with GIS. A mong spatial data, Oliveira Filho et al. (2005) applied GIS to support a there is always uncertainty and errors. forestry experiment conducted at the municipality To ensure the data quality in a GIS environ ment, it of Irat i, Paraná State, Brazil, and implemented a is essential that tests be performed to ensure data spatial database for two distinct objects: trees and accuracy, since it is virtually impossible for GIS to plots. They authors confirmed that the geo-objects work with inaccurate data. provided Despite errors, the applicat ion of GIS techniques enriching the research and its results. a greater amount of combinations for delineation of geo-objects in images has a better performance than measurement of areas in the field (OLIVEIRA, 1980; LOBÃO, 1996; DISPERATI CONCLUS IONS The differences between the data obtained in the We recommend the elaboration and use of distinct collection methods are attributed to the cartographic data of quality for use in studies on quality of cartographic databases used and/or errors urban forestry. Furthermore, the use of stereoscopy of observation and measurement in conventional techniques can help or improve exact delimitat ion inventories. of areas of S.U. ACKNOWLEDGEMENTS The authors wish to thank Conselho Nacional de Desenvolvimento Científico e Tecnológico – fo r the financial support to carry out this research. REFERENCES DISPERATI, A. A. SANTOS, J. R.; OLIVEIRA FILHO, P. C.; NEEFF, T. Aplicação da técnica “filtragem de locais máximas” em fotografia aérea dig ital para a contagem de copas em reflorestamento de Pinus elliottii. Piracicaba, Scientia Forestalis, n. 76, p. 45-55, 2007. DISPERATI, A. A.; AMARAL, R. F. do; SCHULER, C. A. B. Fotografi as aéreas de pequeno formato: Aplicações ambientas. Guarapuava: UNICENTRO, 2007. 262 p. DISPERATI, A. A.; OLIVEIRA -FILHO, P. C. Delineação automática de copas de árvores em imagens de alta resolução: potencialidades e limitações. In: SEMINÁ RIO DE ATUA LIZA ÇÃO EM SENSORIAM ENTO REM OTO E SISTEMASDE INFORMA ÇÕES GEOGRÁFICAS APLICADOS Á ENGENHA RIA FLORESTA L, 5., 2002. Curitiba. Anais… Curitiba: 2002. p.81- 88. INSTITUTO DE PESQUISA E PLANEJAMENTO URBANO DE CURITIBA - IPPUC. Uso e Ocupação do Solo de Curiti ba. Disponível em: http://www.ippuc.org.br. Acesso em 25 de outubro de 2010. Everaldo Marques de Lima Neto and Daniela Biondi 116 Soc. Bras. de Arborização Urbana REVSBAU, Piracicaba – SP, v.7, n.4, p.107-117, 2012 INSTITUTO DE PESQUISA E PLA NEJAM ENTO URBANO DE CURITIBA - IPPUC. Mapas de Arruamento. Cu rit iba: IPPUC, jun. 2005. Disponível em: http://www.ippuc.org.br/informando/index_ mapasarruamento.htm. Acesso em 25 de junho de 2009. LIMA NETO, E. M. Aplicação do sistema de informações geográficas para o inventário da ar borização de ruas de Curiti ba, PR. Dissertação (Mestrado em Engenharia Florestal), UFPR, Cu rit iba, Paraná, 2011. 124 p. LIMA NETO, E. M. L.; BIONDI, D.; A RAKI, H. Aplicação do SIG na arborização viária – Unidade Amostral em Cu rit iba-PR. In: SIM PÓSIO BRASILEIRO DE CIÊNCIAS GEODÉSICA S E TECNOLOGIAS DA GEOINFORMA ÇÃO, 3., 2010, Recife. Anais... Recife: UFPE – Departamento de Geo mát ica, 2010. LOBÃO, S. M. F. Entrada de Fotografias Aéreas Coloridas de Médio Formato em SIG. Salvador. In: SIMPÓSIO BRASILEIRO DE SENSORIAMENTO REM OTO, 8, Anais..., INPE, p. 707-710, 1996. MILA NO, M S. Avaliação e Análise da Arborização de Ruas de Curiti ba-PR. Dissertação (Mestrado em Ciências Flo restais), UFPR, Curitiba, Paraná, 1984. 130 p. MILA NO, M. S.; SARNOWSKI FILHO; ROBA YO, J. A. M. Estudo comparativo de unidades amostrais utilizadas para inventário qualiquantitativo de arborização de ruas em Curitiba. In: CONGRESSO BRASILEIRO SOBRE A RBORIZAÇÃ O URBA NA, 1., 1992, Vitória, ES. Anais... Vitória: SBAU, 1992. p. 343-350 OLIVEIRA FILHO, P. C.; DISPERATI, A. A.; LISBOA, G. S.; VENANCIO, T. L. Um sistema de informações geográficas como suporte a um experimento florestal na FLONA de Irati-PR. In: XII Simpósio Brasileiro de Sensoriamento Remoto - SBSR, 2005, Go iânia. Anais... São José dos Campos: INPE, 2005. OLIVEIRA, Y. M. M. Correlações entre parâmetros dendrométricos em Araucari a angustifolia, utilizando fotografias aéreas. 1980. Dissertação (Mestrado em Engenharia Florestal) – Universidade Federal do Paraná, Curitiba, 1980, 133 p. SCHREUDER, H. T.; GREGOIRE, T. G.; WOOD, G. B. Sampling methods for multire-source Forest inventory. New Yo rk: Jonh Wiley & Sons, In., 1993. SILVA , A. B. Sistemas de Informações Geo-Referenciadas. Campinas, SP. Ed itora: UNICAMP, 2003. SILVA , A. G.; GONÇALVES, W.; LEITE, H. G.; SANTOS, E. dos. Estudo do tamanho e da forma de unidades de amostra, utilizando a amostragem casual simp les para inventariar a arborização urbana viária. Natureza & Desenvol vi mento, v. 1, n. 1, p. 59-66, 2005. SILVA , A. G.; PAIVA , H. N.; GONÇA LVES, W. Avali ando a arborização urbana. Série Arborização Urbana. Coleção Jardinagem e paisagismo, Vo lu me 5. Viçosa – MG : Ed. Aprenda Fácil, 2007. 346p. SOA RES, V. P. Eficiência rel ati va de tamanhos e de formas de uni dades de amostra em pl antações de Eucalyptus grandis de origem hí bri da, na região de B om Despacho, Minas Gerais. 1980. 80 f. Dissertação (Mestrado em Ciência Florestal), Un iversidade Federal de Viçosa, Viçosa, 1980. THE DESIGN OF SAMPLE UNITS FOR… Soc. Bras. de Arborização Urbana REVSBAU, Piracicaba – SP, v.7, n.4, p.107-117, 2012 117