Intensa atividade experimental BTEV 2001 ? 1999 A T L A S 2008 CLEO 3 Além de dezenas de grupos experimentais pelo mundo … 1999 BELLE Oscilações matéria – antimatéria mésons neutros B0 oscilam Bd (bd ) Bd (b d ) d t b Interações comuns ΔB=1 de troca de q (2/3) virtual t : dominant amplitude ΔB=2 b d d w- w- Bs (bs ) Bs (b s) decaimento t b ewc d e Vtd Δmd fB constante de decaimento BB Bag fator de “sacola” Matriz de CKM VCKM = v ud v cd v td v us v cs v ts v ub v cb v tb 1 / 2 Vub e 2 2 1 / 2 A V e i V ei 1 ts td 2 = Os autoestados eletrofracos dos quarks são conectados aos estados de massa pela matriz de CKM: Bd Bd fase de mistura Bs Bs fase de mistura i Fase do decaimento fraco quatro parâmetros A, λ, ρ, η Triângulos de unitariedade Vtd Vtb +Vcd Vcb +Vud Vub = 0 (,) Vtd Vud +Vts Vus +Vtb Vub = 0 Vub (0,0) Vtd Vcb No MP: Vub (1,0) Vtd Vts No MP: • medir todos os ângulos • medir todos os lados MP: consistência! 0.03 2 violação de CP Três manifestações possíveis de violação de CP: Violação de CP direta (interferência entre duas amplitudes de decaimento) Violação de CP indireta (interferência entre duas amplitudes de mistura) Violação de CP na interferência entre decaimentos que oscilam (misturam) e entre decaimentos que não oscilam. formalismo dependente do tempo para Bd amplitude de decaimento para Af f H B 0 Bd f evolução temporal Af f H B 0 0 f H Bphys (t ) e imt e B 0 t 2 A cos f 1 2 mt i qp Af sin 12 mt fCP B 0 CP violation: interference between mixing and decay p Af q Af formalismo dependente do tempo para Bd B f (t ) Bf (t ) A (t ) B f (t ) Bf (t ) CP f A (t ) A cosmt A CP f dir 1 mix 2 A MP: dir 1 =0 =0 2 A mix Fábricas de b: Δt LHCb: t sin mt 2 Im 1 2 =+sin(2β) =-sin(2β) B0→J/ψKS B0→J/ψKL Medindo β Decaimentos do tipo B0→J/ψKS e B0→J/ψKL 0 B b d W c c s d J/ b K 0 c g 0 B t,c,u c s W J/ K0 d d Bem entendidos na teoria: árvore and pinguin tem mesma fase Experimento “relativamente simples” CP 1 Bd KS ,c KS , c1KS CP 1 Bd J KL CP e 2i medindo β (D. Lange) Fábricas de B : Belle, BaBar colisores e e assimétricos em ( 4S ) bb 33 -2 -1 L 3 10 cm s 1 nb Um ano: ~ 100 M pares Ldt Belle 132 fb-1 Março, 2003 Produção BB BaBar 117 fb-1 BB coerente KEKB Luminosidade alcançada: 1.06 x1034 cm-2s-1 Detetor Babar Sumário de sin2b em b ccs Média mundial 0.734 0.055 Já uma medida precisa: 7.5% rarer B decays b cc d Cabbibo supressed c g B0 → J/ 0 b B b sq q B → f KS t,c,u 0 0 B b W d d s g b g u, d J/ 0 W d W B c d s s f s u, d B → ‘ KS Sensitive to new physics: • smaller amplitudes, NP through interf. terms • virtual particles (SUSY?) in penguin loops not theoretically clean smaller rates, higher back. b B K t,c,u s s W u, d c c J/ d d 0 f K u, d ,f Same CKM structure as B0→J/ψKS expect S=sin2β to 5% B0 → J/ 0 S = - sin2β if no penguin C = 0 if no penguin Measuring β in b→sss Theoretical especulations • sin(2β) = SϕK=-0.39 +- 0.41 (2.7 σ) from the SM prediction; • models from SUSY could explain this result! G.L. Kane et al., PRL Apr.2003 Grossman et al. hep-ph/0303171 SM is alive and well! Confidence levels in the large (rhobar,etabar) plane obtained from the global fit. The constraint from the WA sin2beta (from psi Ks modes) is included in the fit. Confidence levels in the large (rhobar,etabar) plane obtained from the global fit. The constraint from the WA sin2beta (from psi Ks modes) is overlaid. 2007 • More data (sin2 ) o(102 ) close to theory limit from penguin pollution; • Measurement of ΔmS improve |Vtd/Vcb| from near cancellation of Bd and Bs form factor; • More data from B→hulν and B→hcX together with improvement in theory will give some improvement in |Vtd/Vcb| ; Strategy: new physics! Goal: Physics beyond the Standard model • Measurements which provide a reference case for SM effects; • Compare this to channels that might be affected by New Physics; • Understand experimental and theoretical systematics to a level where we can draw conclusions. statistics!! BdJ/KS Bd BsJ/f Bs DsK Hadronic b production B hadrons at Tevatron • b quark pair produced preferentially at low • highly correlated tagging low pt cuts ln(tan( / 2)) for larger the B boost increses rapidly LHCb Experiment • Dedicated B physics Experiment at the LHC – pp collisions at 14TeV Muon System Z ~ 15.0-20.0 m • Acceptance : – 15-300mrad (bending) RICH2 – 15-250mrad Z ~ 9.5-11.9 m (non-bending) • Particle ID – RICH detectors – Calorimeters – Muon Detectors Calorimeters RICH1 Z ~ 1.0-2.2 m Z ~ 12.5-15.0 m One event! Tracking performance Average efficiency = 92 % Efficiency for p>5GeV >95% Ghost rate pT>0.5 GeV ~ 7%. Mass resolution (~13 MeV) for the decay channel Bs Ds + Ds KKπ Momentum resolution: p/p=0.38% <N> = 27 tracks/event Proper time resolution (42 fs) Hadron ID : Physics Performance n n n RICH essential for hadronic decays Example : Bs K+K- Sensitive to CKM angle No RICH n n Signal Purity improved from 13% to 84% with RICH Signal Efficiency 79% With RICH Muon Identification Muons selected by searching for muon stations hits compatible with reconstructed track extrapolations – Compare track slopes and distance of muon station hits from track extrapolation For P>3GeV/c eff = 96.7 0.2 % misid = 2.50 0.04 % Measuring β B J KS o d “gold-plated” decay channel at B-factories for measuring the Bd- Bd mixing phase needed for extracting γ from Bd ππ and Bs K K in SM Adir=0, non-vanishing value (~0.01) could be a signal of Physics Beyond SM precision measurement important ACP(t) A 0.022 A 0.023 mix dir Inputs: 220 k/year signal 194 k/year back. Amix=sin(2β)=0.73 Adir = 0 ps Rare B decays In the SM: Excellent probe of indirect effects of new physics! • flavour changing neutral currents only at loop level • very small BR ~ 105 or smaller BS , l+l- 9 SM : BR ~10 • observation of the decay • measurement of its BR LHCb : 2 fb-1 ~ 33 signal events ~ 10 events background σM = 38 MeV CMS : 100 fb-1 (107s at 1034 cm-2s-1) ~ 26 signal events 6.4 events background Rare B decays Bd K AFB (s) s ( p p _ ) Forward-backward asymmetry can be calculated in SM and other models BTeV data compared to Burdman et al calculation A. Ali et al., Phys. Rev. D61 074024 (2000) Conclusions CP violation is a cool research topic!! B factories established CP violation in the B sector and are making interesting measurements; LHCb and BTeV are second generation beauty CP violation experiments; They are well prepared to make crucial measurements in flavour physics with huge amount of statistics; Impressive number of different strategies for measurements of SM parameters and search of New Physics; Exciting times: understanding the origin of CP violation in the SM and beyond.