Revista Brasileira de Fkica, Vol. 17, n? 2, 1987 The Kustaanheimo-Stiefel Transformation in a Spinor Representation J. BELLANDI FILHO and M.L.T. MENON Instituto de Fkíca, Universidade Estadual de Campinas, Caixa Postal 6165, Campinas, 13083, Sf, Brasil Recebido em 29 de agosto de 1986 Abstract A s p i n o r r e p r e s e n t a t i o n f o r the K-S t r a n s f o r m a t i o n by means o f t h e Cartan s p i n o r theory. i s derived INTRODUCTION I t i s w e l l known t h a t a r e g u l a r i z a t i o n o f the Kepler motion i n the t r i d i m e n s i o n a l space R 3 i s developed by u s i n g a simple mapping o f a . simple mapping i s known four- dimensional space R4 o n t o R ~ This Kustaanheimo-Stiefel ( K - S ) t r a n s f o r m a t i o n ' . as the I n R4, the equations o f the Kepler motion a r e l i n e a r d i f f e r e n t i a l equations w i t h c o n s t a n t coef- f i c i e n t s and remain completely r e g u l a r a t the c e n t e r o f a t t r a c t i o n . These a r e equations o f simple harmonic o s c i l l a t o r motions. The K- S t r a n s f o r m a t i o n i s n o t a complete g e n e r a l i z a t i o n o f the two-dimensional ~ e v i - c i v i t a 2transformation, b u t o n l y a mapping of R' o n t o R 3 having the d e s i r e d behaviour i n o r d e r t o g e t the r e g u l a r i z a t i o n o f the Kepler motion. I n t h i s paper we use t h e Cartan s p i n o r ~ h e o irn~o r~d e r t o g e t a s p i n o r r e p r e s e n t a t i o n f o r t h e K-S t r a n s f o r m a t i o n and reduce t h e equat i o n s o f t h e Kepler motion i n a s p i n o r d i f f e r e n t i a l equation. 1. THE K S TRANSFORMATION The K- S transformat i o n r e l a t e s a v e c t o r -+ a v e c t o r u E (u, ,u2,u3,u4) € where A(;) i s a 4x4 m a t r i x r (x, ,x2 ,o,) by t h e f o l l o w i n g r e l a t i o n € R3 to Revista Brasileira de Física, Vol. 17, n? 2, 1987 The main p r o p e r t i e s o f t h i s t r a n s f o r m a t i o n are: c01 umn o r 1i ne T v e c t o r s o f A(u) a r e orthogonal t o each o t h e r ; A ($)A@) the = 3 1 ength r o f t h e posi t i o n v e c t o r x € R3 i s g i v e n by One t r o u b l e o f t h i s t r a n s f o r m a t i o n i s t h a t i t i s n o t one. -b to I f two v e c t o r s u and v E R' a r e r e l a t e d by O - u4 sen O = u l sen O + U' cos vi = u l cos V, with arbitrary 4, cb + u 3 sen O v 3 =-u2sencb + UJ COSO v 2 = u2 cos (1.4) O they a r e mapped o n t o t h e same v e c t o r o f R 3 . The image o f a p o i n t i n R3 i s a c i r c l e o f r a d i u s R' one 3 i n the parametric space . Kustaanheimo and S t i e f e l showed t h a t w i t h R4 p a r a m e t r i z a t i o n we can analyse t h e map o f a p o l a r i z e d R2 plane o n t o R ~ .I f two 8 and 3 a r e vectors any p a i r o f v e c t o r s of R2 they s a t i s f y t h e f o l l o w i n g b i l i n e a r relation Thls R2 plane i s conforma1 l y mapped o n t o a plane o f R3 and the mapping i s a o f L e v i - C i v i t a ' s type: distances from o r i g i n a r e s q u a r e d and angles a t t h e o r i g i n a r e doubled. A g i v e n p o i n t i n R2 has a point image i n R 3 . The p o s i t i o n v e c t o r i n R3 i s g i v e n i n a p a r t i c u l a r o r t h o g elernents o f onal basis, where t h e v e c t o r s o f t h i s b a s i s a r e t h e column t h e Cayley m a t r i x : t h e well-known Cayley p a r a m e t r i za t i o n o f t h e r o t a t i o n s i n t h e 3-dimensional space. -f 3 I t i s important t o n o t e t h a t i f t w o v e c t o r s u a n d V E R' s a t i s f y t h e b i l inear r e l a t i o n s eq. (1.5), 3 + -+ 3 then A ( u ) v = A(V)U. These p r o p e r t i e s o f t h e K- S t r a n s f o r m a t i o n have one fundament a l r o l e i n the quantum appl i c a t i o n o f t h e K-S t r a n s f o r m a t i o n 3 in the 3 Coulomb problem: the o p e r a t o r s associated t o u and V a r e quantumcanonic a l conjugates and t h e o p e r a t o r associated t o t h e b i l i n e a r r e l a t i o n determines a c o n s t r a i n t c o n d i t i o n i n the d e t e r m i n a t i o n o f the wave func- Revista Brasileira de Física, Vol. 17, n? 2, 1987 4 t i on . By using t h i s transformation and a time transformationdo=dt/r, Kustaanheimo-Stiefel showed t h a t t h e equation o f t h e Kepler motion i n can be w r i t t e n i n t h e form w i t h w2 =M/4ao, whereM i s t h e product o f tationa constant and a, The eqs. (1.6) the and t h e gravi- i s a semi-major a x i s o f t h e o r b i t . a r e 1 inear d i f f e r e n t i a l equat ions wi t h constant coef f i c ents. The image-point moves as i f i t were origin mass y an e l a s t i c s t r i n g o f r i g i d i t y , connected w i t h t h e w2. I t s path i s a c o n i c a l sec- t i o n centered a t t h e o r i g i n . 2. SPINOR REPRESENTATION FOR THE K S TRANSFORMATION I n order t o g e t a s p i n o r representation f o r t h e K-S transforma t i o n we introduce a nu1 1 f o u r - v e c t o r xa i n a Minkowski space with m e t r i c a (+I,-1 ,-1 , - I ) . The components o f x a r e By t h e Cartan theory o f s p i n o r 3 we can associate t o complex m a t r i x o r equivalently, i n a tensor form, 1 T~~ = where t h e T~~ tensors a r e 2 .c '&B xa a 2 x 2 ~ ~ Revista Brasileira de Física, Vol. 17, n? 2, 1987 and have t h e f o l l o w i n g s p r o p e r t i e s and By eq. (2.2), a the components o f t h e f o u r - v e c t o r x are a i s "given by t h e determinant o f TAB wh i c h i s nu1 1 . and t h e l e n g t h o f x a The f o u r - v e c t o r x i s associated w i t h a s i n g u l a r m a t r i x , Cartan s p i n o r theory t h e r e e x i s t two complex ( 1 , l ) hence by s p i n o r s $A such TAB = $ A $ ~ ,where the bar means complex conjugate. and Therefore the JiB we can w r i t e and by eq. (2.2) , we have i components o f t h e f o u r - v e c t o r xa a r e the components If the x o f a v e c t o r i n R ~ then , we can i d e n t i f y eq. (2.6) wi t h t h e s p i n o r transf o r m a t i o n o f ~ustaanheimo'. I n o r d e r t o g e t t h e K-S t r a n s f o r m a t i o n we make a l i n e a r corre- + spondence between a v e c t o r u i n the spinor (1,l) qA. parametric space and t h e complex We d e f i n e o u r complex s p i n o r +A i n terms o f f o u r r e a l Revista Brasileira de Física, Vol. 17, no 2, 1987 This correspondence i s l i n e a r and t h e l e n g t h o f t h e v e c t o r i s equal t o t h e square r o o t o f t h e norm o f t h e associated s p i n o r . . By eq (2.4) , we have which a r e t h e r e l a t i o n s between R 3 and R' obtained by t h e K-S t r a n s - format ion. The f a c t t h a t t h e K-S t r a n s f o r m a t i o n i s n o t one t o one can be e a s i l y reproduced i n t h e s p i n o r space by a simple gauge transformation. 3 I n f a c t , i f two v e c t o r s u and associated t o 3 u 3 v € R4 a r e r e l a t e d by eq.(1.41, t h e spinor i s given by 3 The s p i n o r gauge t r a n s f o r m a t i o n $A+$A (2.10) ei( shows t h a t the K-S trans- formation i s n o t one t o one. We need t o show t h a t wi t h eq. (2.4) we can reproduce t h e map o f a p o l a r i z e d R' plane o n t o t h e R 3 and t h e mapping t Y Pe 3 Let u and -+ v i s of Levi- Civita's be two orthogonal u n i t - v e c t o r s i n R4 s p a n n i n g plane R* through the o r i g i n a Revista Brasileira de Fisica, Vol. 17, no 2, 1987 and b u i l d i n g a cartesian coordinate-system i n R ~ They . a l s o satisfy the b i l i n e a r r e l a t i o n given by eq.(1.5) I f w i s the p o l a r i z a t i o n angle, then t h i s system o f two 1 i-% v near equations i n the components o f V1 = U2C0s O + U3 has i t s s o l u t i o n i n the form sen o v 4 = -u2 senw + u , cosw Consider a given p o i n t i n 0 w i t h respect t o the basis V, = ul cos w + V, = u , senw - u, sen w 74., (2.13) cosw having polar coordinates (;,$I i n p and R2. The vector representing t h i s p o i n t i s given by -% -% p = p sen Ou + + p cos 0 v + By the correspondente i n eq. (2.7) and eq. (2.8) the spinor $(p) -+ associated t o p, i s given by By using eqs. (2.4) and (2.13) we can see, a f t e r some straighforward computation, t h a t the image o f t h i s p o i n t i n R3 i s given by I x3j + p2 COS w I I 2(u,u3 sen 28 + + p2 sen w 2 (u,u, I - u2u,)' -u2-u2+u2+u2 1 2 sen 20 u,u,) 3 4 2 (2.15) Revista Brasileira de Física, Vol. 17, n? 2, 1987 o r , i n t h e Kustaanheimo- Stiefel a b b r e v i a t i o n , $ = 3 28 P 2 [COS The two v e c t o r s a and a + [- cos w + cos w + C sen w l sen 3 c sen w a r e orthogonal 2e] (2.16) . This f o l lows from the Cayley p a r a m e t r i z a t i o n o f the r o t a t i o n s i n the 3-dimensional space. As t h e x O component i s t h e l e n g t h o f t h e image p o i n t i n R ~ , we have t h a t t h e mapping i s o f L e v i - C i v i t a ' s type. We n o t e t h a t t h e s p i n o r t r a n s f o r m a t i o n g i v e n by eq.(2.4) and S 3 3 a r e two v e c t o r s i n R~ and +(u) and + ( v ) a r e s p i n o r s i n the s p i n o r i a l space, then by eq. 3 -+ (2.4) 3 the c o r r e s p o n d i ng we can see t h a t Re(lço) given i s the s c a l a r product (u,v) and - l m ( x 0 ) i s t h e b i l inear r e l a t i o n i n eq. (1.5) ; Re(;ci) con- If u t a i n s a l s o t h e e i g h t s i g n i f i c a n t r e a l s c a l a r s o f t h e K-S theory. -+ 3 a r e t h e f i r s t t h r e e components o f ~ ( u ) and v 3 + lm(xi) a r e the t h r e e components o f t h e skew-symnetric cross product uxv. With t h i s f i n a l v e r i f i c a t i o n we can conclude t h a t w i t h a l i n e a r correspondence between a v e c t o r i n R' and a complex f ined i n terms o f f o u r r e a l parameters by eq. (2.7), spi nor the ( 1 ,I) de- K-S formations a r e completely described by t h e s p i n o r t r a n s f o r m a t i o n transgiven by eq. ( 2 . 4 ) . Using t h i s p a r t i c u l a r s p i n o r r e p r e s e n t a t i o n i n eq.(1.6)wehave t h a t t h e f o u r d i f f e r e n t i a l equations f o r the Kepler motion can be transformed i n t o a two component s p i n o r d i f f e r e n t i a l equation where the dots means d i f f e r e n t i a t i o n w i t h respect a õ. José Bel l a n d i would 1 i k e t o thank FAPESP f o r f i n a n t i a l support and A. Di Giacomo f o r h o s p i t a l i t y a t the I s t i t u t o d i F i s i c a - U n i v e r s i t a d i Pisa where p a r t o f t h i s work was done. REFERENCES 1 . P. Kustaanheimo, E. S t i e f e l , J. Reine angew. Math. 218, 204 ( 1 9 6 5 ) . 2. L e v i - C i v i t a , Opere Mathematiche 6, 1 1 1 (1973). Revista Brasileira de Física, Vol. 17. n? 2, 1987 3 . E.Cartan, Thhe Theoory of Spinors, Hermann, P a r i s ( 1 9 6 6 ) . 4 . M.Boi teux, Physica 65, 381 (1973). 5. P.Kustaanheimo, P u b l i c a t i o n Astronom. Obs. 3, 102 (1965) H e l s i n k i . Resumo Deriva- se uma representa ç ão s p i n o r i a l para a transformação K-S usando-se a t e o r i a dos spinores de Cartan.