WV images, Potential Vorticity and Conceptual Models Nuno Moreira ([email protected]) Instituto de Meteorologia, Lisboa, Portugal 2003 W V images - Characteristics Water Vapour absorption band : 6 - 7 m – WV Meteosat channel – WV 6.2 (5.35 - 7.15 m ) from MSG – WV 7.3 (6.85 – 7.85 m ) from MSG Water vapour absorbes Infra-Red radiation emmited by the earth surface and lower clouds WV image is “constructed” from the re-emission by water vapour W V images - Characteristics “The instrument measures the humidity temperature” “Topography of water vapour emission” Gray shades – Light gray – humidity in the troposphere upper levels – Dark gray - humidity in the troposphere lower levels Regions of emission R.H. =100% -> 250 hPa - 550 hPa (max: 350 hPa) R.H. = 50% -> 250 hPa - 600 hPa (max: 400 hPa) R.H, = 25% -> 250 hPa - 700 hPa (max: 450 hPa) (Bader et al, 1995) Regions of emission Bader et al (1995) Water Content in the troposphere 48.7 % of total water content – below 850hPa 77.5% of total water content - below 700hPa 92.5% of total water content - below 550hPa (NOAA, 1991) W V Image and tropospheric levels Light areas – white / light gray – Humidity in upper levels – Medium and lower levels ? Dark areas – black/ dark gray – Low humidty in upper levels – Higher humidity content in medium levels – Lower levels ? And a Water Vapour Image ... … filter in “whiter shading” Fenomena retrieved from water vapour imagery Tropopause folding Jet streams/streaks Vorticity Advection Rapid cyclogenesis (bombs) (?) Troughs and ridges in upper levels Cut-off lows Related meteorological parameters Geopotential (eg. 300 hPa) Wind field (eg. 300 hPa) Potencial Vorticity Tropopause Map Potential Vorticity Potential Vorticidade in isentropic levels (constant potential temperature ) VPI g f k v p Absolute Vorticity (planetary + relative) and static stability Tropospheric air mass – low (I)PV Stratospheric air mass – high (I)PV Potential Vorticity Dynamic Tropopause = 1.5 <-> 3.0 UVP 1UVP 106 m2s 1K Kg 1 Advantages of Isentropic Potential Vorticity (IPV) – Conservative property over a conservative surface – Superposition with wind field depicts temporal evolution of Potential Vorticity However, PV can also be depicted in pressure levels !! Tropopause Map Topography of the Tropopause (isentropic coordenates, isobaric, geopotencial) low high -> low Tropopause -> high Tropopause Advantage – Quantifies lowest tropopause level PV ----> Tropopause Map Conceptual Models Jet Stream The definiton … Jet stream – Upper Tropospheric wind speed > 60 kt Jet streak (= Jet Stream maximum) – “wind speed maximum situated along the axis of a jet stream at the level of maximum wind” (Palmén and Newton, 1969) Jet Stream – vertical section Keyser and Shapiro (1986) Jet Stream – vertical section Holton (1992) Jet Stream – vertical section Met. Office (1997) Jet Relative Vorticity North H.: cyclonic side – Positive Relative Vorticity South H. : cyclonic side – Negative Relative Vorticity “Manual of Synoptic Satellite Meteorology–Conceptual Models, v3.0”, ZAMG/KNMI/FMI/EUMETSAT Jet Vorticity advections PVA- Positive Vorticity Advection NVA - Negative Vorticity Advection “Manual of Synoptic Satellite Meteorology–Conceptual Models v3.0”, ZAMG/KNMI/FMI/EUMETSAT Jet Ageostrophic Wind Vertical motion 1 d Vag k Vg f dt Keyser and Shapiro (1986) Jets and Fronts Bluestein (1993) Conceptual Models Tropopause Foldings Cut-off lows Elizaga et al (1996) Lowering Tropopause ----> Vertical Motion Tropopause Div Q Elbern et al (1998) 15Oct93 Lowering Tropopause ----> Vertical Motion 00 UTC Ertel Potential Vorticidade 250 hPa 12 UTC – Q-G Forcing Water Vapour Convergence Romero (2000) 28 Sep 94 Conceptual Models (rapid) Cyclogenesis Hoskins et al (1985) Boyle and Bosart (1986) Hirschberg and Fritsch (1991) And ... Malardel (2000) .. Related NEW proposed symbols .. Adapted from Joly and Santurette (2000) References Bader, M.J., Forbes, G.S., Grant, J.R., Lilley, R.B. e Waters, A.J., 1995: Images in weather forecasting. Cambridge University Press, Cambridge, 499 pp. Bechtold, P., 2000: Atmospheric moist convection: effects, concepts and modelling/forecast. Módulo do Curso “Weather forecasting in the midlatitudes” realizado na MeteoFrance de 4-15 Dezembro 2000 [ver relatório VAP01/01, Instituto de Meteorologia] Bluestein, H.B., 1993: Synoptic-Dynamic Meteorology in Midlatitudes, Vol.II: Observations and Theory of Weather Systems. Oxford University Press, Oxford, 594 pp. Boyle, J.S. e Bosart, L.F., 1986: Cyclone-Anticyclone couplets over North America. Part II: Analysis of a major cyclone event over the Eastern United States. Mon. Wea. Rev., 114, 2432-2465. Elbern, H., Hendricks, J. e Ebel, A., 1998: A climatology of tropopause folds by global analysis. Theor. Appl. Climatology, 59, 181-200. Elizaga, F., Martin, F., Riosalido R., Carretero, O., Elvira, B. e Garcia, A., 1996: Imágenes de vapor de agua: uso en el diagnostico de niveles altos. IV Simposio Nacional de Predección. Memorial “Alfondo Ascaso”, Madrid, 15-19 Abril 1996, INM. Grahame, N., 1998: Christmas Eve storm. Review of interesting synoptic cases. Fourth Meeting of the Working Group on Cooperation between European Forecasters (WG CEF). Set. 98 Comunicação oral. Hirschberg, P.A. e Fritsch, J.M., 1991b: Tropopause ondulations and the development of extratropical cyclones - Part II: Diagnostic Analysis and coceptual model. Mon. Wea. Rev., 119, 518-550. Hoskins, B.J., McIntyre, M.E. e Robertson, A.W., 1985: On the use and significance of isentropic potencial vorticity maps. Quart. J. Roy. Meteo. Soc., 111, 877-946. Joly, A e Santurette, P., 2000: Turning dynamical ideas into forecast practice: a proposal for a renewed graphic summary of the synoptic scale situation. Centre National de Recherches Météorologiques, Service Central d´Exploitation Météorologique. Módulo do Curso “Weather forecasting in the midlatitudes” realizado na MeteoFrance de 4-15 Dezembro 2000 [ver relatório VAP01/01, Instituto de Meteorologia] References Keyser, D. e Shapiro, M.A., 1986: Review – A review of the structure and dynamics of upper-level frontal zones. Mon. Wea. Rev., 114, 452-499. Malardel, S., 2000: Weather forecasting in midlatitudes regions - Large scale dynamics in the midlatitudes. Módulo do Curso “Weather forecasting in the midlatitudes” realizado na MeteoFrance de 4-15 Dezembro 2000 [ver relatório VAP01/01, Instituto de Meteorologia] Moreira, N., 1999: Utilização de imagens de vapor de água na avaliação de campos previstos por Modelos numéricos. Instituto de Meteorologia. Morgan,M.C. e Nielson-Gammon, 1998: Using tropopause maps to diagnose midlatitude weather systems. Mon. Wea. Rev., 126, 25552579. NOAA, 1991: Water vapor imagery – Interpretation and applications to weather analysis and forecasting. NOAA Technical report NESDIS 57, National Oceanic and Atmospheric Admnistration, Washington, 213 pp. Prates, F., 1996: Utilização de cartas de vorticidade potencial isentrópica no diagnóstico dos processos de ciclogénese. Nota Técnica. Instituto de Meteorologia. Romero, R., 2000: Sensitivity of a heavy rain producing Western Mediterranean cyclone to embedded potencial vorticity anomalies. Submetido ao Quarterly Journal of the Royal Meteorological Society. Santurette, P., 1998: About new products and new methods for synoptic forecast in Meteo-France. Casos de estudo apresentados no curso sobre previsão na Meteo-France, Dez. 98. Comunicação oral. ZAMG/KNMI/FMI/EUMETSAT, 2001: Manual of Synoptic Satellite Meteorology – Conceptual Models v3.0.