MODELO DE CARTA DE ENCAMINHAMENTO DE TRABALHO À REVISTA
Curitiba, 20 de outubro de 2008.
Ilmo. Sr.
Editor Chefe da Revista Scientia Agraria
Universidade Federal do Paraná
Setor de Ciências Agrárias
Rua dos Funcionários, 1540
80035-050 – Curitiba – PR
Prezado Editor,
Estamos encaminhando três cópias impressas e disquete ou CD com o trabalho “GROWTH
AND WATER CONSUMPTION OF TWO BEAN SPECIES UNDER IRRIGATION WITH SALINE
WATER”, de autoria de Márkilla Zunete Beckmann Cavalcante, Ítalo Herbert Lucena Cavalcante,
Lourival Ferreira Cavalcante, Gasparino Batista de Sousa, João Batista dos Santos, Maria do Socorro
Medeiros de Souza, para análise e publicação nesta revista.
Os autores declaram que:
a) O presente trabalho é original e não foi publicado ou encaminhado para publicação em
nenhum outro periódico ou revista científica, independente do idioma;
b) Aceitam ceder o direito de reprodução (analógica e digital) para a revista Scientia Agraria
do trabalho cujo título está acima descrito (ou o título que posteriormente chegar a ser adotado, para
atender às sugestões dos revisores e editores);
c) Tem conhecimento de que os trabalhos recebidos a partir de 01/10/2007, redigidos em
português ou espanhol, devem recolher a taxa de tramitação de R$ 40,00 (quarenta reais), a qual
deverá ser paga se o trabalho for aprovado para publicação;
d) Os Conflitos de Interesse estão devidamente indicados no corpo do trabalho;
e) Todos os autores tiveram contribuição substancial neste trabalho, no que se refere à
concepção do projeto de pesquisa, análise e interpretação dos dados, redação e revisão crítica,
certificando que participaram suficientemente do trabalho para tornar pública sua responsabilidade
pelo conteúdo;
f) Têm permissão de todos os indivíduos mencionados nos Agradecimentos;
g) Observaram as normas para publicação e modelo de artigo, disponíveis em
www.ser.ufpr.br/agraria
Os autores sugerem que o trabalho seja enquadrado na seção: (nota científica, artigos de
fitotecnia, artigos de fitossanidade, artigos de ciência do solo, artigos de engenharia agrícola, artigos
de desenvolvimento rural).
Tendo em vista a impossibilidade do autor Gasparino Batista de Souza assinar a presente, o
autor principal assume a responsabilidade pela concordância da mesma em relação conteúdo do
trabalho e desta correspondência.
As correspondências devem ser encaminhadas ao autor Ítalo Herbert Lucena Cavalcante,
Universidade Federal do Piauí, Departamento de Agronomia, Rodovia BR135, km 3, Bom Jesus - PI,
Brasil, CEP 64900-000.
Atenciosamente,
Márkilla Zunete Beckmann Cavalcante
Ítalo Herbert Lucena Cavalcante
Lourival Ferreira Cavalcante
Gasparino Batista de Sousa
João Batista dos Santos
Maria do Socorro Medeiros de Souza
DICAS PARA OS AUTORES – AVALIAÇÃO PRELIMINAR
Título
ƒ
Se o trabalho for redigido em português ou espanhol, não esquecer de incluir o título em inglês.
ƒ
O primeiro título deve ser sempre aquele da língua no qual é redigido o trabalho.
ƒ
As key-words ou palavras-chave não devem repetir termos do título.
ƒ
Se o trabalho é uma nota científica informar “NOTA CIENTÍFICA” no início da nota seguindo a mesma formatação do título
(negrito, centralizado e em maiúsculas).
Resumo
ƒ Máximo de 250 palavras.
ƒ O objetivo apresentado no resumo deve ser o mesmo do apresentado no capítulo Introdução.
Conclusões
ƒ
Evite conclusões muito extensas ou que simplesmente repitam informações já existentes nos resultados.
ƒ
Antes de redigir as conclusões leia atentamente os objetivos do trabalho
Citações e Referências
ƒ
No texto, as citações devem ser apresentadas da seguinte maneira: Um autor: Carvalho (2006) ou (Carvalho, 2006); Dois
autores: Lima & Santos (2006) ou (Lima & Santos, 2006); Três ou mais autores: Pereira et al. (2007) ou (Pereira et al.,
2007)
ƒ
O “et al.” deve ser grafado sem itálico, em minúsculas e com um ponto somente no final, ou seja, “et al.”.
ƒ
A elaboração das referências deve seguir a NBR 6023:2002. Caso os autores encontrem dificuldades na elaboração das
mesmas, sugere-se como ferramenta de auxílio consultar o site: <http://www.rexlab.ufsc.br:8080/more/>, que possui um
mecanismo on-line de elaboração de referências.
ƒ
Não abreviar os títulos dos periódicos e nem colocar a cidade de publicação dos periódicos nas referências destes.
ƒ
Referências de dois ou mais artigos com a mesma autoria e do mesmo ano devem ser discriminados em letras minúsculas
após o ano. Por exemplo: Carvalho (2006a); Carvalho (2006b). Contudo, não esquecer de que essa discriminação deve
ser indicada tanto nas citações quanto nas referências.
ƒ
As referências devem ser numeradas e ordenadas alfabeticamente pelo sobrenome do primeiro autor.
ƒ
Conferir com cuidado se todas as referências indicadas são citadas, bem como todas as citações estão referenciadas.
ƒ
Embora não seja estimulado o seu uso, nas referências da internet, utilizar o link mais específico possível, ou seja, quando
referenciar um artigo/notícia inserir o link do documento encontrado e não a página inicial do site;
ƒ
Pelo menos, 50% das referências devem ter menor de 10 anos.
ƒ
Pelo menos, 50% das referências devem ser de artigos de periódicos.
Tabelas e Figuras
ƒ
Devem estar no final do trabalho, após as referências.
ƒ
Devem estar no formato retrato.
ƒ
As Tabelas e Figuras devem ser numeradas de acordo com a ordem em que são citadas, ou seja, a Tabela 1 deve ser
citada antes da Tabela 2.
ƒ
As Figuras não devem ser coloridas nem possuir borda e as Tabelas não devem possuir sombreamento ou serem
coloridas.
ƒ
A coloração das Figuras pode ser modificada no Microsoft Word da seguinte maneira: clique com botão direito do mouse
na figura > Clique em “Formatar objeto...” > Selecione a aba “Imagem” > Cor: Preto e branco/ Escala de Cinza.
ƒ
ƒ
Devem ser utilizadas apenas unidades do Sistema Internacional (SI).
Incluir o C. V. nas Tabelas que tenham análise estatística, e o R2 e a significância do mesmo nas figuras com
regressões.
AJUDE O SEU TRABALHO A TER UMA TRAMITAÇÃO MAIS RÁPIDA
A) OBSERVE AS NORMAS DE PUBLICAÇÃO
B) OBSERVE O MODELO DE ARTIGO
C) ENCAMINHE TRÊS CÓPIAS IMPRESSAS, CD OU DISQUETE, E CARTA DE
ENCAMINHAMENTO ASSINADA (CONFORME EXEMPLO NA PRIMEIRA PÁGINA
DESTE MODELO)
D) AO CHEGAR À REVISTA, TODO TRABALHO PASSA POR UMA AVALIAÇÃO
PRELIMINAR. CASO NÃO ESTEJA ADEQUADO ÀS NORMAS DA REVISTA, O
TRABALHO IRÁ RETORNA AOS AUTORES PARA ADEQUAÇÃO, ANTES DE
SER ENCAMINHADO AOS REVISORES CIENTÍFICOS.
GROWTH AND WATER CONSUMPTION OF TWO BEAN SPECIES UNDER IRRIGATION
WITH SALINE WATER
CRESCIMENTO E CONSUMO DE ÁGUA DE DUAS ESPÉCIES DE FEIJÃO SOB
IRRIGAÇÃO COM ÁGUA SALINA
Márkilla Zunete BECKMANN-CAVALCANTE1
Ítalo Herbert Lucena CAVALCANTE1,2
Lourival Ferreira CAVALCANTE3,4
Gasparino Batista de SOUSA5
João Batista dos SANTOS3
Maria do Socorro Medeiros de SOUZA2
1
D.Sc. Student, Faculty of Agrarian and Veterinarian Sciences, University of São Paulo State, Jaboticabal, SP,
Brazil. E-mail: [email protected]
2
Department of Agronomy, Federal University of Piaui, BR-135, km 3, 64900-000, Bom Jesus, PI, Brazil. E-mail:
[email protected] . Author for correspondence.
3
Department of Soil Science and Agricultural Engineering, Federal University of Paraiba, Areia, PB, Brazil. Email: [email protected]
4
Researcher CNPq fellow
5
Department of Agronomy, University of Piauí State, Corrente, PI, Brazil. E-mail: [email protected]
ATENÇÃO: é obrigatório apresentar a afiliação completa de todos os autores, com a indicação de instituição, cidade, país, e Email que esteja ativo. No autor para correspondência também é obrigatório apresentar o endereço completo para
correspondência (inclusive CEP). Preferencialmente não colocar como autor para correspondência um pesquisador com
endereço provisório (como um estudante de graduação ou pós-graduação).
ATENÇÃO: Leia com atenção as normas atualizadas da revista em www.ser.ufpr.br/agraria. Deixar esta página que contém os
nomes e dados dos autores em folha separada, pois não será encaminhada aos revisores científicos e editor associado.
Repetir o título em português e inglês na próxima página. Os títulos devem estar em letra maiúscula e negrito. As citações no
texto devem estar todas em maiúsculas. Não esquecer de numerar as páginas e as linhas. O texto deve estar em letra Arial 11
com espaço 2 (inclusive as referências). Checar se não falta nenhuma citação, referência, Tabela ou Figura. As Tabelas e
Figuras devem estar no formato retrato e não no formato paisagem. Pode ser utilizado tamanho de letra menor nas Tabelas e
Figuras se necessário.
COMO NUMERAR LINHAS NO MICROSOFT WORD: selecione os comandos Arquivo – Configurar Página – Layout –
Números de Linhas – Marcar “numerar linhas” e marcar “Reiniciar a cada seção” - OK.
OBSERVAÇÃO: O artigo utilizado neste modelo de artigo foi publicado na revista Scientia Agraria, volume 9, número 3, p. 349355, 2008. Para acessar este artigo na íntegra (em formato PDF), na diagramação originalmente publicada acesse:
http://ojs.c3sl.ufpr.br/ojs2/index.php/agraria/article/view/11519/8118
1
1
2
GROWTH AND WATER CONSUMPTION OF TWO BEAN SPECIES UNDER IRRIGATION
WITH SALINE WATER
3
4
5
CRESCIMENTO E CONSUMO DE ÁGUA DE DUAS ESPÉCIES DE FEIJÃO SOB
IRRIGAÇÃO COM ÁGUA SALINA
6
7
ABSTRACT
8
Salinity is an important environmental problem, specially in regions where irrigation
9
with low quality water is practiced. In this sense, an experiment was carried out from May
10
2005 to August 2005 at Federal University of Paraiba, Areia, Brazil aiming to evaluate the
11
growth and water consumption of Phaseolus vulgaris e Vigna unguiculata, irrigated with
12
different salinity levels. The treatments were distributed in a completely randomized design,
13
in factorial arrangement 6 x 2 referring to electrical conductivity levels of water irrigation
14
(ECw), as follows: 0.0; 1.5; 3.0; 4.5; 6.0 e 7.5 dS m-1 and two bean species, respectively, with
15
four repetitions and six pots in each parcel. The stem diameter, shoot and root dry mass and
16
water consumption of bean plants were evaluated. Increasing water salinity level, the results
17
of all variables decreased drastically for both species. Phaseolus vulgaris species is more
18
deleteriously affected by water salinity than Vigna unguiculata.
19
Key-words: Phaseolus vulgaris; Vigna unguiculata; salinity.
20
21
RESUMO
22
A salinidade é um importante problema ambiental, especialmente em regiões onde a
23
irrigação com água de qualidade inferior é praticada. Neste sentido, um experimento foi
24
conduzido entre maio e agosto de 2005 na Universidade Federal da Paraíba, Areia, Brasil
25
com o objetivo de avaliar o crescimento e consumo de água das espécies Phaseolus
26
vulgaris e Vigna unguiculata, irrigadas com diferentes níveis de salinidade. Os tratamentos
27
foram distribuídos em delineamento inteiramente casualizado, em esquema fatorial 6 x 2
2
28
referentes à condutividade elétrica da água de irrigação (ECw), como segue: 0,0; 1,5; 3,0;
29
4,5; 6,0 e 7,5 dS m-1 e duas espécies de feijão, respectivamente, com quatro repetições e
30
seis vasos por parcelas. O diâmetro do caule, matéria seca de raízes e parte aérea e
31
consumo de água das plantas de feijoeiro foram avaliadas. Incementando-se o nível de
32
salinidade da água da irrigação, os resultados de todas as variáveis decresceram
33
drasticamente para ambas as espécies. P. vulgaris foi mais deleteriamente afetada pela
34
salinidade da água que V. unguiculata.
35
Palavras-chave: Phaseolus vulgaris; Vigna unguiculata; salinity.
36
INTRODUCTION
37
38
The common bean (Phaseolus vulgaris L.) is one of the most consumed foods in
39
Brazil, especially for poor class, so it is a typical and important crop of small farmers in Brazil
40
(Antunes et al., 1995). In addition, the cowpea bean (Vigna unguiculata L. Walp), also known
41
as ‘macassar’ bean, presents a fundamental, social and economic importance for
42
Northeastern part of Brazil, constituting the main protein source in rural population nutrition,
43
as proposed Nascimento et al. (2004).
44
In Northestern Region of Brazil, the use of saline water (ECw > 1,5 dS m-1, according
45
to Ayers & Westcot, 1999) for irrigation has been necessary. This use promotes the
46
increment on saline levels of soil with the possibility of reaching critic values and negatively
47
influence growth and development of crops, mainly those classified as sensible to salinity
48
effects, as bean, according to crop saline classification proposed by Maas (1984) and
49
Doorenbos & Kassam (1979).
50
Salinity reduces water availability (osmotic effect) and has a toxic effect, through
51
action of saline complexes or specific action of sodium, chlorate, sulfate, carbonate and
52
bicarbonate ions as reported Munns (2002) and Hu & Schmidhalter (2004) and confirmed by
53
Cavalcante & Cavalcante (2006). Sodium ion promotes clay dispersion and soil structure
54
degradation, thus a deleterious effect on soil physics (Ayers & Westcot, 1999; Silva et al.,
3
55
2005). Therefore, salinity is a limiting factor of geographical species distribution in natural
56
habitats, constituting an increasingly severe environmental and agricultural problem in arid
57
and semiarid regions of the world (Shannon, 1986), including Brazil.
58
Salt tolerance of cultivated Leguminosae species has been studied by many
59
techniques during different developmental stages of the plant, using saline solutions
60
(Moreno-Limón et al., 2000), natural saline water or soil and artificial salinity on soil
61
(Johansen et al., 1990). In relation to bean, Soares et al. (2006) reported that bean is
62
considered a not tolerant crop to salinity of irrigation water, with a potential extreme reduction
63
of 50% on developmental parameters whether irrigated with water of ECw up to 2.4 dS m-1,
64
but it depends on saline complex of the water. Also in study about bean, Bayuelo-Jiménez et
65
al. (2002) informed that plant dry mass is reduced in 62.41% if irrigated with saline water.
66
67
The study had as objective to evaluate the influence of saline levels of water irrigation
on growth and water consumption of two bean species, P. vulgaris e V. unguiculata.
68
MATERIAL AND METHODS
69
70
Plant materials and growth conditions
71
Seeds for plant formation of the two bean species Phaseolus vulgaris and Vigna
72
unguiculata released from Brazilian Agricultural Research Corporation (EMBRAPA) were
73
used in this study.
74
The experiment was carried out from May 2005 to August 2005 in a green house of
75
the Centre of Agrarian Sciences, Federal University of Paraiba, Brazil, located at the
76
geographical coordinates 6’58”S and 35’41”W, at 575 m high. During this period, the air
77
temperature ranged from 23 to 38 °C. Air humidity fluctuated between 45 and 85%
78
respectively for day and night between day and night.
79
The substrate consisted of soil obtained from layer until 0.30 m deep of an Oxisol
80
distrofic, medium texture. After homogenized, the substrate was dried under air conditions,
4
81
passed to a sieve of 2 mm mesh and conditioned in black polyethylene pots filled with 10
82
dm3. See soil physical and chemical characteristics in Table 1.
83
Ten seeds were sown in each experimental unit at 2 cm deep and once daily irrigated
84
with good water quality. After stabilization of germination, the two most vigorous seedlings
85
were used for salinity study.
86
There were six levels of saline irrigation water (ECw) at 0.0; 1.5; 3.0; 4.5; 6.0 and 7.5
87
dS m-1. Saline irrigation waters were obtained by adding soluble salts in distilled water (0.016
88
dS m-1), according to recommendations of Cavalcante et al. (2005) and were composed by
89
50% of NaCl, 20% of MgCl2, 20% of CaCl2 and 10% of Na2SO4. The water supply was done
90
manually based on a daily evaporation of 5 mm and corrected according to the bean culture
91
coefficient (Kc) reported by Pereira & Allen (1997), direct on soil; leaves were not washed.
92
Plants were daily irrigated (once a day) during the experiment.
93
For leaching of salts, monthly, the soil was washed with water of ECw 0.5 dS m-1 to
94
reduce the substrate salinity to values below 2.0 dS m-1, according to recommendations of
95
Zhu (2001).
96
97
Measurements of seedling
98
At the end of the experiment plant stem diameter was measured with a digital
99
paquimeter (300 mm/12”–0,01 mm/.0005”, Digimess®, São Paulo, Brazil) at 10 cm high. Dry
100
mass (roots and shoots) were measured after drying samples at 70 ºC for 48 h in an air
101
forced oven. All observations and measurements were performed from twelve seedlings.
102
103
104
Water consumption of plants was also registered through difference between water
applied, evaportranspiration and water drained from the pot.
5
105
Statistical design and data analyses
106
Treatments were setup by following a completely randomized statistical design, and
107
each treatment had four replications and six pots in each parcel. The species were placed in
108
the main plots, with the salt concentrations in submain plots for statistical analyses.
109
Statistical analyses included analysis of variance (ANOVA), polynomial regression for
110
mean separation of ECw results and simple correlation between dependent variables studied.
111
Means separation on data was conducted using Tukey test (Ferreira, 2000). Terms were
112
considered significant at P<0.01 using the SAS software.
113
114
RESULTS AND DISCUSSION
115
For all the parameters adopted for plant evaluation, the variance analyses (Table 2)
116
show significant differences as among saline levels such as between bean species, for all
117
variables studied and, additionally, only for stem diameter of plants the interaction between
118
two factors analyzed (bean species and saline levels) was not significant.
119
120
In a general form, a negative effect of salinity was observed with ECw increase for all
variables, independently of bean species.
121
Figure 1A shows a progressive reduction on plant water consumption (PWC) with
122
ECw increase from 0.0 to 7.5 dS m-1 for both bean species as predicts the linear decreasing
123
model with a fit minimum of 0.96 (P. vulgaris) and 0.84 (V. unguiculata). ECw increase
124
affected plant growth and development, thus in agreement with Santana et al. (2003), also
125
studying the influence of water salinity on bean plants. Plants irrigated with ECw of 7.5 dS m-1
126
consumed (32.7% P. vulgaris and 44.0% V. unguiculata) less water than those irrigated with
127
0.0 dS m-1 ECw, demonstrating that P. vulgaris was less deleteriously affected by ECw than V.
128
unguiculata (Figure 2A). Hilllel (1999) reported that plant water consumption is drastically
129
influenced by high salinity levels due to reduction on tissue osmotic potential, and,
130
consequently, less root water absorption. In contrast, Hu & Schmidhalter (2004) concluded
131
that, the reduction on water uptake as function of salinity can be compensated by other parts
6
132
with lower salinities and increasing root activity; this tendency was not registered in the
133
present study.
134
In spite of shoot dry matter (SDM), both bean species presented the same tendency
135
and data of both species were better adjusted to linear model, as function of saline levels
136
(Figure 1B). Although P. vulgaris, independent of saline level, has presented higher SDM
137
than V. unguiculata (Figure 2B), with ECw increase from 0.0 to 7.5 dS m-1, SDM was more
138
reduced in P. vulgaris 48.3% than in V. unguiculata 35.8%. These quantitative results are
139
close to values of Soares et al. (2006) who reported that bean is considered a not tolerant
140
crop to salinity of irrigation water, with a potential extreme reduction of 50% on
141
developmental parameters whether irrigated with water of ECw up to 2.4 dS m-1. P. vulgaris
142
reduction recorded 48.3% is below 62.41% informed by Bayuelo-Jiménez et al. (2002), that
143
compared SDM of this species under non-stressed and salt-stressed conditions.
144
As also observed for other dependent variables, root dry matter (RDM) had a linear
145
decrease with ECw increase (Figure 1C), as also concluded Bayuelo-Jiménez et al. (2002);
146
these authors also observed significant interaction between saline levels and bean species
147
investigated, that demonstrates genetic variability between species and interdependence
148
between factors (salinity and bean species). Similarly, P. vulgaris presented average values
149
significantly above V. unguiculata species, thus in agreement with the present work, as can
150
be seen in Figure 2C. On the other hand, from the lower to the higher ECw, V. unguiculata
151
presented reduction of nearly 81% while P. vulgaris 62%, following the same tendency
152
registered for plant water consumption (Figure 1A). As also reported by Storey et al. (2003),
153
the root system is one of the most important characters for salt stress because roots are in
154
contact with soil and absorb water from soil, nevertheless Munns (2002) suggests that little is
155
known and salinity effect on root system is, still nowadays, an enigma.
156
After germination, the biological criterion that clearly expresses the osmorregulation of
157
plants to salts is the root system (Parida & Das, 2005; Cavalcante & Cavalcante, 2006) that
158
evidences the superiority of P. vulgaris in relation V. unguiculata (Figure 1).
7
159
Plant stem diameter was significantly reduced by ECw increase. This sensitivity
160
shows a tendency to level off with increasing values of ECw as predicts the linear decreasing
161
model with a fit minimum of 0.98 (Figure 1D). The direct contact of roots with the adversely
162
saline environment contributes with a faster and higher salt absorption that deleteriously
163
affects plant organs, interfering the stem diameter growth (Taiz & Zeiger, 2002). Due to
164
similarity of data, it is verified that there was no statistical difference between bean species
165
(Table 2), therefore the effect can be represented by a straight line or equation resulting from
166
mean values of bean species, as can be perceived in Figure 1D.
167
Significant positive correlations (P<0.01) between variables studied on both bean
168
species were registered. According to Ferreira (2000) parameter, each of these correlations
169
is classified as linear, positive and highly significant, because all correlation coefficients (r)
170
showed in Table 3 are above 0.8. These results show that both bean species had the same
171
behavior under irrigation with the same ECw, and, in addition, that ECw affected all the plant,
172
including root and shoot dry mass production, stem diameter and plant water consumption.
173
These results support similar findings of Foolad (1996) and Bayuelo-Jiménez et al. (2002),
174
respectively salinity studies about tomato and bean.
175
176
CONCLUSIONS
177
The results of this study indicate that: i) With ECw increase, dry mass production,
178
stem diameter and plant water consumption of Phaseolus vulgaris and Vigna unguiculata
179
bean species are inhibited; ii) Phaseolus vulgaris species is more deleteriously affected by
180
water salinity than Vigna unguiculata; iii) Both bean species present growth and water
181
consumption significantly reduced if irrigated with water salinity of 3.0 dS m-1 or higher.
182
8
REFERENCES
183
184
1.
ANTUNES, P. L. et al. Valor nutricional de feijão (Phaseolus vulgaris, L.), cultivares rico
185
23, carioca, piratã-1 e rosinha-G2. Revista Brasileira de Agrociências, v. 1, n. 1, p. 2-
186
18, 1995.
187
2.
AYERS, R. S.; WESTCOT, D. W. A qualidade da água na agricultura. Traduction of
188
GHEYI, H. R.; MEDEIROS, J. F.; DAMASCENO, F. A. V. Campina Grande: UFPB,
189
1999. (FAO. Irrigation Drainage Paper, n. 29).
190
3.
BAYUELO-JIMÉNEZ, J. S.; DEBOUCK, D. G.; LYNCH, J. P. Salinity tolerance in
191
Phaseolus species during early vegetative growth. Crop Science, v. 42, n. 6, p. 2184–
192
2192, 2002.
193
4.
CAVALCANTE, L. F. et al. Germination and initial growth of guava cultivars under
194
irrigation with saline water. Revista Brasileira de Engenharia Agrícola e Ambiental, v.
195
9, n. 4, p. 515-519, 2005.
196
5.
CAVALCANTE, L. F.; CAVALCANTE, I. H. L. Uso da água salina na agricultura. In:
197
CAVALCANTE, L. F.; LIMA, E. M. (Ed.) Algumas frutíferas tropicais e a salinidade.
198
Jaboticabal: FUNEP, 2006, p. 1-12.
199
6.
(Irrigation Drainage Paper, n.33).
200
201
7.
8.
206
207
208
FOOLAD, M. R. Genetic analysis of salt tolerance during vegetative growth in tomato,
Lycopersicon esculentum Mill. Plant Breeding, v. 115, n. 44, p. 245-250, 1996.
204
205
FERREIRA, P. V. Estatística experimental aplicada à Agronomia. Maceió: UFAL,
2000. 680 p.
202
203
DOORENBOS, J.; KASSAM, A. H. Yield response to water. Rome: FAO, 1979.
9.
HILLEL, D. Salinity management for sustainable irrigation. Washington: World Bank,
1999. 92 p.
10. HU, Y.; SCHMIDHALTER, U. Limitation of salt stress to plant growth. In: HOCK, E. (Ed.)
Plant Toxicology. New York: Marcel Dekker, 2004, p. 191-224.
9
209
11. JOHANSEN, C. et al. Genotypic variation in salinity response of chickpea and
210
pigeonpea. In: PROCEEDINGS OF THE INTERNATIONAL CONGRESS OF PLANT
211
PHYSIOLOGY, 1990, New Delhi. Abstracts… New Delhi: Society of Plant Physiology
212
and Byochemistry, 1990. p. 973-978.
213
12. MAAS, E. V. Crop Tolerance. California Agriculture, v. 38, n. 10, p. 20-21, 1984.
214
13. MORENO-LIMÓN, S.; MITI, R. K.; FOROUGHBAKHCH, K. Genotypic variability in
215
Phaseolus bean cultivars exposed to salinity at the germination stage. Crop Research,
216
v. 19, n.1, p. 487-492, 2000.
217
218
14. MUNNS, R. Comparative physiology of salt and water stress. Plant, Cell and
Environment, v. 25, n. 2, p. 239-250, 2002.
219
15. NASCIMENTO, J. T.; PEDROSA M. B.; TAVARES SOBRINHO, J. Efeito da variação de
220
níveis de água disponível no solo sobre o crescimento e produção de feijão caupi,
221
vagens e grãos verdes. Horticultura Brasileira, v. 22, n. 2, p. 174-177, 2004.
222
223
224
225
16. PARIDA, A. K.; DAS, A. B. Salt tolerance and salinity effects on plants: a review.
Ecotoxicology and Environmental Safety, v. 60, n. 3, p. 324-349, 2005.
17. PEREIRA, L. S.; ALLEN, R. G. Novas aproximações aos coeficientes culturais.
Engenharia Agrícola, v. 16, n. 4, p. 118-143, 1997.
226
18. SANTANA, M. J. et al. Efeito da irrigação com água salina em um solo cultivado com o
227
feijoeiro (Phaseolus vulgaris L.). Ciência e Agrotecnologia, v. 27, n. 2, p. 443-450,
228
2003.
229
230
19. SHANNON, M. C. New insights in plant breeding efforts for improved salt tolerance.
HortTechnology, v. 6, p. 96-99, 1986.
231
20. SILVA, E. F.; ASSIS JÚNIOR, R. N.; SOUSA, J. I. G. Efeito da salinidade da água de
232
irrigação sobre os atributos hídricos de um Neossolo. Revista Brasileira de Ciência do
233
Solo, v. 27, n. 3, p. 389-396, 2005.
234
235
21. SOARES, A. E.; BERNARDO, S.; MANTOVANI, E. C. Manual de irrigação. Viçosa:
UFV, 2006. 625 p.
10
236
22. STOREY, R.; SCHACHTMAN, D. P.; THOMAS, M. R. Root structure and cellular
237
chloride, sodium and potassium distribution in salinized grapevines. Plant, Cell and
238
Environment, v. 26, n.6, p. 789-800, 2003.
239
23. TAIZ, L.; ZEIGER, E. Plant physiology. Sunderland: Sinauer Assoc, 2002. 719 p.
240
24. ZHU, J. K. Plant salt tolerance. Trends in Plant Science, v. 6, n. 2, p. 66-71, 2001.
11
241
TABLE 1 – Physical and chemical characteristics of the soil used in the experiment.
Physical characteristics
Granulometry (g kg-1)
Sand
Silte
Clay
Soil density (kg dm-3)
Particle density (kg dm-3)
Porosity (%)
Umidity retention (kg kg-1)
0.033 MPa
1.500 MPa
Field capacity
(gravimetry)
Textural class
Chemical characteristics
pH in water, 1:2.5
Organic matter (g kg-1)
Phosphorus (mg dm-3)
Potassium (mg dm-3)
Calcium (mmolc dm-3)
Magnesium (mmolc dm-3)
Sodium (mmolc dm-3)
Sum of bases (mmolc dm-3)
Exchangable acidity (mmolc
dm-3)
Hidrogenium
Aluminium
580.50
93.50
32.00
1.12
2.60
57.00
0.15
0.11
0.27
Average clay
Cationic exchangeable
capacity
(mmolc dm-3)
Saturarion of bases (%)
4.6
33.81
3.60
87.35
31.50
19.00
3.05
53.55
55.90
5.50
117.35
46.00
242
243
244
245
TABLE 2 – Results of variance analysis of shoot dry mass (SDM), root dry mass (RDM),
stem diameter (SD) and plant water consumption (PWC) of two bean species
irrigated with different levels of water salinity.
“F” value
Source
SDM
RDM
SD
PWC
Saline level (S)
1506.21**
3029.56**
17.30**
166.74**
Bean
species
4947.06**
7520.21**
0.11ns
69.82**
Interaction S x B
103.01**
4021.64**
2.48ns
5.39**
1.30
3.92
12.01
3.72
(B)
C.V.
NS = non-significant; ** Significantly different (P<0.01)
246
12
247
248
249
TABLE 3 – Correlation coefficients between P. vulgaris (P.v.) and V. unguiculata (V.u.) bean
species for shoot dry mass (SMD), root dry mass (RMD), stem diameter (SD) and
plant water consumption (PWC) under irrigation with different ECw.
Variáveis
SDM
RDM
SD
PWC
SMD
Especie
P.v.
V.u.
P.v.
-
0.96**
0.97** 0.94**
0.97** 0.96**
0.97** 0.92**
-
0.93** 0.91**
0.95** 0.96**
0.98** 0.87**
0.99**
0.90** 0.99**
0.97** 0.98**
-
0.85** 0.99**
0.96** 1.00**
V.u.
RDM
P.v.
V.u.
SD
P.v.
V.u.
WC
P.v.
V.u.
** Significantly different (P<0.01)
250
P.v.
-
V.u.
P.v.
-
V.u.
P.v.
V.u.
0.89**
0.93** 0.82**
-
0.99** 0.98**
-
0.94**
-
13
251
2.5
2400
Shoot dry matter (g)
Plant water consumption (L)
2600
PWC = -41.086CE + 2530.6
R2 = 0.96**
2200
2000
1800
1600
PWC = -56.21CE + 1900.6
R2 = 0.84**
1400
1.5
3.0
A
6.0
7.5
1.5
3.0
4.5
6.0
7.5
ECw (dS m-1)
5.0
Stem diameter (mm)
0.4
0.3
RDM = -0.037CE + 0.415
R2 = 0.84**
4.5
4.0
3.5
3.0
2.5
SD = -0.1371CEw + 4.3143
R2 = 0.98**
2.0
1.5
1.0
0.5
0.0
0.0
0.0
252
253
254
255
0.5
B
RDM = -0.049CE + 0.567
R2 = 0.93**
0.5
Root dry matter (g)
4.5
ECw (dS m-1)
0.6
C
SDM = -0.085CEw + 1.669
R2 = 0.95**
1.0
0.0
0.0
0.1
1.5
0.0
1200
0.2
SDM = -0.142CEw + 2.362
R2 = 0.95**
2.0
1.5
3.0
4.5
ECw (dS m-1)
6.0
7.5
0.0
D
1.5
3.0
4.5
6.0
7.5
ECw (dS m-1)
FIGURE 1 – Effect of irrigated saline water on (A) shoot dry matter (SDM), (B) root dry matter
(RDM), (C) plant water consumption (PWC) and (D) stem diameter (SD), on two
bean species. P. vulgaris (_____) V. unguiculata (_ _ _ _). ** Significant (P<0.01)
14
256
3
3000
a
a
a
a
b
Phaseolus vulgaris
Vigna unguiculata
a
b
2000
a
b
a
b
Shoot dry matter (g)
Plant water consumption (L)
2500
Phaseolus vulgaris
Vigna unguiculata
a
1500
b
1000
a
a
2
b
a
b
a
b
b
b
a
b
1
500
A
A
0
0.0
1.5
3.0
4.5
6.0
B
B
7.5
-1
ECw (dS m )
0
0.0
1.5
3.0
4.5
6.0
7.5
ECw (dS m-1)
0.6
Phaseolus vulgaris
Vigna unguiculata
a
0.5
Root dry matter (g)
a
0.4
a
b
b
a
a
b
0.3
b
a
0.2
b
0.1
C
C
257
258
259
260
261
262
b
0.0
0.0
1.5
3.0
4.5
6.0
7.5
ECw (dSm-1)
FIGURE 2 – Effect of irrigated saline water (ECw) on plant water consumption (A), shoot dry
matter (C) and root dry matter (C) on two bean species. plant water
consumption of two bean species. Within measured species, bars
accompanied by different letters are significantly different (P<0.01).
Download

MODELO DE CARTA DE ENCAMINHAMENTO DE TRABALHO À