« Mise au point d’une systématique de caractérisation des interactions Matière Organique Naturelle Dissoute (MOND) – Contaminants métalliques » Thèse de Doctorat soutenue par: M. Yoann LOUIS En vue d’obtenir le titre de Docteur de l’Université du Sud Toulon-Var Directeurs de Thèse : Dr. S. MOUNIER Université du Sud Toulon Var – PROTEE (PROcessus de Transferts et d'Echanges dans l'Environnement) Dr. D. OMANOVIĆ Institut Ruđer Bošković – LPCT (Laboratory for Physical Chemistry of Traces) Université du Sud Toulon Var 21 novembre 2008 Subvention N° 03/1214910/T Matière Organique NAturelle en miLIeu SAlé 1 SUMMARY 1.Introduction 2.Analytical protocol improvements 3.Concentrated Marine DNOM study 4.Natural Estuarine ecosystem study 5.Conclusions & perspectives Introduction – Analytical protocol – Marine DNOM study – Estuarine DNOM Study - Conclusion 2 I. Introduction Introduction – Analytical protocol – Marine DNOM study – Estuarine DNOM Study - Conclusion 3 1. Trace metals in the environment ATMOSPHERE Metals Metals SOILS AQUATIC ENVIRONMENT (Coastal and estuarine system) Metals Metals WATER SEDIMENTS Anthropogenic origin Natural origin Introduction – Analytical protocol – Marine DNOM study – Estuarine DNOM Study - Conclusion 4 1. Trace metals in the environment Toxicity ≠ Total concentration Toxic metals: not needed Pb, Hg, Cd, … When metal became toxic ? depend on its speciation “Oligoelements”: necessary for metabolism Metals Cu, Fe, F, Mg, Mn, Zn, … Introduction – Analytical protocol – Marine DNOM study – Estuarine DNOM Study - Conclusion 5 2. Trace metals speciation in the water column Filtration (0.45µm) “Not” or less bioavailable Particulate > 0.45 µm Micro-organisms (bacteria, virus,…) M M Dissolved < 0.45 µm Inorganic Ligands Could be bioavailable Cl-, NO3-, SO42- … bioavailable M M n+ Organic and Inorganic Particules M M Organic Ligands EDTA, DNOM … M Water column M “Not” or less bioavailable Métal Metal trap: toxic Generally toxicLess for biota Dissolved metal speciation [MTOTAL] ≠ [MTOXIC] Introduction – Analytical protocol – Marine DNOM study – Estuarine DNOM Study - Conclusion 6 3. DNOM Origin? Heterogeneous origins heterogeneous and complex structure Anthropogenic activities Plants, animals, µorganisms decomposition River input Photosynthesis Bacterial activity degradation Humification& Polymerization DNOM modifications Phytoplankton activity Representation of a simplified NOM Introduction – Analytical protocol – Marine DNOM study – Estuarine DNOM Study - Conclusion 7 4. DNOM speciation “Analytical speciation” “structural” determination separation Dialysis, UF CFFFF, HPSEC HPLC, GC C18, Chelex … and “Mechanistical speciation” Interactions characterization analysis GFAAS ICP-MS CV-AFS Voltammetry ... Specific components determination Less usable for metal behavior prediction ISE Voltammetry Fluorescence Quenching … Results usable in speciation codes for prediction (for example MOCO from IFREMER) No Functional characterization Introduction – Analytical protocol – Marine DNOM study – Estuarine DNOM Study - Conclusion 8 4. DNOM speciation DNOM-Metal interaction study 1e-7 Continuous distribution Discrete distribution + [L]T (M) 8e-8 Used to describe the DNOM reactivity M 1 KkMthermo kM-1 6e-8 + DNOM 4e-8 KHthermo DNOM 2e-8 0 2 4 6 8 + 10 KCompthermo logK •Continuous model: NICA-Donnan •Discrete model: WHAM For 1 DNOM: All K and [LiT] determined = “Chimiotype” For Metal-DNOM interaction study: Need a technique to measure only or DNOM L M Assuming a kinetic of 1st order Introduction – Analytical protocol – Marine DNOM study – Estuarine DNOM Study - Conclusion 9 5. Analytical tool used to measure trace metal: DPASV 3 electrodes system: Counter electrode (Pt) Metal-Ligand Reference electrode (Ag/AgCl/KClsat) Complex DNOM Working electrode (Hg) Direct measurement of Stirrer Purging (N2)free & inoganic copper fraction Escan dep = Metal addition OxydationStep step Reduction Edep electrolabile After tdep =fraction 5 min (= bioavailable fraction) Escan 1.6e-8 1.4e-8 eIntensity (A) L I=f([M]) 1.2e-8 1.0e-8 8.0e-9 6.0e-9 L DNOM Voltamogram 4.0e-9 DNOM L L 2.0e-9 DNOM DNOM 0.0 -0.5 -0.4 -0.3 -0.2 -0.1 0.0 0.1 Escan (V) Introduction – Analytical protocol – Marine DNOM study – Estuarine DNOM Study - Conclusion 10 6. Metal logarithmic scale titration (Garnier et al., 2004, Env. Technol. 25, 589-599) pCuT -9.50 -9.00 -8.50 -8.00 -7.50 -7.00 -6.50 -6.00 -5.50 -6.50 Discrete fitting of experimental data with PROSECE program -7.00 (Speciation calculus + optimization) -5.00 -5.00 -5.50 -6.00 -7.50 -8.00 -8.50 -9.00 [Metal added]: From nM to µM Determination of Kequilibrium, [LT] Determination of k1, k-1, [LT] New characterization of the DNOM: reactivity -9.50 Data at equilibrium Kequilibrium, [LT] 7.4 pCuT 7.0 1:1 Sal11 exp Sal11 calc Metal complexed by DNOM 6.6 6.2 Kinetic k1, k-1, [LT] 5.8 1.6E-08 5.8 6.2 6.6 7.0 7.4 1.4E-08 For each point: 1.2E-08 2h of equilibrium 1.0E-08 Measurements every 6 min. Cu (M) 7.8 pCulab 8.2 CuT Culabile 8.0E-09 6.0E-09 4.0E-09 7.8 2.0E-09 8.2 0.0E+00 0 50 t (mn) 100 150 8.6 Introduction – Analytical protocol – Marine DNOM study – Estuarine DNOM Study - Conclusion 11 7. Pseudopolarography measurements (Nicolau et al., 2008, ACA 618, 35-42) Measured if: UV, pH=2, Edep << Edep for CC Labile fraction = Free + inorganic fraction : bioavailable Dissociable organic fraction: Probably not bioavailable Not measured fraction = electroinactive in the Edep range used Voltammograms Pseudopolarogram 16 16 12 struja / A (nA) Intensity A struja / (nA) Intensity Edep for CC measurements 14 14 10 8 6 12 10 8 6 Direct ML complex reduction Labile fraction 4 4 2 0 -1.2 pote n -1.0 -0.8 cijal a -0.6 kum ula -0.4 cije /V -0.65 -0.60 -0.55 -0.50 n pote -0.45 /V cijal 2 0 -1.4 -1.3 -1.2 -1.1 -1.0 -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 potencijal akumulacije /V Deposition potential (V) Introduction – Analytical protocol – Marine DNOM study – Estuarine DNOM Study - Conclusion 12 8. Goals of the study Analytical protocol determination adapted to low [DOC] and [Metal] Real complex natural ecosystem study Improvements: •Technical •Analytical •Mathematical “Model DNOM” definition Based on the concentrated sample from GDR MONALISA Introduction – Analytical protocol – Marine DNOM study – Estuarine DNOM Study - Conclusion 13 II. Analytical Protocol determination Introduction – Analytical protocol – Marine DNOM study – Estuarine DNOM Study - Conclusion 14 1. Technical and mathematical improvements pCuT 8.0 7.5 7.0 6.5 6.0 6.0 6.5 5e-9 7.5 pCulabile 7.0 4e-9 8.0 3e-9 i (A) 8.5 experimentals points fitted curve peak 1 peak 2 baseline 2e-9 •Limit adsorption (Teflon use) •Precise metal additions (automatic pumps 500µl) 1e-9 •Avoid pollution with additions (tubing separation) 0 •Avoid evaporation (N2 wet purging) -0.5 -0.4 -0.3 -0.2 -0.1 •Mathematical baseline and peak definition E (V) •Multi-PROSECE (more optimization loop & confidence interval calculus) Introduction – Analytical protocol – Marine DNOM study – Estuarine DNOM Study - Conclusion 9.0 0.0 15 2. Analytical improvement: Surface Active Substances (SAS) interferences (Louis et al., 2008, ACA 606, 37-44) Edep Escan e- e- Intensity (nA) 12 Escan I 14 [Cu]meas [LT] Distorded shape 10 8 6 -0.45V with SAS 4 2 0 -0.5 -0.45V without SAS -0.4 -0.3 -0.2 -0.1 0.0 Escan (V) SAS SAS Introduction – Analytical protocol – Marine DNOM study – Estuarine DNOM Study - Conclusion 16 Analytical process to get rid of SAS interferences during the stripping step Additional experiment A.C Voltametry (Phase angle: 90° measure of capacitive current) 250 Classical used tdep Intensity (nA) i (nA) 12 150 100 50 0 0 200 -0.6V dep = V Eacc= E -0.45 + 3sec at -1.6V 80 Eacc= -1.6 V Eacc= -0.45 V 10 8 i (nA) 14 200 100 Edep = -0.6V + 3s at -1.6V Classical Edep used for Cu Max. Ads. At pzc - 60 + 40 20 6 Edep = -1.6V 4 400 0 -1.6 600 -1.4 -1.2 -1.0 t (s) acc -0.6 -0.4 -0.2 0.0 Eacc (V) 2 ΔI ↑ = Itcap- It0cap = SAS quantity ↑ 0 -0.5 -0.8 -0.4 -0.3 -0.2 Full circles Edep=60 s Dotted circles Edep=60 s + 1s at -1.6V Triangles Edep =60s (After UV) -0.1 0.0 (V) High influence of SAS at tdepE = 300 s and Edep ≈ - 0.5 V scan Only 1% of the total deposition time (297s) Introduction – Analytical protocol – Marine DNOM study – Estuarine DNOM Study - Conclusion 17 Influence of these SAS on the apparent [LT] 1e-8 Without 3sec [LT]= 335 nM 8e-9 Intensity (A) logK=6.17 6e-9 With 3sec [LT]= 160 nM 4e-9 logK=6.47 2e-9 0 0 200 Ruzić linearization 400 600 800 1000 [Cu] (nM) [LT] change from 335 nM to 160 nM Artificially « Hidden Metal » by SAS bad speciation determination toxicity Introduction – Analytical protocol – Marine DNOM study – Estuarine DNOM Study - Conclusion 18 3. Analytical protocol for DNOM study Potentiometry Raw sample Log addition window determination : Add1= 10% Mini Final conc.: 1mgC/L 1µM 10 mgC/L 10µM (Chelex) (4) (1) (3) DOC Filtration (8) at 0.45µm (5) For concentrated samples Pseudo Edep (2) UV at pH2 Salinity or majors ions by Ionic Chromatography (6) (9) Total Metal (Optional) H+ , Ca2+ competition (After Chelex) (7) (10) “Chimiotype” PROSECE (11) Log additions at Edep, Kinetic experiment Introduction – Analytical protocol – Marine DNOM study – Estuarine DNOM Study - Conclusion 19 III. Study of a natural seawater sample (MONALISA project) (Article submitted to Marine Environmental Research) Introduction – Analytical protocol – Marine DNOM study – Estuarine DNOM Study - Conclusion 20 1. Sampling site: Balaguier Bay > 100 nM Military port ~ 15 nM ~ 5 nM Site interest: Coastal Semi-Closed Area under anthropogenic influences Goal: Give standard DNOM usable in metal speciation/transport program 1000L seawater sampling (online filtration and nanofiltration and reverse osmosis concentration by GDR MONALISA, ISM-LPTC: E. Parlanti, PhD of Arnaud Huguet). Concentrated from 1000 L to ~10 L, [DOC]final= 30.4 mg/L Introduction – Analytical protocol – Marine DNOM study – Estuarine DNOM Study - Conclusion 21 2. Potentiometry on Concentrated DNOM (Garnier et al., 2004, Water Research, 38, 3685-3692) Carboxylic like LH1 LH2 LH3 LH4 LHiT (meq/molC) 210 ± 10.8 54 ± 2.4 80.4 ± 1.2 100.8 ± 1.2 pKa 3.6 ± 0.1 4.8 ± 0.1 8.6 ± 0.1 12.0 ± 0.4 Carboxylic-like Phenolic-like 5 pH 12 4 10 3 2 1 0 6 -1 -2 4 181.2 60% 40% 70% 30% Total acidic Sites 446.4 /2.7 165.3 Lu and Allen (2002) : Suwanee River Erreur (%) 8 265.2 Phenolic like (also concentrated by RO) (Letizia and Gnudi, 1999) -3 -4 2 0 0.02 0.04 0.06 0.08 nOH-ajouté (mmol) -5 0.1 0.12 0.14 PROSECE Fitting for 4 types of acidic sites (DOC=1.2mmolC.L-1). Introduction – Analytical protocol – Marine DNOM study – Estuarine DNOM Study - Conclusion 22 3. Exploratory experiment: Pseudopolarography coupled with logarithmic addition 100 Edep = -0.5V 2nd site saturation CuT (%) 80 60 1st site saturation 40 20 0 8 7 6 5,6 5 4,6 4 pCuT Estimation of a [1st site]: 90% x 2.5µM = 2.25 µM (= 1.87 meq/molC) Estimation of a [2nd site]: 50% x 25µM - [1st site]: = 10.25 µM (= 8.54 meq/molC) Introduction – Analytical protocol – Marine DNOM study – Estuarine DNOM Study - Conclusion 23 4. Log addition and Cu2+ competition with H+ and Ca2+ ≈ 2µM of Cu bound to specific sites Strong affinity toward proton phenolic-like sites Strong affinity of copper for the studied DNOM % Cu lab Model Marine DNOM complexing parameters = DNOM “Chimiotype” % Cu lab (Comparable to standards OM used in NICA-Donnan /WHAM models, obtained for soil/river extracted OM) Ca additions LH1 LH2 LHiT 210 ± 10.8 54 ± 2.4 (meq/mol Edep = -0.5V,C)pH = 8.2, DOC = 1.2mmolC.L-1. pH LH3 LH4 80.4 ± 1.2 100.8 ± 1.2 [Cu] = 12.5µM, pH = 8.2 [Cu]T = 4µM. T Hight complexing calcium competition Strong pKa 3.6 ±site 0.1specific 4.8 ± 0.1 8.6 ± 0.1 12.0 ± 0.4 Comparison of 2 different Edep (-0.5V and -1.5V). toeffect copper Total metal binding site Total acidic LM1 LM2 density LMT sites density Closed to12 values estimated with 446 pseudo LMiT (meq/molC) 1.72 ±0.13 10.25 ±2.7 logKCuL 9.9 ±0.1 6.9 ±0.1 logKCaL 2.5 ±0.4 5.5 ±0.6 pKa 8.6 ±0.1 8.2 ±0.3 coupled with log add. ~3% of (= Buffle, 1988) Phenolic-like sites Complexing parameters determined after simultaneous fitting by PROSECE of the 3 experiments Introduction – Analytical protocol – Marine DNOM study – Estuarine DNOM Study - Conclusion 24 5. MINEQL simulation of natural DNOM according to determined model marine DNOM Experimental points DNOM simulated by Mineql adjusting only [DOC] Difference between modeled DNOM and experimental points <<5% seawater sample treated with Chelex (DOC = 0.09 mmolC.L-1); pH = 8.2, Salinity 37. • Correct simulation validating the characterization protocol • DNOM reactivity is not strongly modified by concentration step Model DNOM determined usable Introduction – Analytical protocol – Marine DNOM study – Estuarine DNOM Study - Conclusion 25 6. Simulation of copper speciation for the studied marine environment Condition: Majors ions for salinity of 38, DOC = 0.09 mmolC.L-1, Cutot = 14.8nM 80% of total copper complexed as organic forms >90% found in several paper: Influence of SAS ? specific behavior of the studied DNOM and high copper content 7.5 8.3 Introduction – Analytical protocol – Marine DNOM study – Estuarine DNOM Study - Conclusion 26 IV. Estuarine DNOM Study (Article submitted to Marine Chemistry) Introduction – Analytical protocol – Marine DNOM study – Estuarine DNOM Study - Conclusion 27 1. Sampling site: Krka, Croatia (2007&2008) • Sampling in the water column: gradient of salinity Salinity 0 -1 0 Brackish 20 30 FSI layer 10 40 -2 -3 Depth (m) •Low tide on Adriatic sea stratified estuary •Pristine watershed •Potential anthropogenic inputs in estuary •On site measurements in nearby laboratory •Challenge is to give data on speciation and kinetic in this natural area -4 -5 -6 Seawater -7 -8 -9 Introduction – Analytical protocol – Marine DNOM study – Estuarine DNOM Study - Conclusion 28 2. Simplified protocol used Potentiometry Raw sample Log addition window determination : Add1= 10% Mini Final conc.: 1mgC/L 1µM 10 mgC/L 10µM (Chelex) (4) (1) (3) DOC Filtration (8) at 0.45µm (5) Pseudo Edep (2) UV at pH2 Salinity or majors ions by Ionic Chromatography (6) (9) Total Metal (Optional) H+ , Ca2+ competition (After Chelex) (7) (10) No concentration step and no use of Chelex PROSECE (11) Log additions at Edep, Kinetic experiment Introduction – Analytical protocol – Marine DNOM study – Estuarine DNOM Study - Conclusion 29 3. Salinity, DOC and Copper profiles DOC (µMC) Salinity 0 10 20 30 40 40 50 60 70 80 (Elbaz-Poulichet F. et al., 1991) Cu1988 T (nM) 1.78 in may 2 4 6 8 10 12 0 -2 B C -4 -6 DOC -8 12 80 10 70 8 CuT Depth (m) A 60 6 50 4 40 2 0 10 20 30 Salinity 40 0 10 20 30 40 Salinity • Same curve shape for 2007 & 2008 • Oligotrophic freshwater Very few carbon content, DOC est. < DOC sea low anthrop. inputs • Non conservative behavior: Bigger amount of metal & DOC in the FSI “special layer” • Additional source of DOC in the FSI: can be due to an exacerbated biological activity (Svensen et al, 2006) • Increase of copper in the FSI: particulate/dissolved metal exchange due to salinity increase Introduction – Analytical protocol – Marine DNOM study – Estuarine DNOM Study - Conclusion 30 4. Comparison of the kinetic and at Equilibrium approach Data obtained for only 1 sample: Example from Salinity 11, April 2007 8.0 8.0 7.0 pCuT pCuT 6.5 6.5 6.0 6.0 5.5 5.5 Log K at Equilibrium 5.5 5.5 1.4E-07 8.0E-08 6 6.0E-08 4 4.0E-08 Average of Log k1 kinetic Log k1 kinetic 6.0 6.0 erreur (%) erreur (%) 55 LT LT (mol/L) (mol/L) logk1 logk1 & & logKth logKth 8 Log K kinetic Average of Log K kinetic Average of LT kinetic 1.2E-07 LT kinetic LT at Equilibrium 1.0E-07 6.5 6.5 7.0 7.0 00 7.5 pCulab pCulab 10 7.5 7.5 10 10 8.0 -5 8.5 -10 2.0E-08 Fitting Data at Equilibrium 9.0 5.0E-08 4.5E-08 2 0.0E+00 7.7 7.5 pCuT 7.3 7.1 6.9 Good agreement between the constants obtained at equilibrium and with the kinetic approach 3.5E-08 Culabile (M) 7.9 4.0E-08 3.0E-08 2.5E-08 2.0E-08 1.5E-08 1.0E-08 Fitted Kinetic data 5.0E-09 0.0E+00 0 1000 2000 3000 4000 t (s) 5000 6000 Introduction – Analytical protocol – Marine DNOM study – Estuarine DNOM Study - Conclusion 7000 8000 31 4. Comparison of the kinetic and at Equilibrium approach 14 A Good agreement between constants determined at equilibrium or kinetic 13 120 LiT Kinetic (nM) 2007 (,) and 2008 (,). B logKM Li Kinetic 150 12 90 60 11 At equ: Higher M/L ratio better [L] determination 8 10 7 6 9 5 5 6 7 8 60 90 120 LiT at equilibrium (nM) 150 9 10 11 12 13 14 logKM Li at equilibrium Kinet.: more points after each addition less equilibrium dependent, kinetic parameters determined pCuT 7.0 6.5 6.0 6.0 4e-8 A B 6.5 Culabile (M) • kinetic first point estimation of Culab at t0 • Is the solution at equilibrium with the at equ. Approach •Both approaches are complementary 7.5 3e-8 7.0 7.5 8.0 pCulabile Apparent overestimation of Kinetically determined logK (or underestimation of the at equ. approach) due to: 8.0 k1 2e-8 1e-8 k-1 8.5 0 9.0 0 2000 4000 6000 Time (s) Introduction – Analytical protocol – Marine DNOM study – Estuarine DNOM Study - Conclusion 8000 32 5. Complexing parameters results 5 10 20 log K equ i & LiT (nM) In MINEQL:Cu (%) 50 100 200 8.5 9.5 10.5 11.5 12.5 13.5 0 10 20 80 90 100 0 83% Depth (m) -2 -4 Cu2+(M) -6 1e-12 1e-11 1e-10 Depth (m) 0 -8 -10 A 0 B 10 20 Salinity 30 40 C -2 -4 -6 -8 -10 Expected variation with salinity Organic Cu Observed variation 90 to 99% strong (,) and weak (,) ligands, 2007 (,) and 2008 (,), In dotted line in inset: toxicity limit of 10 pM (Sunda et al., 1987). Difference Autochthonous DNOM production in the estuary Higher affinity for ligands from seawater origin In the FSI: Higher inorganic and free copper content (up to 20pM) in spite of [ligands] increase Introduction – Analytical protocol – Marine DNOM study – Estuarine DNOM Study - Conclusion 33 6. Simulation of DNOM reactivity under a Cu contamination Omanović et al., 2006 Cu2+ (M) CuT (nM) 0 2 4 6 8 10 12 14 0 B A -2 Depth (m) 1e-12 1e-11 Reaction time (min) 1e-10 0 20 40 100 200 300 C 2006 ≈ 2h30 ≈ 4h30 -4 -6 Used for prediction -8 2008 time 2008 2006 t50% t99% •Higher [Metal] in summer due to traffic of touristic boats •Calculated free copper concentration potentially toxic for µorganisms at the surface in summer •Lower reactivity of the FSI DNOM •Compared to hydrodynamics variations tequ. are quite long system probably not at equilibrium in the estuary Introduction – Analytical protocol – Marine DNOM study – Estuarine DNOM Study - Conclusion 34 depth (m) 7. Comparison of the measured DNOM vs. the model DNOM Determined with the simplified protocol simulated from model marine DNOM Higher free [Cu] with the use of model DNOM > toxicity limit Bigger difference for marine sample ≠ DNOM behavior between Toulon & Šibenik Model DNOM not sufficient, even if DNOM is from same origin This ≠ show the necessity to study samples representatives of the studied system Introduction – Analytical protocol – Marine DNOM study – Estuarine DNOM Study - Conclusion 35 V. Conclusion Introduction – Analytical protocol – Marine DNOM study – Estuarine DNOM Study - Conclusion 36 Conclusions and perspectives • NEW use of “3sec” for DNOM analysis remove SAS interferences •Determined protocol NEW direct analysis of coastal natural samples at low [DOC] and [M] complexing parameters determination + NEW Kinetic parameters (reactivity prediction) model DNOM usable in environmental contaminant speciation/transport programs •Standard DNOM hardly usable to model DNOM behavior of a complex environment Use of the determined protocol for specific ecosystem understanding •Main improvement needed: Voltammograms automatic fitting •Deeper analysis of pseudopolarograms, •On site measurements (DGT) and comparison of data •Actually protocol applied on a depth profile from Dycomed (Dyfamed site) … Introduction – Analytical protocol – Marine DNOM study – Estuarine DNOM Study - Conclusion 37 Application of the method to an “oceanic” depth profile [Cu]Free 1e-12 0 [Cu]Tot 1e-11 1e-9 5 nM 1e-8 Depth -500 -1000 -1500 -2000 First results shows: •At natural [Cu]: Cufree under toxicity limit until simulated total [Cu] up to 5nM •Surface DNOM is less complexant •Still analyzing samples (Dycomed 15) and need to treat all kinetics data… • Need to make a connection with on site measurments (Chlorophyll, COT, fluorescence … ) Introduction – Analytical protocol – Marine DNOM study – Estuarine DNOM Study - Conclusion 38 Balaguier Bay (Toulon, France) Martinska (Šibenik, Croatia) Merci à tous de votre attention ! Special thanks to my Directors: Dr. Mounier S. Dr. Omanović D. To the Jury’s members: Prof. Marmier N. Prof. Riso R. D.R. Elbaz-Poulichet F. D.R. Cossa D. Dr. Garnier C. And members from PROTEE (USTV) and LPCT (RBI) labs 39