Lista de Exercícios
1- Encontre o campo elétrico e o potencial elétrico dentro e fora de uma esfera
carregada, de raio R cuja carga total vale q. Usando E = V , verifique as
expressões para o campo elétrico encontradas dentro e fora da esfera.
2- Uma casca esférica possui uma densidade de carga
=
2
r
na região arb . Encontre o campo elétrico nas regiões:
a) r a
b) arb
c) r b
d) Faça o gráfico E em função de r .
e) Qual o potencial elétrico, usando o infinito como referência?
3- O campo elétrico, em coordenadas esféricas, em uma mesma região é dado por
3
E=kr
r . (k é uma constante )
a) Encontre a densidade de carga ?
b) Encontre a carga total contida na esfera de raio R, centrada na origem? (resolva a
carga total pela lei de Gauss e por integração direta)
4- O campo elétrico numa região do espaço e dado, em coordenadas esféricas, por:
A r B sin cos
E r =
r
onde A e B são constantes. Determine a densidade de carga ?
5- O potencial elétrico é expresso por:
V r =A
e r
r
onde A e são constantes.
a) Determine o campo elétrico E ?
b) Qual a densidade de carga ?
c) Qual a carga total Q ?
6- O campo elétrico necessário para que o ar se torne condutor é E=3 x 106 V/m.
(a) Qual o potencial mais alto possível de um condutor esférico isolado, de 10cm de
raio?
(b) Que raio deve ter um condutor esférico para manter 1C de carga?
7- O potencial do átomo de hidrogênio neutro é dado por
r
a0
V r =k
e
r
1
2r
a0
q
onde k = 4 , q é a carga do eletrônica, e a 0 é o raio de Bohr. Determine a
0
distribuição de cargas que produz este potencial (a parte discreta e a parte contínua).
Download

Lista de Exercícios 1- Encontre o campo elétrico e o potencial