&DStWXOR±$SUR[LPDomRGH)XQo}HVHGH'DGRV BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB &DStWXOR±$SUR[LPDomRGH)XQo}HVHGH'DGRV Å ,QWHUSRODomR 2 3UREOHPD Dado um conjunto de pontos, [ \ [ \ « [Q \Q com [L z [M para L z M , com L M Q determinar uma IXQomRGHLQWHUSRODomR M[ L M tal que, \L L «Q SRUH[HPSOR Dado o conjunto de pontos, duas possíveis soluções seriam, BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB $QiOLVH1XPpULFD5RViOLD5RGULJXHVH$QWyQLR3HUHLUD &DStWXOR±$SUR[LPDomRGH)XQo}HVHGH'DGRV BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB 7HUPLQRORJLD x Os valores [ [ [Q chamam-se QyVGHLQWHUSRODomR e x O conjunto ^ [L \L L Q`chama-se VXSRUWHGHLQWHUSRODomR x ^ x Existem váriosWLSRVGHIXQo}HVGHLQWHUSRODomR, tais como: os respectivos \ \ \Q são os YDORUHVQRGDLV M[ L \L L «Q` é a IXQomRGHLQWHUSRODomR nesse suporte x ,QWHUSRODomRSROLQRPLDO x ,QWHUSRODomRWULJRQRPpWULFD onde x 0 é um inteiro igual a Q se Q é SDU e Q se Q é tPSDU, L é a unidade imaginária ,QWHUSRODomRUDFLRQDO BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB $QiOLVH1XPpULFD5RViOLD5RGULJXHVH$QWyQLR3HUHLUD &DStWXOR±$SUR[LPDomRGH)XQo}HVHGH'DGRV BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB Å 3ROLQyPLRV GHILQLomR Um SROLQyPLRGHJUDX Q é uma função da forma, onde DQ z , excepto se Q D D DQ os FRHILFLHQWHV do polinómio Å 2 HVTXHPD GH +RUQHU Como FDOFXODURYDORU de um polinómio num dado ponto? H[HPSOR p3(x) = a3 x3 + a2 x2 + a1 x + a0 { Q Q p3(x) = (( a3 x + a2 ) x + a1 ) x + a0 { Q = PXOWLSOLFDo}HV } DOJRULWPR = QQ = PXOWLSOLFDo}HV } { Entrada: a0, a1, ..., an , x ∈ ¸ } polinomio ← an para k desde n ± 1 até 0 fazer polinomio ← polinomio ∗ x + ak n n-1 { Saída: polinomio = an x + an-1 x FRPSOH[LGDGH + ... + a1 x + a0 } Q multiplicações e Q adições BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB $QiOLVH1XPpULFD5RViOLD5RGULJXHVH$QWyQLR3HUHLUD &DStWXOR±$SUR[LPDomRGH)XQo}HVHGH'DGRV BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB WHRUHPD ( +RUQHU ) Para calcular pn(c), YDORUGHXPSROLQyPLR de grau n QRSRQWR c, faça-se b n = an e calcule-se bk = ak + c bk+1 então b0 = pn(c) para k = n-1, n-2, ...,1, 0 q0(x) = bn xn-1 + bn-1 xn-2 + ... + b2 x + b1 Mais ainda, se então pn(x) = (x - c) q0 + r0 onde q0(x) é o SROLQyPLRFRFLHQWH de grau n-1 e r0 = b0 = pn(c) é o UHVWR. H[HPSOR Calcular p5() = x5 - 6 x4 + 8 x3 + 8 x2 + 4 x - 40 pelo esquema de Horner, p5() = b5 = a5 =1 b4 = a4 + 3 b5 =-6+3 =-3 b3 = a3 + 3 b4 = 8-9 =-1 b2 = a2 + 3 b3 = 8-3 =5 b1 = a1 + 3 b2 = 4 + 15 = 19 b0 = a0 + 3 b1 = - 40 + 57 = 17 ficando assim também calculado o SROLQyPLRFRFLHQWH, T[ = bn xn-1 + bn-1 xn-2 + ... + b2 x + b1 = x4 - 3 x3 - x2 + 5 x + 19 e o UHVWR, U = E = 17 de modo que: S[ = [FT U = (x - 3) (x4 - 3 x3 - x2 + 5 x + 19 ) + 17 BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB $QiOLVH1XPpULFD5RViOLD5RGULJXHVH$QWyQLR3HUHLUD &DStWXOR±$SUR[LPDomRGH)XQo}HVHGH'DGRV BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB Assim, os resultados parciais obtidos pelo PpWRGRGH+RUQHU são efectivamente os sucessivos valores calculados pela 5HJUDGH5XIILQL : D D D D D D 1 -6 8 8 4 -40 3 -9 -3 15 57 -3 -1 5 19 [ 1 E E E E E = S E permitindo calcular: p5(x) = (x - 3) (x4 - 3 x3 - x2 + 5 x + 19 ) + 17 ,QWHUSRODomR 3ROLQRPLDO Å Os SROLQyPLRV são excelentes candidatos a IXQo}HVLQWHUSRODGRUDV, porque: x x x x O FiOFXORGRVYDORUHV é realizável em RUGHPOLQHDU no número de multiplicações e adições. As operações de GHULYDomRHSULPLWLYDomR são simples e podem ser facilmente programáveis. São de classe & $SUR[LPDPWDQWRTXDQWRVHTXHLUDqualquer IXQomRFRQWtQXD num LQWHUYDOR ILQLWR.( Teorema de Weierstrass ). Sempre que as funções de interpolação consideradas são polinómios falamos em ,QWHUSRODomR3ROLQRPLDO. BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB $QiOLVH1XPpULFD5RViOLD5RGULJXHVH$QWyQLR3HUHLUD &DStWXOR±$SUR[LPDomRGH)XQo}HVHGH'DGRV BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB 2 3UREOHPD Dado um VXSRUWHGHLQWHUSRODomR com Q pontos, ^[L \L L «Q ` encontrar um SROLQyPLRGHJUDXd Q tal que, \L 4XHVW}HV x x SQ [L L «Q ([LVWH sempre um polinómio que satisfaz as condições acima? Caso exista, é ~QLFR? 7HRUHPDGDH[LVWrQFLDHXQLFLGDGH Seja 3Q o conjunto dos polinómios de JUDXPHQRURXLJXDOD Q. Dados Q SRQWRVVXSRUWHGLVWLQWRV [L \L L «Q, H[LVWHXPHXPVySROLQyPLR SQ 3Q tal que, SQ [L \L L «Q 'HPRQVWUDomR Seja A exigência de que SQ seja um SROLQyPLRLQWHUSRODGRU nos Q pontos [L \L traduz-se no VLVWHPD de equações lineares: BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB $QiOLVH1XPpULFD5RViOLD5RGULJXHVH$QWyQLR3HUHLUD &DStWXOR±$SUR[LPDomRGH)XQo}HVHGH'DGRV BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB Para que o sistema tenha VROXomR~QLFD é QHFHVViULRHVXILFLHQWH que a respectiva matriz dos coeficientes possua um GHWHUPLQDQWHGLIHUHQWHGH]HUR. A PDWUL]GRVFRHILFLHQWHV é a conhecida PDWUL]GH9DQGHUPRQGH, definida por: Comecemos por demonstrar que o GHWHUPLQDQWHGH9DQGHUPRQGH tem o valor, Atendendo a que [L z [M para L z M (SRQWRVGLVWLQWRV) , este determinante é QmRQXOR e portanto o sistema tem VROXomR~QLFD. 'HPRQVWUDomR do YDORUGRGHWHUPLQDQWHGH9DQGHUPRQGH: por LQGXomR sobre Q : x Para Q , verifica-se pois, BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB $QiOLVH1XPpULFD5RViOLD5RGULJXHVH$QWyQLR3HUHLUD &DStWXOR±$SUR[LPDomRGH)XQo}HVHGH'DGRV BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB x Suponha-se a propriedade válida para Q í e mostre-se que é válida para Q Multiplicando a SULPHLUDFROXQD por [ e VXEWUDLQGR o resultado à VHJXQGDFROXQD, multiplicando a VHJXQGDFROXQD por [ e VXEWUDLQGR o resultado à WHUFHLUDFROXQD, ... obtemos, desenvolvendo este determinante e factorizando ( [ ± [ da primeira linha, [ ± [ da segunda linha, ..., [Q ± [ da última linha ) obtemos, BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB $QiOLVH1XPpULFD5RViOLD5RGULJXHVH$QWyQLR3HUHLUD &DStWXOR±$SUR[LPDomRGH)XQo}HVHGH'DGRV BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB assim, temos: Aplicando agora a KLSyWHVHGHLQGXomR ao determinante de Vandermonde de ordem Q e multiplicando, obtemos para a ordem Q : Portanto, se é esta a H[SUHVVmRGRGHWHUPLQDQWH da PDWUL]GRVLVWHPD e, atendendo a que [L z [M para L z M , este determinante é QmRQXOR então o sistema tem VROXomR ~QLFD. 2EVHUYDo}HV x Existem GXDVGHVYDQWDJHQV que não tornam recomendável computacionalmente seguir esta via para GHWHUPLQDURSROLQyPLRLQWHUSRODGRU: A matriz de Vandermonde apresenta um Q~PHURGHFRQGLomR muito elevado, tanto maior quanto maior for Q, pelo que se trata de um SUREOHPD PDOFRQGLFLRQDGR. x Trata-se de um processo de cálculo SRXFRHILFLHQWH – é possível obter o polinómio interpolador com menos operações aritméticas. O teorema anterior mostra-nos que o polinómio interpolador H[LVWHHp~QLFR (deduziremos YiULDVIyUPXODV para ele, mas todas representam R PHVPR SROLQyPLRLQWHUSRODGRU). BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB $QiOLVH1XPpULFD5RViOLD5RGULJXHVH$QWyQLR3HUHLUD &DStWXOR±$SUR[LPDomRGH)XQo}HVHGH'DGRV BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB > 3ROLQyPLRV GH /DJUDQJH GHILQLomR Os polinómios de grau Q dados por, são designados por SROLQyPLRVGH/DJUDQJH DVVRFLDGRVDRVQyV [ [ [Q WHRUHPD O SROLQyPLRLQWHUSRODGRU SQ de grau menor ou igual a Q que interpola os valores nodais \ \ \Q nos nós distintos [ [ [Q é dado por, GHPRQVWUDomR Pela sua definição, os polinómios /N satisfazem a relação, onde Gkj é o delta de Kronecker nestas condições, BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB $QiOLVH1XPpULFD5RViOLD5RGULJXHVH$QWyQLR3HUHLUD &DStWXOR±$SUR[LPDomRGH)XQo}HVHGH'DGRV BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB Assim, este polinómio cujo grau é evidente ser menor ou igual a Q, interpola os valores dados. Pelo Teorema da existência e unicidade é também o único polinómio interpolador nestes pontos. H[HPSOR Construir o polinómio interpolador de grau ≤ 3 que interpola os seguintes valores: Os SROLQyPLRVGH/DJUDQJH associados aos nós ( x0 = 0 , x1 = 1, x2 = 3 , x3 = 4 ) obtêm-se directamente da GHILQLomR, BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB $QiOLVH1XPpULFD5RViOLD5RGULJXHVH$QWyQLR3HUHLUD &DStWXOR±$SUR[LPDomRGH)XQo}HVHGH'DGRV BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB Assim sendo, nas condições do teorema, o SROLQyPLRLQWHUSRODGRU é dado por: 2EVHUYDomR A fórmula de Lagrange SRGHQmRVHUDUHSUHVHQWDomRPDLVFRQYHQLHQWH do polinómio interpolador. Isto acontece, fundamentalmente por duas razões: É possível obter este polinómio com PHQRVRSHUDo}HVDULWPpWLFDV que as requeridas por aquela fórmula; Os polinómios de Lagrange HVWmRDVVRFLDGRVDXPFRQMXQWRGHQyV e uma mudança de posição ou do número destes altera completamente estes polinómios. BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB $QiOLVH1XPpULFD5RViOLD5RGULJXHVH$QWyQLR3HUHLUD &DStWXOR±$SUR[LPDomRGH)XQo}HVHGH'DGRV BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB > )yUPXOD GH 1HZWRQ GHILQLomR . A )RUPDGH1HZWRQ para polinómios de grau Q é dada por, onde os parâmetros FL , L Q são chamados FHQWURVGRSROLQyPLR &RQVWUXomR da )yUPXOD GH 1HZWRQ: Considerando os QyV [ [ [Q como FHQWURVGRSROLQyPLR, temos: Os FRHILFLHQWHV D D DQ vão ser determinados de modo a que SQ seja o SROLQyPLRLQWHUSRODGRU nos nós [ [ [Q dos valores nodais \ \ \Q : ou, se os valores nodais \L forem os YDORUHVQRGDLVGHXPDIXQomR I temos, BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB $QiOLVH1XPpULFD5RViOLD5RGULJXHVH$QWyQLR3HUHLUD &DStWXOR±$SUR[LPDomRGH)XQo}HVHGH'DGRV BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB Assim, a partir de, e fazendo sucessivamente x = x0 , x = x1 , ... , x = xn obtemos os FRHILFLHQWHV: REVHUYDomR CadaFRHILFLHQWH x x DN N Q: pode ser calculado a partir dos DL L N, Mi GHWHUPLQDGRV. GHSHQGH exclusivamente dos QyV [ [ [N e dos respectivos YDORUHVQRGDLV \ \ \N GLIHUHQoDGLYLGLGDGHRUGHPN ( N ) entre os N nós [ [ [N . BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB $QiOLVH1XPpULFD5RViOLD5RGULJXHVH$QWyQLR3HUHLUD &DStWXOR±$SUR[LPDomRGH)XQo}HVHGH'DGRV BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB Å 'LIHUHQoDV 'LYLGLGDV Para designar a GLIHUHQoDGLYLGLGDGHRUGHPN ( N ) entre os N nós [ [ [N, são utilizadas indistintamente GXDVQRWDo}HV: onde, ou WHRUHPD Os FRHILFLHQWHV DN N Q do polinómio SQ de grau d Q , na IRUPDGH1HZWRQ que interpola os valores I[ , I[ , ..., I[N nos QyVGLVWLQWRV [ [ [N são dados LQGXWLYDPHQWH pela expressão: BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB $QiOLVH1XPpULFD5RViOLD5RGULJXHVH$QWyQLR3HUHLUD &DStWXOR±$SUR[LPDomRGH)XQo}HVHGH'DGRV BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB Assim, o3ROLQyPLR,QWHUSRODGRUFRP'LIHUHQoDV'LYLGLGDV tem a forma: &iOFXORGDV'LIHUHQoDV'LYLGLGDV As diferenças divididas são calculadas por FRQVWUXomRGHXPDWDEHOD, tal como no seguinte caso para 4 nós: BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB $QiOLVH1XPpULFD5RViOLD5RGULJXHVH$QWyQLR3HUHLUD &DStWXOR±$SUR[LPDomRGH)XQo}HVHGH'DGRV BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB H[HPSOR Determinar o SROLQyPLRLQWHUSRODGRU, na IRUPDGH1HZWRQ, que interpola os seguintes pontos, Tabela de GLIHUHQoDVGLYLGLGDV: BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB $QiOLVH1XPpULFD5RViOLD5RGULJXHVH$QWyQLR3HUHLUD &DStWXOR±$SUR[LPDomRGH)XQo}HVHGH'DGRV BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB Assim, calculados os FRHILFLHQWHV do polinómio interpolador na IRUPDGH1HZWRQ, temos, REVHUYDo}HV x A RUGHP pela qual os nós são tomados é DUELWUiULD. x Se os valores nodais forem os valores nodais de uma IXQomR, é possível estabelecer uma OLJDomR importante entre as GLIHUHQoDVGLYLGLGDV de ordem N e a GHULYDGD da mesma ordem dessa função. x Se fosse necessário DFUHVFHQWDUPDLVDOJXPQy aos anteriores, bastaria colocálo no fundo da tabela e calcular mais uma linha de valores (as diferenças divididas anteriormente obtidas não seriam afectadas). BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB $QiOLVH1XPpULFD5RViOLD5RGULJXHVH$QWyQLR3HUHLUD &DStWXOR±$SUR[LPDomRGH)XQo}HVHGH'DGRV BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB UHFRUGHPRV 7HRUHPDGR9DORU0pGLR/DJUDQJH Para toda função contínua em [a, b] e derivável em (a, b) existe (pelo menos) um ponto F ∈ (a, b) onde: &DVRSDUWLFXODU±7HRUHPDGH5ROOH Se então &DVRSDUWLFXODUGRWHRUHPDGH5ROOH Se então Entre GRLV ]HURVGDIXQomR existe (pelo menos) XP ]HURGDGHULYDGD. &RUROiULRGRWHRUHPDGH5ROOH Entre Q ]HURVGDIXQomR existem (pelo menos) Q ]HURVGDGHULYDGD. BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB $QiOLVH1XPpULFD5RViOLD5RGULJXHVH$QWyQLR3HUHLUD &DStWXOR±$SUR[LPDomRGH)XQo}HVHGH'DGRV BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB WHRUHPD Sejam I ∈ & ( [a, b] ) e [ [ [Q QyVGLVWLQWRV no intervalo [a, b]. Q Então existe um [ ∈ (a, b) tal que, GHPRQVWUDomR Para Q , o Teorema do Valor Médio garante esse resultado, Para analisar o caso geral Q !, consideremos a função, onde SQ[ é o polinómio de grau d Q que LQWHUSROD a função nos Q nós distintos. Assim, HQ[tem (pelo menos) Q zeros distintos em (a, b) e, pelo Corolário do Teorema de Rolle, tem (pelo menos) Q zeros em (a, b) aplicando sucessivamente o Corolário do Teorema de Rolle, tem (pelo menos) Q zeros em (a, b) tem (pelo menos) zero em (a, b) e seja [ esse zero. BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB $QiOLVH1XPpULFD5RViOLD5RGULJXHVH$QWyQLR3HUHLUD &DStWXOR±$SUR[LPDomRGH)XQo}HVHGH'DGRV BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB Por outro lado, derivando Q vezes a expressão do Polinómio Interpolador com Diferenças Divididas, obtemos, Portanto, ou, x Deste modo, se os valores nodais forem os valores nodais de uma função, este teorema estabelece uma UHODomRLPSRUWDQWH entre as GLIHUHQoDVGLYLGLGDV de ordem Q e a GHULYDGD da mesma ordem dessa função. BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB $QiOLVH1XPpULFD5RViOLD5RGULJXHVH$QWyQLR3HUHLUD &DStWXOR±$SUR[LPDomRGH)XQo}HVHGH'DGRV BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB > ,QWHUSRODomR FRP 1yV (TXLGLVWDQWHV Em muitas aplicações os QyV [ [ [Q são HTXLGLVWDQWHV. Sendo K a GLVWkQFLD entre dois nós sucessivos ( DYDQoR ou SDVVR) temos, donde, Å 'LIHUHQoDV 3URJUHVVLYDV RX 'HVFHQGHQWHV GHILQLomR A GLIHUHQoDSURJUHVVLYD de RUGHP]HUR e SDVVR K da função I no nó [L é dada por, A GLIHUHQoDSURJUHVVLYD de RUGHPN , N e SDVVR K da função I no nó [L é dada por, BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB $QiOLVH1XPpULFD5RViOLD5RGULJXHVH$QWyQLR3HUHLUD &DStWXOR±$SUR[LPDomRGH)XQo}HVHGH'DGRV BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB Tal como as diferenças divididas, as diferenças progressivas organizam-se numa WDEHOD: Além disso, existe uma relação entre as diferenças divididas e as diferenças progressivas. WHRUHPD A GLIHUHQoDGLYLGLGDde ordem N da função I nos N nós equidistantes de passo K [L [L [LN está UHODFLRQDGD com a GLIHUHQoDSURJUHVVLYD de ordem N por, BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB $QiOLVH1XPpULFD5RViOLD5RGULJXHVH$QWyQLR3HUHLUD &DStWXOR±$SUR[LPDomRGH)XQo}HVHGH'DGRV BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB recordemos, H GHPRQVWUHPRV SRULQGXomR Para N , por definição e para N , Suponhamos agora a relação válida para N Qt e provemos para N Q : a partir da relação, e aplicando a hipótese de indução, BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB $QiOLVH1XPpULFD5RViOLD5RGULJXHVH$QWyQLR3HUHLUD &DStWXOR±$SUR[LPDomRGH)XQo}HVHGH'DGRV BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB obtemos, )yUPXOD GH 1HZWRQ FRP 'LIHUHQoDV 3URJUHVVLYDV WHRUHPD O SROLQyPLR de grau Qque LQWHUSROD os valores nodais I I IQ nos QyVHTXLGLVWDQWHV [ [ [Q de passo K pode escrever-se na forma, GHPRQVWUDomR Aplicar o resultado anterior à Fórmula de Newton com Diferenças Divididas, BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB $QiOLVH1XPpULFD5RViOLD5RGULJXHVH$QWyQLR3HUHLUD &DStWXOR±$SUR[LPDomRGH)XQo}HVHGH'DGRV BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB Å 'LIHUHQoDV 5HJUHVVLYDV RX $VFHQGHQWHV GHILQLomR A GLIHUHQoDUHJUHVVLYD de RUGHP]HUR e SDVVR K da função I no nó [L é dada por, A GLIHUHQoDUHJUHVVLYD de RUGHPN , N e SDVVR K da função I no nó [L é dada por, Analogamente, existe uma relação entre as diferenças divididas e as diferenças regressivas. WHRUHPD A GLIHUHQoDGLYLGLGDde ordem N da função I nos N nós equidistantes de passo K [LN [LN [L está UHODFLRQDGD com a GLIHUHQoDUHJUHVVLYD de ordem N por, GHPRQVWUDomR Por indução sobre N. BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB $QiOLVH1XPpULFD5RViOLD5RGULJXHVH$QWyQLR3HUHLUD &DStWXOR±$SUR[LPDomRGH)XQo}HVHGH'DGRV BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB Também a GLIHUHQoDVUHJUHVVLYDV se organizam numa WDEHOD: )yUPXOD GH 1HZWRQ FRP 'LIHUHQoDV 5HJUHVVLYDV WHRUHPD O SROLQyPLR de grau Qque LQWHUSROD os valores nodais I I IQ nos QyVHTXLGLVWDQWHV [ [ [Q de passo K pode escrever-se na forma, BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB $QiOLVH1XPpULFD5RViOLD5RGULJXHVH$QWyQLR3HUHLUD &DStWXOR±$SUR[LPDomRGH)XQo}HVHGH'DGRV BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB GHPRQVWUDomR Basta considerar a Fórmula de Newton com Diferenças Divididas, mas construída relativamente aos nós por RUGHPLQYHUVD [Q [Qí [ [ , e aplicar o resultado anterior. > (UURV GH ,QWHUSRODomR 3ROLQRPLDO Que HUUR se comete quando seLQWHUSRODXPDIXQomR por um SROLQyPLR de grau d Q utilizando o valor da função em Q nós distintos " SRUH[HPSOR I[ VLQ[[ S[ BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB $QiOLVH1XPpULFD5RViOLD5RGULJXHVH$QWyQLR3HUHLUD &DStWXOR±$SUR[LPDomRGH)XQo}HVHGH'DGRV BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB WHRUHPD Sejam I &Q([a, b]) e SQ o SROLQyPLR de grau d Q que LQWHUSROD I nos QyVGLVWLQWRV [ [ [Q, contidos em [a, b] . Então para TXDOTXHU ∈ [a, b] H[LVWH um valor dependente de [ ∈ (a, b) , e de I tal que GHPRQVWUDomR x x Nos QyV da interpolação, o HUUR é igual a ]HUR e o resultado é verdadeiro. Para analisar os RXWURV pontos, consideremos o produto, e a função auxiliar, )[ tem pelo menos Q zeros em [a, b] que são: então, aplicando sucessivamente o Corolário do Teorema de Rolle, BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB $QiOLVH1XPpULFD5RViOLD5RGULJXHVH$QWyQLR3HUHLUD &DStWXOR±$SUR[LPDomRGH)XQo}HVHGH'DGRV BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB )[ tem pelo menos Q zeros em [a, b] )¶[ tem pelo menos Q zeros em [a, b] )¶¶[ tem pelo menos Q zeros em [a, b] )Q[ tem pelo menos zero em [a, b]. Seja [ um desses zeros. Assim, com, e porque, temos e portanto, Esta expressão calcula o valor exacto do HUURGHLQWHUSRODomR em qualquer ponto VH o valor de [ for conhecido. BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB $QiOLVH1XPpULFD5RViOLD5RGULJXHVH$QWyQLR3HUHLUD &DStWXOR±$SUR[LPDomRGH)XQo}HVHGH'DGRV BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB QRWD x Para [ >@ a função [ ±[ tem o seu valor máximo em [ Assim, nesse intervalo, x . [ ±[d Para [ >DE@ com K E±D , analisemos a função [±DE±[ : D [ E Fazendo [ DVK , com V >@ , ao valor máximo de V corresponde [ DK donde, no intervalo >DE@ , [±DE±[d K x ou _[±D[±E_d K Para Q pontos equidistantes [ [ [Q com passo K , analisemos, e provemos que BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB $QiOLVH1XPpULFD5RViOLD5RGULJXHVH$QWyQLR3HUHLUD &DStWXOR±$SUR[LPDomRGH)XQo}HVHGH'DGRV BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB por LQGXomR sobre Q . • Para Q , como vimos, _ [±[ [±[ _d K • Assumindo que, para temos, provemos que para teremos Efectivamente, [ [ [ [Q [Q BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB $QiOLVH1XPpULFD5RViOLD5RGULJXHVH$QWyQLR3HUHLUD &DStWXOR±$SUR[LPDomRGH)XQo}HVHGH'DGRV BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB Å (VWLPDWLYD GR (UUR GH ,QWHUSRODomR Como em, o valor de [ é desconhecido, temos de calcular um OLPLWHVXSHULRUpara estimativa do valor do erro. Para o caso particular da função a interpolar, procuramos um PDMRUDQWH em [x0, xn], e considerando K o HVSDoDPHQWRPi[LPR entre dois nós consecutivos, temos, ou, BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB $QiOLVH1XPpULFD5RViOLD5RGULJXHVH$QWyQLR3HUHLUD &DStWXOR±$SUR[LPDomRGH)XQo}HVHGH'DGRV BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB &RPSRUWDPHQWR GR (UUR GH ,QWHUSRODomR Å Analisando, verificamos que o erro de interpolação depende de: x o Q~PHURGHQyV considerado, x o comportamento do SROLQyPLR Z de grau Q . x o comportamento da GHULYDGDGHRUGHP Q da função, O comportamento do SROLQyPLR Z pode ter efeitos indesejáveis, tal como no conhecido caso do (IHLWRGH5XQJH : A IXQomRGH5XQJHé definida em [ -1, 1] por, QyV HTXLGLVWDQWHV QyV HTXLGLVWDQWHV QyV HTXLGLVWDQWHV SROLQyPLRVLQWHUSRODGRUHV BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB $QiOLVH1XPpULFD5RViOLD5RGULJXHVH$QWyQLR3HUHLUD &DStWXOR±$SUR[LPDomRGH)XQo}HVHGH'DGRV BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB x Verifica-se que, FRQVLGHUDQGRQyVHTXLGLVWDQWHV, os polinómios interpoladores tendem a RVFLODUQRVH[WUHPRV e que oscilam WDQWRPDLV quanto PDLRUIRUR Q~PHUR de nós considerado! x Para QyVHTXLGLVWDQWHV com [ [ [Q verifica-se que R SROLQyPLR RVFLOD muito nos LQWHUYDORVH[WUHPRV >[ [@ e >[Q [Q@ e menos nos intervalos centrais. x Z Prova-se que o valor é PtQLPR ( e igual a x íQ) quando os nós coincidem com os QyVGH&KHE\VKHY. No intervalo >í@ os QyVGH&KHE\VKHY são: BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB $QiOLVH1XPpULFD5RViOLD5RGULJXHVH$QWyQLR3HUHLUD &DStWXOR±$SUR[LPDomRGH)XQo}HVHGH'DGRV BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB x Num intervalo >DE@ os QyVGH&KHE\VKHYsão dados por: onde WN N Q representa os nós de Chebyshev em >í@ . x Usando os nós de Chebyshev verifica-se que o SROLQyPLRQRGDO exibe RVFLODo}HV XQLIRUPHV em todo o intervalo considerado. x &RPHVWDGLVWULEXLomRHVSDFLDOGRVQyV é possível mostrar que, se I for uma função contínua e diferenciável em >DE@, o SROLQyPLRLQWHUSRODGRUFRQYHUJH para I quando Q o para todo o [ >DE@ BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB $QiOLVH1XPpULFD5RViOLD5RGULJXHVH$QWyQLR3HUHLUD