CURSO: ENGENHARIA DE CONTROLE E AUTOMAÇÃO Componente Curricular: Física Experimental I (30 h) Ano / Semestre: 2015/1 Experimento Movimento Uniformemente Variado: caso unidimensional Objetivos Representar graficamente os valores experimentais x = f (t); Relacionar a função obtida pela linearização do gráfico de x=f(t) com a equação horária do movimento; Determinar a velocidade instantânea do movimento em vários instantes e construir o gráfico de v=f(t); Obter o valor da aceleração média do movimento. Fundamentação teórica Quando não há atrito e a velocidade inicial é nula, a posição x varia com o tempo t de acordo com: x(t) = (a/2) t² , onde “a” é a aceleração do corpo em movimento. Na presença de atrito aspereza que a potência da grandeza t na expressão acima seja menor do que 2 e o fator (a/2) é substituído por uma constante “c” a ser determinada. Material necessário Trilho, carrinho, roldana de baixo atrito, cronômetro, barbante, papel milimetrado e papel dilog. Procedimento experimental a) Solte o carrinho da posição inicial em repouso e faça cinco medidas de tempo para o carrinho deslocar-se 20, 40, 50, 60 e 70 cm; preencha a Tabela I com os dados obtidos e determine o tempo médio; b) Trace o gráfico da posição em função do tempo x(t) e identifique a função obtida; c) Linearize em papel dilog a função x = f(t) do item b) para encontrar os parâmetros da função; d) Linearize em papel milimetrado a equação x(t)=ct² (faça y=t²); e) Após a linearização da função x(t) com o papel dilog, obtenha, derivando, a expressão da equação geral da velocidade e determine a velocidade instantânea para cinco tempos quaisquer e preencha a Tabela II; e) Construa um gráfico de v(t) x t e calcule a aceleração média do movimento. Tabela 1 x (m) \\\ t (s) Tabela 2 t (s) v (m/s) t1 t1 = t2 t2 = t3 t3 = t4 t5 t4 = tm t5 =